Spelling suggestions: "subject:"peak shaving"" "subject:"weak shaving""
21 |
Sustainable energy storage: The use of second life batteries in residential buildings : An investigation into the profitability of a sustainable energy storage using second life lithium-ion batteriesBlixt, Carl January 2024 (has links)
This thesis investigates the opportunities and challenges of using repurposed electric car batteries, so called Second-life Battery (SlB), in a residential building as an energy storage. The performance of SlBs is compared to a First-life Battery (FlB) by identifying two potential scenarios and using a battery degradation model. The first scenario involved the batteries providing ancillary services to the grid, while in the second scenario the batteries were used for peak shaving. The battery degradation model is based on typical usage from the scenarios. The thesis findings indicate that the SlB degrades at a slower rate than the FlB, but can perform fewer cycles. Economic performance varies based on the application and initial assumptions. Both batteries proved to be profitable in the two scenarios studied, with some of the SlB configurations outperforming FlB configurations and vice versa. The yearly compensation received, when providing ancillary services with a 1000 kWh battery, ranged between 3-8 MSEK, while the yearly compensation received, when peak shaving with a 200-300 kWh battery, ranged between 20-35 thousand SEK. The main challenges identified included reduced lifespan, security risks, potential price increases, and space constraints. On the other hand, the main opportunities identified included potential price decreases and sustainability benefits such as carbon footprint reduction and grid stability. These results may provide valuable insights for informed decision-making regarding investments in FlBs and SlBs on the Swedish market.
|
22 |
A package deal for the future: Vehicle-to-Grid combined with Mobility as a ServiceBränström, Amanda, Söderberg, Jonna January 2019 (has links)
The aim of this report is to evaluate how a future commercially owned fleet of self-driving electric vehicles (EV:s) would be able to provide power in order to avoid power exceedances in the power grid. Exceedances occur when network agreements between grid operating companies are exceeded. Exceedances are problematic, since they infer penalty fees for the paying company and make dimensioning the grid capacity more difficult for the supplying company. Capacity deficiency regarding the infrastructure of the grid is expected to increase, likely resulting in higher penalty fees. Integrating transport and power systems by using self-driving EV:s as Mobility as a Service combined with Vehicle-to-Grid (V2G) technology is a potential solution for this problem. By modeling the EV-fleet as the New York City taxi fleet, a usage pattern deemed to resemble Mobility as a Service is created. An economic value for the V2G service is estimated by comparing the availability of the EV-fleet with local exceedances from Uppsala as well as regional occurring exceedances. The highest income during the first quarter of 2019 is 96 000 SEK for the whole fleet, or 1100 SEK per EV and hour-long exceedance. The time of exceedance and the power magnitude have to interplay with the availability of the EV-fleet in order to enable the system. The EV battery capacity highly impacts the system, but is concluded to not be a limiting factor due to market logic. Lastly, key features such as market formation as well as geographical and technical aspects are presented and discussed.
|
23 |
Optimering av last och produktion i Gävles fjärrvärmenät : Reducering av effekttoppar via värmelagring i byggnaderElofsson, Fredrik January 2019 (has links)
District heating is today the most common way of providing a building with heat and hot water in Sweden. It is an environmentally friendly product mostly used with renewable fuel. However, at power peaks most companies use production units that are more expensive and worse for the environment and should therefore be avoided as much as possible. This can be done with a method called load management. When a power peak occurs, the heat supply to buildings connected to the district heating system can be temporarily reduced. The heat energy can later be returned when the heat demand is lower. Thanks to the heat inertia of the buildings, the indoor temperature will not fall within the time frame for the load management. Historical data has been analysed to identify when and why power peaks occur in the district heating network. Power peaks throughout the district heating network have proved difficult to identify. However, for individual consumers clear patterns of power peaks have emerged. These power peaks mainly occur because of large use of hot water but also because of the shifting outdoor temperature. In order to see how the production cost would differ from the actual outcome load management was applied for Gävle's district heating 2018. The load management was calculated manually by identifying the most expensive production unit on an hourly basis. If a cheaper production unit had the potential to deliver higher power the next hour, the production was moved to the cheaper production unit. The process was repeated for each hour during 2018. After carrying out load management for Gävle's district heating network, 1 457 MWh had been shifted to a cheaper production unit. This resulted in a financial saving of 1,0 % of the total production cost. The environmental savings showed a reduction from 6.1 to 5.9 g CO2eq /kWh a total of 197 tonne CO2eq. In the exact same way, a load management was performed for a scenario where Gävle and Sandviken's district heating network were connected. The gain for a load management with Sandviken will be considerably larger, a reduced production cost of 3.6 % is possible. The environmental savings showed a reduction from 8.4 to 7.8 CO2eq /kWh a total of 575 tonne CO2eq. For future efficient load management, buildings should be divided into different classes depending on the building's time constant. User patterns for the entire district heating network have proved difficult to detect. Artificial intelligence can be an option for short-term forecasting of the power output / Fjärrvärme är idag det vanligaste sättet att förse en bostad med värme och tappvarmvatten i Sverige. Fjärrvärmen är ofta en miljövänlig produkt som kan produceras av till exempel biobränsle- och avfallseldade kraftvärmeverk eller spillvärme från industrier. Vid tillfälligt högt effektbehov, effekttoppar, använder sig merparten av bolagen av dyrare produktionsenheter med större miljöpåverkan. Dyrare produktionsenheter bör undvikas i största möjliga mån och i detta syfte används metoden laststyrning. Vid en effekttopp kan värmetillförseln till byggnader sänkas temporärt för att återföras några timmar senare när effektbehovet är lägre. Tack vare värmetrögheten i byggnaderna bör inomhustemperaturen inte sjunka inom tidsramen för laststyrning. Statistik från Gävles fjärrvärmanvändning på timbasis under 2018 har analyserats för att identifiera när och varför effekttoppar sker. Effekttoppar i hela fjärrvärmenätet har visat sig svåra att identifiera. På lokal nivå har däremot tydliga mönster för effekttoppar framkommit. Dessa effekttoppar beror till största del av tappvarmvattenanvändning men även förändringar i utomhustemperaturen. För att se hur produktion och last kunde skiljt sig från det verkliga utfallet tillämpades laststyrning för Gävles fjärrvärmeproduktion 2018. Laststyrningen beräknades manuellt genom att den dyraste produktionsenheten identifierades på timbasis. Om en billigare produktionsenhet hade potential att leverera högre effekt nästkommande timmar försköts produktionen. Därefter upprepades processen för varje timme under 2018. Efter utförd laststyrning för Gävles fjärrvärmenät hade ca 1 457 MWh förskjutits till en billigare produktionsenhet. Det gav en ekonomisk besparing på 1,0 % av Gävles totala produktionskostnad. Den miljömässiga besparingen visade på en sänkning från 6,1 till 5,9 [g CO2ekv /kWh] sammanlagt 197 ton CO2ekv. På samma sätt utfördes en laststyrning för ett scenario där Gävle och Sandvikens fjärrvärmenät sammankopplats. Vinsten för en laststyrning med Sandviken blev betydligt större med en minskad produktionskostnaden på 3,6 %. Den miljömässiga påverkan sjönk från 8,4 till 7,8 g CO2ekv /kWh sammanlagt 575 ton CO2ekv. För en framtida effektiv laststyrning bör byggnader delas in i olika klasser beroende på byggnadens tidskonstant. Användarmönster för hela fjärrvärmenätet har visat sig svårt att identifiera. Artificiell intelligens kan vara ett alternativ i framtiden för att prognostisera effektuttaget
|
24 |
High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st centuryHe, Bo January 2004 (has links)
Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers. Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime. Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage. The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application. Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range. The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology. Keywords:Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English
|
25 |
High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st centuryHe, Bo January 2004 (has links)
<p>Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers.</p><p>Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime.</p><p>Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage.</p><p>The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application.</p><p>Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range.</p><p>The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology.</p><p><b>Keywords:</b>Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English</p>
|
26 |
Grid-connected micro-grid operational strategy evaluation : Investigation of how microgrid load configurations, battery energy storage system type and control can support system specificationMancuso, Martin January 2018 (has links)
Operational performance of grid-connected microgrid with integrated solar photovoltaic (PV) electricity production and battery energy storage (BES) is investigated. These distributed energy resources (DERs) have the potential to reduce conventionally produced electrical power and contribute to reduction of greenhouse gas emissions. This investigation is based upon the DER’s techno-economic specifications and theoretical performance, consumer load data and electrical utility retail and distribution data. Available literature provides the basis for DER specification and performance. Actual consumer load profile data is available for residential and commercial consumer sector customers. The electrical utility data is obtained from Mälarenergi, AB. The aim is to investigate how to use simulations to specify a grid connected microgrid with DERs (PV production and a BES system) for two consumer sectors considering a range of objectives. An open-source, MATLAB-based simulation tool called Opti-CE has successfully been utilized. This package employs a genetic algorithm for multi-objective optimization. To support attainment of one of the objectives, peak shaving of the consumer load, a battery operational strategy algorithm has been developed for the simulation. With respect to balancing peak shaving and self-consumption one of the simulations supports specification of a commercial sector application with 117 kWp PV power rating paired with a lithium ion battery with 41.1 kWh capacity. The simulation of this system predicts the possibility to shave the customer load profile peaks for the month of April by 20%. The corresponding self-consumption ratio is 88%. Differences in the relationship between the load profiles and the system performance have been qualitatively noted. Furthermore, simulation results for lead-acid, lithium-ion and vanadium-redox flow battery systems are compared to reveal that lithium ion delivers the best balance between total annualized cost and peak shaving performance for both residential and commercial applications.
|
27 |
A case study about the potential of battery storage in Culture house : Investigation on the economic viability of battery energy storage system with peak shaving & time-of-use application for culture house in Skellefteå.Singh, Baljot January 2021 (has links)
The energy demand is steadily increasing, and the electricity sector is undergoing a severe change in this decade. The primary drivers, such as the need to decarbonize the power industry and megatrends for more distributed and renewable systems, are resulting in revolutionary changes in our lifestyle and industry. The power grid cannot be easily or quickly be upgraded, as investment decisions, construction approvals, and payback time are the main factors to consider. Therefore, new technology, energy storage, tariff reform, and new business models are rapidly changing and challenging the conventional industry. In recent times, industrial peak shaving application has sparked an increased interest in battery energy storage system (BESS). This work investigated BESS’s potential from peak shaving and Time-of-use (TOU) applications for a Culture-house in Skellefteå. Available literature provides the knowledge of various BESS applications, tariff systems, and how battery degradation functions. The predicted electrical load demand of the culture-house for 2019 is obtained from a consultant company Incoord. The linear optimization was implemented in MATLAB using optimproblem function to perform peak shaving and time-of-use application for the Culture-hose BESS. A cost-optimal charging/discharging strategy was derived through an optimization algorithm by analyzing the culture-house electrical demand and Skellefteå Kraft billing system. The decisional variable decides when to charge/discharge the battery for minimum battery degradation and electricity purchase charges from the grid. Techno-economic viability is analyzed from BESS investment cost, peak-power tariff, battery lifespan, and batter aging perspective. Results indicate that the current BESS price and peak-power tariff of Skellefteå Kraft are not suitable for peak shaving. Electricity bill saving is too low to consider TOU application due to high battery degradation. However, combining peak shaving & TOU does generate more profit annually due to additional savings from the electricity bill. However, including TOU also leads to higher battery degradation, making it not currently a viable application. A future scenario suggests a decrease in investment cost, resulting in a shorter payback period. The case study also analyses the potential in the second-life battery, where they are purchased at 80 % State of Health (SoH) for peak shaving application. Second-life batteries are assumed to last until 70 % or 60 % before End of Life (EOL). The benefit-cost ratio indicates that second-life batteries are an attractive investment if batteries can perform until 60% end of life, it would be an excellent investment from an economic and sustainability perspective. Future work suggests integrating more BESS applications into the model to make BESS an economically viable project.
|
28 |
Life Cycle Assessment of a Lithium-Ion Battery pack for Energy storage Systems : - the environmental impact of a grid-connected battery energy storage systemLiu, Lollo January 2020 (has links)
This thesis assessed the life-cycle environmental impact of a lithium-ion battery pack intended for energy storage applications. A model of the battery pack was made in the life-cycle assessment-tool, openLCA. The environmental impact assessment was conducted with the life-cycle impact assessment methods recommended in the Batteries Product Environmental Footprint Category Rules adopted by the European Commission (2016). The findings in this study showed that the most important parameter in the cradle-to-grave assessment was the use-stage losses, which can be reduced by using electricity grids with high sharesof renewable energy or by increase the round-trip efficiency of the battery system. However, for the cradle-to-gate assessment, five impact categories were found to be relevant. These categories were: climate change, acidification, fossil resource use, resource use (minerals and metals) and particulate matter. Furthermore, within these impact categories, four materials contributed to more than 65 % of all impact. These key materials were; nickel, aluminium, cobalt and graphite. Therefore, a recommendation to battery manufacturers is to prioritise sourcing these four key materials from sustainable suppliers to reduce the overall cradle-to-gate environmental impact. Lastly, by integrating recycling of the battery pack in the end-of-life-stage, it was possibleto achieve a net reduction of 9-20 % of the cradle-to-grave climate change, acidification and fossil resource use compared to not including recycling. Therefore, the development of efficient and large-scale recycling will likely play a major role in reducing the environmental impact from lithium-ion batteries in the future.
|
29 |
ANALYZING THE IMPACT OF PHOTOVOLTAIC AND BATTERIE SYSTEMS ON THE LIFE OF A DISTRIBUTION TRANSFORMERMohamed Ali, Mohamed January 2021 (has links)
This degree project presents a study case in Eskilstuna-Sweden, regarding the effect of the photovoltaic (PV) systems with battery energy storage system (BESS) on a power distribution transformer, and how they could change the transformer lifespan. For that, an extensive literature review has been conducted, and two MATLAB models were used to simulate the system. One model simulates the PV generation profile, with the option of including battery in the system, and the other one simulates the transformer loss of life (LOL) based on the thermal characteristics. Simulations were using hourly time steps over a year with provided load profile based on utility data and typical meteorological year weather data from SMHI and STRÅNG. In this study, three different scenarios have been put into consideration to study the change of LOL. The first scenario applies various levels of PV penetrations without energy storage, while, the other scenarios include energy storage under different operating strategies, self-consumption, and peak shaving. Similarly, different battery capacities have been applied for the purpose of studying the LOL change. Thus, under different PV penetrations and battery capacities, results included the variation of LOL, grid power, battery energy status, and battery power. Moreover, results concluded that the PV system has the maximum impact on LOL variation, as it could decrease it by 33.4 %, and this percentage could increase by applying different battery capacities to the system. Finally, LOL corresponding to the battery under peak shaving strategy varies according to the battery discharge target. As different peak shaving targets were used to control the battery discharge, and hence, study the impact on the transformer and estimate its LOL.
|
30 |
Implementation of energy recovery and storage systems in cranes in the Port of GävleAranaga Decori, Pierre Ander January 2020 (has links)
Container traffic in seaports around the world in constantly increasing, with energy costs being a significant part of the total costs. The container terminal (CT) of the Port of Gävle, the largest in the east coast of Sweden, is not an exception to this. With traffic growing annually, a new terminal will be opened in the following years, adding three more ship-to-shore (STS) cranes to the two existing ones, and six electric rubber tyred gantry (eRTG) cranes. Therefore, it is highly important to strengthen energy efficiency measures, reducing the energy consumption and the costs associated with it. This is why the aim of this report is to analyse whether implementing energy storage systems in the cranes of the container terminal Port of Gävle can contribute to reduce electricity costs by recovering energy when braking lowering containers, and by shaving power peaks. After a literature review of current energy recovery and storage options, this work presents three solutions: two alternatives for the current situation with two ship-to-shore (STS) cranes, and a third solution to be implemented in the three future STS cranes to be installed, which can also be beneficial for any other crane in the terminal. According to the made calculations, the three alternatives can reduce considerable energy consumption, and they are highly profitable. However, those solutions are a preliminary study and more work needs to be done to determine the exact profitability and technical system details. This work has been done in collaboration with the Port of Gävle and Yilport, the company operating the container terminal.
|
Page generated in 0.0744 seconds