Spelling suggestions: "subject:"attern recognition systems."" "subject:"battern recognition systems.""
501 |
Electric utility planning methods for the design of one shot stability controlsNaghsh Nilchi, Maryam 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Reliability of the wide-area power system is becoming a greater concern as the power grid is growing. Delivering electric power from the most economical source through fewest and shortest transmission lines to customers frequently increases the stress on the system and prevents it from maintaining its stability. Events like loss of transmission equipment and phase to ground faults can force the system to cross its stability limits by causing the generators to lose their synchronism. Therefore, a helpful solution is detection of these dynamic events and prediction of instability.
Decision Trees (DTs) were used as a pattern recognition tool in this thesis. Based on training data, DT generated rules for detecting event, predicting loss of synchronism, and selecting stabilizing control. To evaluate the accuracy of these rules, they were applied to testing data sets.
To train DTs of this thesis, direct system measurements like generator rotor angles and bus voltage angles as well as calculated indices such as the rate of change of bus angles, the Integral Square Bus Angle (ISBA) and the gradient of ISBA were used.
The initial method of this thesis included a response based DT only for instability prediction. In this method, time and location of the events were unknown and the one shot control was applied when the instability was predicted. The control applied was in the form of fast power changes on four different buses. Further, an event detection DT was combined with the instability prediction such that the data samples of each case was checked with event detection DT rules. In cases that an event was detected, control was applied upon prediction of instability.
Later in the research, it was investigated that different control cases could behave differently in terms of the number of cases they stabilize. Therefore, a third DT was trained to select between two different control cases to improve the effectiveness of the methodology.
It was learned through internship at Midwest Independent Transmission Operators (MISO) that post-event steady-state analysis is necessary for better understanding the effect of the faults on the power system. Hence, this study was included in this research.
|
502 |
Deep learning methods for detecting anomalies in videos: theoretical and methodological contributions / Métodos de deep learning para a detecção de anomalias em vídeos: contribuições teóricas e metodológicasRibeiro, Manassés 05 March 2018 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A detecção de anomalias em vídeos de vigilância é um tema de pesquisa recorrente em visão computacional. Os métodos de aprendizagem profunda têm alcançado o estado da arte para o reconhecimento de padrões em imagens e o Autocodificador Convolucional (ACC) é uma das abordagens mais utilizadas por sua capacidade em capturar as estruturas 2D dos objetos. Neste trabalho, a detecção de anomalias se refere ao problema de encontrar padrões em vídeos que não pertencem a um conceito normal esperado. Com o objetivo de classificar anomalias adequadamente, foram verificadas formas de aprender representações relevantes para essa tarefa. Por esse motivo, estudos tanto da capacidade do modelo em aprender características automaticamente quanto do efeito da fusão de características extraídas manualmente foram realizados. Para problemas de detecção de anomalias do mundo real, a representação da classe normal é uma questão importante, sendo que um ou mais agrupamentos podem descrever diferentes aspectos de normalidade. Para fins de classificação, esses agrupamentos devem ser tão compactos (densos) quanto possível. Esta tese propõe o uso do ACC como uma abordagem orientada a dados aplicada ao contexto de detecção de anomalias em vídeos. Foram propostos métodos para o aprendizado de características espaço-temporais, bem como foi introduzida uma abordagem híbrida chamada Autocodificador Convolucional com Incorporação Compacta (ACC-IC), cujo objetivo é melhorar a compactação dos agrupamentos normais. Além disso, foi proposto um novo critério de parada baseado na sensibilidade e sua adequação para problemas de detecção de anomalias foi verificada. Todos os métodos propostos foram avaliados em conjuntos de dados disponíveis publicamente e comparados com abordagens estado da arte. Além do mais, foram introduzidos dois novos conjuntos de dados projetados para detecção de anomalias em vídeos de vigilância em rodovias. O ACC se mostrou promissor na detecção de anomalias em vídeos. Resultados sugerem que o ACC pode aprender características espaço-temporais automaticamente e a agregação de características extraídas manualmente parece ser valiosa para alguns conjuntos de dados. A compactação introduzida pelo ACC-IC melhorou o desempenho de classificação para a maioria dos casos e o critério de parada baseado na sensibilidade é uma nova abordagem que parece ser uma alternativa interessante. Os vídeos foram analisados qualitativamente de maneira visual, indicando que as características aprendidas com os dois métodos (ACC e ACC-IC) estão intimamente correlacionadas com os eventos anormais que ocorrem em seus quadros. De fato, ainda há muito a ser feito para uma definição mais geral e formal de normalidade, de modo que se possa ajudar pesquisadores a desenvolver métodos computacionais eficientes para a interpretação dos vídeos. / The anomaly detection in automated video surveillance is a recurrent topic in recent computer vision research. Deep Learning (DL) methods have achieved the state-of-the-art performance for pattern recognition in images and the Convolutional Autoencoder (CAE) is one of the most frequently used approach, which is capable of capturing the 2D structure of objects. In this work, anomaly detection refers to the problem of finding patterns in images and videos that do not belong to the expected normal concept. Aiming at classifying anomalies adequately, methods for learning relevant representations were verified. For this reason, both the capability of the model for learning automatically features and the effect of fusing hand-crafted features together with raw data were studied. Indeed, for real-world problems, the representation of the normal class is an important issue for detecting anomalies, in which one or more clusters can describe different aspects of normality. For classification purposes, these clusters must be as compact (dense) as possible. This thesis proposes the use of CAE as a data-driven approach in the context of anomaly detection problems. Methods for feature learning using as input both hand-crafted features and raw data were proposed, and how they affect the classification performance was investigated. This work also introduces a hybrid approach using DL and one-class support vector machine methods, named Convolutional Autoencoder with Compact Embedding (CAE-CE), for enhancing the compactness of normal clusters. Besides, a novel sensitivity-based stop criterion was proposed, and its suitability for anomaly detection problems was assessed. The proposed methods were evaluated using publicly available datasets and compared with the state-of-the-art approaches. Two novel benchmarks, designed for video anomaly detection in highways were introduced. CAE was shown to be promising as a data-driven approach for detecting anomalies in videos. Results suggest that the CAE can learn spatio-temporal features automatically, and the aggregation of hand-crafted features seems to be valuable for some datasets. Also, overall results suggest that the enhanced compactness introduced by the CAE-CE improved the classification performance for most cases, and the stop criterion based on the sensitivity is a novel approach that seems to be an interesting alternative. Videos were qualitatively analyzed at the visual level, indicating that features learned using both methods (CAE and CAE-CE) are closely correlated to the anomalous events occurring in the frames. In fact, there is much yet to be done towards a more general and formal definition of normality/abnormality, so as to support researchers to devise efficient computational methods to mimetize the semantic interpretation of visual scenes by humans.
|
503 |
Detecção de glifosato em água por reconhecimento de padrões em espectroscopia assistida por nanopartículas de prata fabricadas por ablação a laser / Detection of glyphosate in water by pattern recognition in laser ablated silver nanoparticles assisted spectroscopyGóes, Rafael Eleodoro de 19 February 2018 (has links)
A água é um recurso natural que, apesar de abundante, tem sofrido grande restrição em sua disponibilidade por conta da atividade humana, principalmente a agricultura. A garantia de conformidade da água que é distribuída à população quanto aos níveis tidos como seguros para a presença de contaminantes é, portanto, uma questão de saúde pública e que tem atraído grande atenção. De modo a detectar substâncias potencialmente nocivas, complexos procedimentos de química analítica são utilizados para a verificação e emissão de laudos de conformidade, utilizados para a tomada de decisão em relação à sua potabilidade. Neste cenário há demanda para métodos auxiliares para guiar a amostragem e realizar a triagem de amostras. O glifosato é o herbicida sistêmico não seletivo mais utilizado no mundo. Tal substância tem recebido crescente atenção, principalmente devido à sua ampla utilização e controvérsia em relação ao seu efeito potencialmente cancerígeno. Neste trabalho é apresentado um método para a detecção de glifosato diretamente em meio aquoso a partir da interrogação espectroscópica assistida por nanopartículas de prata. Com uso do espalhamento Raman, a região de assinatura espectral de moléculas em solução aquosa é acessível na região visível do espectro eletromagnético. Entretanto, o limite de deteção para este tipo de interrogação é prejudicado pela baixa intensidade do sinal ótico gerado. A intensificação do espalhamento Raman por um corpo metálico nanoestruturado é uma técnica que permite a detecção de traços de substâncias por meio de seu espectro vibracional. Nanopartículas esféricas de prata, com tamanhos de 5 a 20 nm, foram produzidas a partir da técnica de Ablação a Laser Pulsado em Líquidos resultando em uma solução coloidal estabilizada por íons de citrato, usado como surfactante. Um aparato experimental, composto por dois espectrofotômetros a fibra ótica e bombeamento por fontes de radiação laser e banda larga, foi implementado para interrogação das amostras de água com potencial presença de glifosato. O espectro vibracional foi obtido pela medição do espalhamento Raman intensificado em superfície (SERS) do conjunto de aglomerados de nanopartículas de prata formado pela agregação mediada pelo analito. Por meio do espectro de extinção UV-Vis, o estado de agregação das nanopartículas em solução coloidal foi medido. A partir dessa agregação, foi possível medir uma banda de espalhamento Raman intensificado dependente da concentração do analito. Um mecanismo baseado na interação entre o analito e o substrato foi proposto. A a partir dos resultados, realizou-se o ajuste na produção das nanopartículas, bem como sua interação com as amostras, permitindo a determinação do limite de detecção de 6,0 e 7,5 μM (1,0 e 1,3 ppm) para as duas técnicas de interrogação, UV-Vis e Raman, respectivamente. Um sistema de reconhecimento de padrões baseado no método da Análise de Discriminantes pelos Mínimos Quadrados Parciais (PLS-DA) foi implementado para a classificação de amostras. O sistema emprega a fusão em baixo nível dos dados espectroscópicos, UV-Vis e Raman, num único espaço de características. O sistema foi treinado e validado a partir de amostras de água deionizada e testado com amostras de água in natura com adição de glifosato. Considerando um limite de decisão de 10 μM, foi obtido um valor de acurácia de classificação de 0,85. / Water is a natural resource that, although abundant, has been under great limitation in its availability due to human activity, mainly agriculture. Ensuring compliance of the water that is distributed to the population on levels considered safe for the presence of contaminants is therefore a public health issue and has attracted great attention. In order to detect potentially harmful substances, complex analytical chemistry procedures are used to verify and issue conformity reports used for decision making regarding its potability. In this scenario there is a demand for auxiliary methods to guide sampling and to perform sample screening. Glyphosate is the most widely used non-selective systemic herbicide in the world. Such a substance has received increasing attention, mainly due to its wide use and controversy regarding its potentially carcinogenic effect. This work presents a method for the detection of glyphosate directly in aqueous medium from the spectroscopic interrogation assisted by silver nanoparticles. With the use of Raman scattering, the region of spectral signature of molecules in aqueous solution is accessible in the visible region of the electromagnetic spectrum. However, the detection limit for this type of interrogation is impaired by the low intensity of the optical signal generated. The enhancing of Raman scattering by a nanostructured metallic body is a technique that allows the detection of traces of substances by means of their vibrational spectrum. Silver spherical nanoparticles, ranging from 5 to 20 nm in diameter, were produced by Pulsed Laser Ablation in Liquid (PLAL) technique, resulting in a colloidal solution stabilized by citrate ions, used as a surfactant. An experimental apparatus composed of two optical fiber spectrophotometers, and pumping by laser and wideband radiation sources, was implemented to interrogate water samples with the potential presence of glyphosate. The vibrational spectrum was obtained by measuring the surface enhanced Raman scattering (SERS) of the silver nanoparticle clusters, formed by the analyte-mediated aggregation. By means of the UV-Vis extinction spectrum, the state of aggregation of the nanoparticles in colloidal solution was measured. From this aggregation, it was possible to measure one of the analyte concentration dependent enhanced Raman scattering band. A mechanism based on the interaction between the analyte and the substrate has been proposed. From the results, the tuning of the nanoparticles production, as well as their interaction with the samples was carried out. The limit of detection (LOD) of 6.0 and 7.5 μM (1.0 and 1.3 ppm) for the two interrogation techniques, UV-Vis and Raman, respectively, was achieved. A pattern recognition system based on the Partial Least Squares Discriminant Analysis (PLS-DA) method has been implemented for the classification of samples. The system employs the low level fusion of the spectroscopic data, UV-Vis and Raman, in a unique feature space. The system was trained and validated with deionized water samples and tested with fresh water samples with addition of glyphosate. Considering a decision limit of 10 μM, a classification accuracy of 0.85 was obtained.
|
504 |
Uso da análise de discriminante linear em conjunto com a transformada wavelet discreta no reconhecimento de espículas / The linear discriminant analysis usage combined with the discrete wavelet transform in spike detectionPacola, Edras Reily 18 December 2015 (has links)
CAPES / Pesquisadores têm concentrado esforços, nos últimos 20 anos, aplicando a transformada wavelet no processamento, filtragem, reconhecimento de padrões e na classificação de sinais biomédicos, especificamente em sinais de eletroencefalografia (EEG) contendo eventos característicos da epilepsia, as espículas. Várias famílias de wavelets-mães foram utilizadas, mas sem um consenso sobre qual wavelet-mãe é a mais adequada para essa finalidade. Os sinais utilizados apresentam uma gama muito grande de eventos e não possuem características padronizadas. A literatura relata sinais de EEG amostrados entre 100 a 600 Hz, com espículas variando de 20 a 200 ms. Nesse estudo foram utilizadas 98 wavelets. Os sinais de EEG foram amostrados de 200 a 1 kHz. Um neurologista marcou um conjunto de 494 espículas e um conjunto de 1500 eventos não-espícula. Esse estudo inicia avaliando a quantidade de decomposições wavelets necessárias para a detecção de espículas, seguido pela análise detalhada do uso combinado de wavelets-mães de uma mesma família e entre famílias. Na sequência é analisada a influência de descritores e o uso combinado na detecção de espículas. A análise dos resultados desses estudos indica que é mais adequado utilizar um conjunto de wavelets-mães, com vários níveis de decomposição e com vários descritores, ao invés de utilizar uma única wavelet-mãe ou um descritor específico para a detecção de espículas. A seleção desse conjunto de wavelets, de níveis de decomposição e de descritores permite obter níveis de detecção elevados conforme a carga computacional que se deseje ou a plataforma computacional disponível para a implementação. Como resultado, esse estudo atingiu níveis de desempenho entre 0,9936 a 0,9999, dependendo da carga computacional. Outras contribuições desse estudo referem-se à análise dos métodos de extensão de borda na detecção de espículas; e a análise da taxa de amostragem de sinais de EEG no desempenho do classificador de espículas, ambos com resultados significativos. São também apresentadas como contribuições: uma nova arquitetura de detecção de espículas, fazendo uso da análise de discriminante linear; e a apresentação de um novo descritor, energia centrada, baseado na resposta dos coeficientes das sub-bandas de decomposição da transformada wavelet, capaz de melhorar a discriminação de eventos espícula e não-espícula. / Researchers have concentrated efforts in the past 20 years, by applying the wavelet transform in processing, filtering, pattern recognition and classification of biomedical signals, in particular signals of electroencephalogram (EEG) containing events characteristic of epilepsy, the spike. Several families of mother-wavelets were used, but there are no consensus about which mother-wavelet is the most adequate for this purpose. The signals used have a wide range of events. The literature reports EEG signals sampled from 100 to 600 Hz with spikes ranging from 20 to 200 ms. In this study we used 98 wavelets. The EEG signals were sampled from 200 Hz up to 1 kHz. A neurologist has scored a set of 494 spikes and a set 1500 non-spike events. This study starts evaluating the amount of wavelet decompositions required for the detection of spikes, followed by detailed analysis of the combined use of mother-wavelets of the same family and among families. Following is analyzed the influence of descriptors and the combined use of them in spike detection. The results of these studies indicate that it is more appropriate to use a set of mother-wavelets, with many levels of decomposition and with various descriptors, instead of using a single mother-wavelet or a specific descriptor for the detection of spikes. The selection of this set of wavelets, decomposition level and descriptors allows to obtain high levels of detection according to the computational load desired or computing platform available for implementation. This study reached performance levels between 0.9936 to 0.9999, depending on the computational load. Other contributions of this study refer to the analysis of the border extension methods for spike detection; and the influences of the EEG signal sampling rate in the classifier performance, each one with significant results. Also shown are: a new spike detection architecture by making use of linear discriminant analysis; and the presentation of a new descriptor, the centred energy, based on the response of the coefficients of decomposition levels of the wavelet transform, able to improve the discrimination of spike and non-spike events.
|
505 |
Uma abordagem para detecção de pessoas em imagens de veículos aéreos não-tripulados / An approach to people detection in unmanned aerial vehicles imagesOliveira, Diulhio Candido de 14 June 2016 (has links)
CAPES / Este trabalho tem como objetivo propor um método reconhecimento de pessoas em imagens aéreas obtidas a partir de Veículos Aéreos Não Tripulados de pequeno porte. Esta é uma aplicação de grande interesse, pois pode ser inserida em diversas situações tanto civis quanto militares como, por exemplo, missões de busca e salvamento. O uso de Veículos Aéreos Não Tripulados autônomos tende a aumentar com o barateamento desta tecnologia. Assim, esta tecnologia pode sobressair sobre outras utilizadas atualmente, como satélites e voos com grandes aeronaves. Para o reconhecimento de pessoas em imagens aéreas de forma autônoma, este trabalho propõe métodos na forma de Sistemas de Reconhecimento de Padrões (SRP) aplicados ao reconhecimento de imagens. Para este métodos, foram testadas quatro técnicas de aprendizado de máquina: Redes Neurais Convolucionais, HOG+SVM, Cascata Haar e Cascata LBP. Além disso, a fim de possibilitar o reconhecimento de pessoas em imagens aéreas em tempo real, foram testadas e avaliadas técnicas de detecção e segmentação de objetos: Mapa de Saliências e o Processamento de Imagens Térmicas de baixa resolução (PIT). Neste trabalho foram avaliadas as taxas de reconhecimento dos SRPs, além do seu tempo de processamento em um sistema embarcado de baixo custo e em uma Base de Controle Móvel (BCM). Os resultados de reconhecimento mostraram a efetividade das Redes Neurais Convolucionais, com uma acurácia de 0,9971, seguido do HOG+SVM com 0,9236, Cascata Haar com 0,7348 e por fim, Cascata LBP com 0,6615. Em situações onde foi simulado a oclusão parcial, as Redes Neurais Convolucionais atingiram Sensibilidade média 0,72, HOG+SVM de 0,50 e as Cascatas 0,20. Nos experimentos com os SRPs (algoritmos de segmentação e detecção juntamente com as técnicas de reconhecimento), o Mapa de Saliências pouco afetou as taxas de reconhecimento, quais ficaram muito próximas das obtidas no experimentos de reconhecimento. Já o Processamento de Imagens Térmicas de baixa resolução apresentou dificuldades em executar uma segmentação precisa, obtendo imagens com variação na translação, prejudicando a precisão do sistema. Por fim, este trabalho propõe uma nova abordagem para implementação de um SRP para o reconhecimento de pessoas em imagens áreas, utilizando Processamento de Imagens Térmicas juntamente com as Redes Neurais Convolucionais. Este SRP une altas taxas de reconhecimento com desempenho computacional de ao menos 1 fps na plataforma BCM. / This work aims to propose a method for people recognition in Small Unmanned Aerial Vehicles aerial imagery. This is an application of high interest, it can be used in several situations, both civilian and military, as search and rescue missions. The use of Unmanned Aerial Vehicles autonomously tends to increase with the cheapening of this technology, supporting search and rescue missions. Thus, this technology can excel over others currently used, as satellites and flights with large aircraft. For autonomous people recognition, this work proposes new methods as Pattern Reconigition System (PRS) applied to image recognition, applying it in aerial images. Four Pattern Reconigition techniques were tested: Convolutional Neural Networks, HOG+SVM, Haar Cascade and LBP Cascade. Furthermore, in order to achieve recognition of people in aerial images in Real-Time target and detection techniques were tested and evaluated: Saliency Maps and Low-resolution Thermal Image Processing (TIP). In this work were considered recognition rates of the methods and their computational time in a low-cost embedded system and a Mobile Ground Control Station (MGCS). The recognition results shown the Convolutional Neural Network potential, where an accuracy of 0.9971 was achieved, followed by HOG + SVM with 0.9236, Haar Cascade with 0.7348 and LBP Cascade with 0.6615. In situations simulated partial occlusion, where was the CNNs achieved average Sensitivity of 0.72, HOG+SVM with 0.50 and both Cascades 0.20. In experiments with PRS (targeting and detection algorithms with the recognition techniques), the Saliency Map had little influence in recongition rates, it was close to the rates achieved in recognition experiments. While the Low-resolution Thermal Image Processing had difficulties in segmentation process, where translation variantions occured, it harmed the system precision. Lastly, this work proposes a new approach for PRS implementation for people recognition in aerial imagery, using TIP with CNN. This PRS combines high rates of recognition with an computational performace of, at least, 1 fps in MGCS plataform.
|
506 |
Uso da análise de discriminante linear em conjunto com a transformada wavelet discreta no reconhecimento de espículas / The linear discriminant analysis usage combined with the discrete wavelet transform in spike detectionPacola, Edras Reily 18 December 2015 (has links)
CAPES / Pesquisadores têm concentrado esforços, nos últimos 20 anos, aplicando a transformada wavelet no processamento, filtragem, reconhecimento de padrões e na classificação de sinais biomédicos, especificamente em sinais de eletroencefalografia (EEG) contendo eventos característicos da epilepsia, as espículas. Várias famílias de wavelets-mães foram utilizadas, mas sem um consenso sobre qual wavelet-mãe é a mais adequada para essa finalidade. Os sinais utilizados apresentam uma gama muito grande de eventos e não possuem características padronizadas. A literatura relata sinais de EEG amostrados entre 100 a 600 Hz, com espículas variando de 20 a 200 ms. Nesse estudo foram utilizadas 98 wavelets. Os sinais de EEG foram amostrados de 200 a 1 kHz. Um neurologista marcou um conjunto de 494 espículas e um conjunto de 1500 eventos não-espícula. Esse estudo inicia avaliando a quantidade de decomposições wavelets necessárias para a detecção de espículas, seguido pela análise detalhada do uso combinado de wavelets-mães de uma mesma família e entre famílias. Na sequência é analisada a influência de descritores e o uso combinado na detecção de espículas. A análise dos resultados desses estudos indica que é mais adequado utilizar um conjunto de wavelets-mães, com vários níveis de decomposição e com vários descritores, ao invés de utilizar uma única wavelet-mãe ou um descritor específico para a detecção de espículas. A seleção desse conjunto de wavelets, de níveis de decomposição e de descritores permite obter níveis de detecção elevados conforme a carga computacional que se deseje ou a plataforma computacional disponível para a implementação. Como resultado, esse estudo atingiu níveis de desempenho entre 0,9936 a 0,9999, dependendo da carga computacional. Outras contribuições desse estudo referem-se à análise dos métodos de extensão de borda na detecção de espículas; e a análise da taxa de amostragem de sinais de EEG no desempenho do classificador de espículas, ambos com resultados significativos. São também apresentadas como contribuições: uma nova arquitetura de detecção de espículas, fazendo uso da análise de discriminante linear; e a apresentação de um novo descritor, energia centrada, baseado na resposta dos coeficientes das sub-bandas de decomposição da transformada wavelet, capaz de melhorar a discriminação de eventos espícula e não-espícula. / Researchers have concentrated efforts in the past 20 years, by applying the wavelet transform in processing, filtering, pattern recognition and classification of biomedical signals, in particular signals of electroencephalogram (EEG) containing events characteristic of epilepsy, the spike. Several families of mother-wavelets were used, but there are no consensus about which mother-wavelet is the most adequate for this purpose. The signals used have a wide range of events. The literature reports EEG signals sampled from 100 to 600 Hz with spikes ranging from 20 to 200 ms. In this study we used 98 wavelets. The EEG signals were sampled from 200 Hz up to 1 kHz. A neurologist has scored a set of 494 spikes and a set 1500 non-spike events. This study starts evaluating the amount of wavelet decompositions required for the detection of spikes, followed by detailed analysis of the combined use of mother-wavelets of the same family and among families. Following is analyzed the influence of descriptors and the combined use of them in spike detection. The results of these studies indicate that it is more appropriate to use a set of mother-wavelets, with many levels of decomposition and with various descriptors, instead of using a single mother-wavelet or a specific descriptor for the detection of spikes. The selection of this set of wavelets, decomposition level and descriptors allows to obtain high levels of detection according to the computational load desired or computing platform available for implementation. This study reached performance levels between 0.9936 to 0.9999, depending on the computational load. Other contributions of this study refer to the analysis of the border extension methods for spike detection; and the influences of the EEG signal sampling rate in the classifier performance, each one with significant results. Also shown are: a new spike detection architecture by making use of linear discriminant analysis; and the presentation of a new descriptor, the centred energy, based on the response of the coefficients of decomposition levels of the wavelet transform, able to improve the discrimination of spike and non-spike events.
|
507 |
Uma abordagem para detecção de pessoas em imagens de veículos aéreos não-tripulados / An approach to people detection in unmanned aerial vehicles imagesOliveira, Diulhio Candido de 14 June 2016 (has links)
CAPES / Este trabalho tem como objetivo propor um método reconhecimento de pessoas em imagens aéreas obtidas a partir de Veículos Aéreos Não Tripulados de pequeno porte. Esta é uma aplicação de grande interesse, pois pode ser inserida em diversas situações tanto civis quanto militares como, por exemplo, missões de busca e salvamento. O uso de Veículos Aéreos Não Tripulados autônomos tende a aumentar com o barateamento desta tecnologia. Assim, esta tecnologia pode sobressair sobre outras utilizadas atualmente, como satélites e voos com grandes aeronaves. Para o reconhecimento de pessoas em imagens aéreas de forma autônoma, este trabalho propõe métodos na forma de Sistemas de Reconhecimento de Padrões (SRP) aplicados ao reconhecimento de imagens. Para este métodos, foram testadas quatro técnicas de aprendizado de máquina: Redes Neurais Convolucionais, HOG+SVM, Cascata Haar e Cascata LBP. Além disso, a fim de possibilitar o reconhecimento de pessoas em imagens aéreas em tempo real, foram testadas e avaliadas técnicas de detecção e segmentação de objetos: Mapa de Saliências e o Processamento de Imagens Térmicas de baixa resolução (PIT). Neste trabalho foram avaliadas as taxas de reconhecimento dos SRPs, além do seu tempo de processamento em um sistema embarcado de baixo custo e em uma Base de Controle Móvel (BCM). Os resultados de reconhecimento mostraram a efetividade das Redes Neurais Convolucionais, com uma acurácia de 0,9971, seguido do HOG+SVM com 0,9236, Cascata Haar com 0,7348 e por fim, Cascata LBP com 0,6615. Em situações onde foi simulado a oclusão parcial, as Redes Neurais Convolucionais atingiram Sensibilidade média 0,72, HOG+SVM de 0,50 e as Cascatas 0,20. Nos experimentos com os SRPs (algoritmos de segmentação e detecção juntamente com as técnicas de reconhecimento), o Mapa de Saliências pouco afetou as taxas de reconhecimento, quais ficaram muito próximas das obtidas no experimentos de reconhecimento. Já o Processamento de Imagens Térmicas de baixa resolução apresentou dificuldades em executar uma segmentação precisa, obtendo imagens com variação na translação, prejudicando a precisão do sistema. Por fim, este trabalho propõe uma nova abordagem para implementação de um SRP para o reconhecimento de pessoas em imagens áreas, utilizando Processamento de Imagens Térmicas juntamente com as Redes Neurais Convolucionais. Este SRP une altas taxas de reconhecimento com desempenho computacional de ao menos 1 fps na plataforma BCM. / This work aims to propose a method for people recognition in Small Unmanned Aerial Vehicles aerial imagery. This is an application of high interest, it can be used in several situations, both civilian and military, as search and rescue missions. The use of Unmanned Aerial Vehicles autonomously tends to increase with the cheapening of this technology, supporting search and rescue missions. Thus, this technology can excel over others currently used, as satellites and flights with large aircraft. For autonomous people recognition, this work proposes new methods as Pattern Reconigition System (PRS) applied to image recognition, applying it in aerial images. Four Pattern Reconigition techniques were tested: Convolutional Neural Networks, HOG+SVM, Haar Cascade and LBP Cascade. Furthermore, in order to achieve recognition of people in aerial images in Real-Time target and detection techniques were tested and evaluated: Saliency Maps and Low-resolution Thermal Image Processing (TIP). In this work were considered recognition rates of the methods and their computational time in a low-cost embedded system and a Mobile Ground Control Station (MGCS). The recognition results shown the Convolutional Neural Network potential, where an accuracy of 0.9971 was achieved, followed by HOG + SVM with 0.9236, Haar Cascade with 0.7348 and LBP Cascade with 0.6615. In situations simulated partial occlusion, where was the CNNs achieved average Sensitivity of 0.72, HOG+SVM with 0.50 and both Cascades 0.20. In experiments with PRS (targeting and detection algorithms with the recognition techniques), the Saliency Map had little influence in recongition rates, it was close to the rates achieved in recognition experiments. While the Low-resolution Thermal Image Processing had difficulties in segmentation process, where translation variantions occured, it harmed the system precision. Lastly, this work proposes a new approach for PRS implementation for people recognition in aerial imagery, using TIP with CNN. This PRS combines high rates of recognition with an computational performace of, at least, 1 fps in MGCS plataform.
|
508 |
Health Monitoring for Aircraft Systems using Decision Trees and Genetic EvolutionGerdes, Mike January 2019 (has links) (PDF)
Reducing unscheduled maintenance is important for aircraft operators. There are significant costs if flights must be delayed or cancelled, for example, if spares are not available and have to be shipped across the world. This thesis describes three methods of aircraft health condition monitoring and prediction; one for system monitoring, one for forecasting and one combining the two other methods for a complete monitoring and prediction process. Together, the three methods allow organizations to forecast possible failures. The first two use decision trees for decision-making and genetic optimization to improve the performance of the decision trees and to reduce the need for human interaction. Decision trees have several advantages: the generated code is quickly and easily processed, it can be altered by human experts without much work, it is readable by humans, and it requires few resources for learning and evaluation. The readability and the ability to modify the results are especially important; special knowledge can be gained and errors produced by the automated code generation can be removed. A large number of data sets is needed for meaningful predictions. This thesis uses two data sources: first, data from existing aircraft sensors, and second, sound and vibration data from additionally installed sensors. It draws on methods from the field of big data and machine learning to analyse and prepare the data sets for the prediction process.
|
509 |
Video anatomy : spatial-temporal video profileCai, Hongyuan 31 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A massive amount of videos are uploaded on video websites, smooth video browsing, editing, retrieval, and summarization are demanded. Most of the videos employ several types of camera operations for expanding field of view, emphasizing events, and expressing cinematic effect. To digest heterogeneous videos in video websites and databases, video clips are profiled to 2D image scroll containing both spatial and temporal information for video preview. The video profile is visually continuous, compact, scalable, and indexing to each frame. This work analyzes the camera kinematics including zoom, translation, and rotation, and categorize camera actions as their combinations. An automatic video summarization framework is proposed and developed. After conventional video clip segmentation and video segmentation for smooth camera operations, the global flow field under all camera actions has been investigated for profiling various types of video. A new algorithm has been designed to extract the major flow direction and convergence factor using condensed images. Then this work proposes a uniform scheme to segment video clips and sections, sample video volume across the major flow, compute flow convergence factor, in order to obtain an intrinsic scene space less influenced by the camera ego-motion. The motion blur technique has also been used to render dynamic targets in the profile. The resulting profile of video can be displayed in a video track to guide the access to video frames, help video editing, and facilitate the applications such as surveillance, visual archiving of environment, video retrieval, and online video preview.
|
510 |
Securing sensor networkZare Afifi, Saharnaz January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A wireless sensor network consists of lightweight nodes with a limited power source. They can be used in a variety of environments, especially in environments for which it is impossible to utilize a wired network. They are easy/fast to deploy. Nodes collect data and send it to a processing center (base station) to be analyzed, in order to detect an event and/or determine information/characteristics of the environment. The challenges for securing a sensor network are numerous. Nodes in this network have a limited amount of power, therefore they could be faulty because of a lack of battery power and broadcast faulty information to the network. Moreover, nodes in this network could be prone to different attacks from an adversary who tries to eavesdrop, modify or repeat the data which is collected by other nodes. Nodes may be mobile. There is no possibility of having a fixed infrastructure. Because of the importance of extracting information from the data collected by the sensors in the network there needs to be some level of security to provide trustworthy information. The goal of this thesis is to organize part of the network in an energy efficient manner in order to produce a suitable amount of integrity/security. By making nodes monitor each other in small organized clusters we increase security with a minimal energy cost. To increase the security of the network we use cryptographic techniques such as: public/ private key, manufacturer signature, cluster signature, etc. In addition, nodes monitor each other's activity in the network, we call it a "neighborhood watch" In this case, if a node does not forward data, or modifies it, and other nodes which are in their transmission range can send a claim against that node.
|
Page generated in 0.1618 seconds