Spelling suggestions: "subject:"peano"" "subject:"leano""
31 |
Logické základy forcingu / Logical background of forcingGlivická, Jana January 2013 (has links)
This thesis examines the method of forcing in set theory and focuses on aspects that are set aside in the usual presentations or applications of forcing. It is shown that forcing can be formalized in Peano arithmetic (PA) and that consis- tency results obtained by forcing are provable in PA. Two ways are presented of overcoming the assumption of the existence of a countable transitive model. The thesis also studies forcing as a method giving rise to interpretations between theories. A notion of bi-interpretability is defined and a method of forcing over a non-standard model of ZFC is developed in order to argue that ZFC and ZF are not bi-interpretable. 1
|
32 |
Studium aritmetických struktur a teorií s ohledem na reprezentační a deskriptivní analýzu / Study of Arithmetical Structures and Theories with Regard to Representative and Descriptive AnalysisGlivický, Petr January 2013 (has links)
of doctoral thesis Study of Arithmetical Structures and Theories with Regard to Representative and Descriptive Analysis Petr Glivický We are motivated by a problem of understanding relations between local and global properties of an operation o in a structure of the form B, o , with regard to an application for the study of models B, · of Peano arithmetic, where B is a model of Presburger arithmetic. We are particularly interested in a dependency problem, which we formulate as the problem of describing the dependency closure iclO (E) = {d ∈ Bn ; (∀o, o ∈ O)(o E = o E ⇒ o(d) = o (d))}, where B is a structure, O a set of n-ary operations on B, and E ⊆ Bn. We show, that this problem can be reduced to a definability question in certain expansion of B. In particular, if B is a saturated model of Presburger arithmetic, and O is the set of all (saturated) Peano products on B, we prove that, for a ∈ B, iclO ({a}×B) is the smallest possible, i.e. it contains just those pairs (d0, d1) ∈ B2 for which at least one of di equals p(a), for some polynomial p ∈ Q[x]. We show that the presented problematics is closely connected to the descriptive analysis of linear theories. That are theories, models of which are - up to a change of the language - certain discretely ordered modules over specific discretely ordered...
|
33 |
Indução finita, deduções e máquina de Turing / Finite induction, deductions and Turing machineAlmeida, João Paulo da Cruz [UNESP] 29 June 2017 (has links)
Submitted by JOÃO PAULO DA CRUZ ALMEIDA (joaopauloalmeida2010@gmail.com) on 2017-09-26T16:20:50Z
No. of bitstreams: 1
Minha Dissertação.pdf: 1021011 bytes, checksum: 1717c0a1baae32699bdf06c781a9ed31 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-28T12:58:50Z (GMT) No. of bitstreams: 1
almeida_jpc_me_sjrp.pdf: 1021011 bytes, checksum: 1717c0a1baae32699bdf06c781a9ed31 (MD5) / Made available in DSpace on 2017-09-28T12:58:50Z (GMT). No. of bitstreams: 1
almeida_jpc_me_sjrp.pdf: 1021011 bytes, checksum: 1717c0a1baae32699bdf06c781a9ed31 (MD5)
Previous issue date: 2017-06-29 / Este trabalho apresenta uma proposta relacionada ao ensino e prática do pensamento dedutivo formal em Matemática. São apresentados no âmbito do conjunto dos números Naturais três temas essencialmente interligados: indução/boa ordem, dedução e esquemas de computação representados pela máquina teórica de Turing. Os três temas se amalgamam na teoria lógica de dedução e tangem os fundamentos da Matemática, sua própria indecidibilidade e extensões / limites de tudo que pode ser deduzido utilizando a lógica de Aristóteles, caminho tão profundamente utilizado nos trabalhos de Gödel, Church, Turing, Robinson e outros. São apresentadas inúmeros esquemas de dedução referentes às “fórmulas” e Teoremas que permeiam o ensino fundamental e básico, com uma linguagem apropriada visando treinar os alunos (e professores) para um enfoque mais próprio pertinente à Matemática. / This work deals with the teaching and practice of formal deductive thinking in Mathematics. Three essentially interconnected themes are presented within the set of Natural Numbers: induction, deduction and computation schemes represented by the Turing theoretical machine. The three themes are put together into the logical theory of deduction and touch upon the foundations of Mathematics, its own undecidability and the extent / limits of what can be deduced by using Aristotle's logic, that is the subject in the works of Gödel, Church, Turing, Robinson, and others. There are a large number of deduction schemes referring to the "formulas" and Theorems that are usual subjects in elementary and basic degrees of the educational field, with an appropriate language in order to train students (and teachers) for a more pertinent approach to Mathematics.
|
34 |
A forma fraca do teorema de peano em espaços de banach de dimensão infinitaMendes, Abraão Caetano 12 August 2015 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-09-02T13:30:29Z
No. of bitstreams: 1
Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-09-16T15:31:26Z (GMT) No. of bitstreams: 1
Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-09-16T15:35:33Z (GMT) No. of bitstreams: 1
Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5) / Made available in DSpace on 2015-09-16T15:35:34Z (GMT). No. of bitstreams: 1
Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5)
Previous issue date: 2015-08-12 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / For a long time one was looking for an answer of Peano’s theorem in infinitedimensional
Banach spaces. In 1974, Godunov proved that the Peano’s theorem holds
in a Banach space X if and only if X has finite dimension. In the following, he turned all
his attention to the weak form of Peano’s theorem in the infinite-dimensional case. In
2003, Shkarin proved that if X is a Banach space containing a complemented subspace
with an unconditional Schauder basis, then the weak form of Peano’s theorem does not
hold. In this work we try to show all details of the proof. / Por muito tempo procurou-se responder à questão da validade (ou não-validade)
do Teorema de Peano em espaços de Banach de dimensão infinita. Mas, em 1974,
Godunov mostrou que o Teorema de Peano é válido em um espaço de Banach X se,
e somente se, X tem dimensão finita (veja [13]). Voltou-se, então, a atenção para a
Forma Fraca do Teorema de Peano no caso de dimensão infinita. Em 2003, Shkarin
mostrou que se X é um espaço de Banach contendo um subespaço complementado
com base de Schauder incondicional, então a Forma Fraca do Teorema de Peano não é
válida (veja [14]). Veremos os detelhes deste resultado ao longo deste trabalho.
|
35 |
Dôkazy bezespornosti aritmetiky / Dôkazy bezespornosti aritmetikyHorská, Anna January 2017 (has links)
The thesis consists of two parts. The first one deals with Gentzen's consistency proof of 1935, especially with the impact of his cut elimination strategy on the complexity of the proof. Our analysis of Gentzen's cut elimi- nation strategy, which eliminates uppermost cuts regardless of their comple- xity, yields that, in his proof, Gentzen implicitly applies transfinite induction up to Φω(0) where Φω is the ω-th Veblen function. This is an upper bound and Φω(0) represents an upper bound on heights of cut-free infinitary deriva- tions that Gentzen constructs for sequents derivable in Peano arithmetic (PA). We currently do not know whether this is a lower bound too. The first part also contains a formalization of Gentzen's proof of 1935. Based on the formalization, we see that the transfinite induction mentioned above is the only principle used in the proof that exceeds PA. The second part compares the performance of Gentzen's and Tait's cut elimi- nation strategy in classical propositional logic. Tait's strategy reduces the cut-rank of the derivation. Since the propositional logic does not use inference rules with eigenvariables, we managed to organize the cut elimination in the way that both strategies yield identical cut-free derivations in classical propositional logic.
|
36 |
Složitost kompaktních metrizovatelných prostorů / Complexity of compact metrizable spacesDudák, Jan January 2019 (has links)
We study the complexity of the homeomorphism relation on the classes of metrizable compacta and Peano continua using the notion of Borel reducibil- ity. For each of these two classes we consider two different codings. Metrizable compacta can be naturally coded by the space of compact subsets of the Hilbert cube with the Vietoris topology. Alternatively, we can use the space of continuous functions from the Cantor space to the Hilbert cube with the topology of uniform convergence, where two functions are considered as equivalent iff their images are homeomorphic. Similarly, Peano continua can be coded either by the space of Peano subcontinua of the Hilbert cube, or (due to the Hahn-Mazurkiewicz theo- rem) by the space of continuous functions from r0, 1s to the Hilbert cube. We show that for both classes the two codings have the same complexity (the complexity of the universal orbit equivalence relation). Among other results, we also prove that the homeomorphism relation on the space of nonempty compact subsets of any given Polish space is Borel bireducible with the above mentioned equivalence relation on the space of continuous functions from the Cantor space to the Polish space.
|
37 |
Fundamentos de lógica, conjuntos e números naturaisSantos, Rafael Messias 28 August 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The present work has as main objective to approach the fundaments of logic and
the notions of sets in a narrow and elementary way, culminating in the construction
of natural numbers. We present and advance, as far as possible, natural and intuitively,
the concepts of propositions and open propositions, and the use of these in
the speci cation sets, according with the axiom of the speci cation. We also present
the logic connectives of open propositions and logic equivalences, relating them to
the sets. We showed the concept of Theorem, as well as some forms of writing and
demonstrations in the scope of the sets, and we used properties and relations of sets
in the demonstration techniques. Our study ended with the construction of natural
numbers and some of its properties, for example, the Relation Order. / O presente trabalho tem como principal objetivo abordar os fundamentos de lógica
e as noções de conjuntos de maneira estreita e elementar, culminando na constru-
ção dos números naturais. Apresentamos, e progredimos na medida do possível, de
forma natural e/ou intuitiva, os conceitos de proposições e proposições abertas, e o
uso destes nas especi cações de conjuntos, de acordo com o axioma da especi cação.
Apresentamos também os conectivos lógicos de proposições abertas e as equivalências
lógicas, relacionando-os aos conjuntos. Mostramos o conceito de Teorema, bem
como algumas formas de escritas e demonstrações no âmbito dos conjuntos, e utilizamos
propriedades e relações de conjuntos nas técnicas de demonstração. Encerramos
nosso estudo com a construção dos números naturais e algumas das suas principais
propriedades, como por exemplo, a Relação de Ordem.
|
38 |
Número: reflexões sobre as conceituações de Russell e PeanoSchön, Michaela Costa 06 November 2006 (has links)
Made available in DSpace on 2016-04-27T16:57:50Z (GMT). No. of bitstreams: 1
EDM - Michaela C Schon.pdf: 1931458 bytes, checksum: 5cde0886ff87d5dafb588e52ab96ed50 (MD5)
Previous issue date: 2006-11-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This paper aimed the realization of a study concerning the philosophical epistemology of the concept of number, in which it still makes sense to ask: What is number? In this perspective, we have assumed as problematic the philosophical duality of the conceptualizations of numbers, according to Axiomatic (proposed by Peano) e by the Set Theory and Logics (proposed by Russell), being the Conceptualization of Number the problem of this research, concerning the possibility of introducing an ultimate definition to this concept. The focus of this research is in the polemics that exists about the number introduced by Russell (1872-1970) contrary to Piano s (1858-1932), taking as a basis Otte s criticism, introduced in the article: B. Russell Introduction to Mathematical Philosophy , 2001. The research was developed using, as a reference, the sense of Complementarity, as well as using proper qualitative methodological research procedures. As a conclusion, we are able to claim that numbers are: on one hand, characteristics of certain classes and, on the other hand, operative concepts. This way, the existence of polemics between philosophers like Frege and Russell, who have favored predicative aspects, that is, they define number in terms of cardinality and, others like Grassmann, Dedekind and Peano who have highlighted the ordinal numbers, justify Otto s proposition of complementarity between the approaches. The possibility of having cognitive and didactical consequences on the teaching in the use of one or another approach of conceptualization of the number or both, as Otte intends, makes this study a contribution to Mathematical Education / Este trabalho objetivou realizar um estudo sobre a epistemologia filosófica do conceito de número, na qual ainda faz sentido o questionamento: O que é número? Nesta perspectiva, assumiu-se como problemática a dualidade filosófica das conceituações de número, sustentadas pela Axiomática (proposta por Peano) e pela Teoria dos Conjuntos e Lógica (proposta por Russell), sendo o problema de pesquisa a Conceituação de Número frente a essa dualidade e à possibilidade de ser apresentada uma definição em definitivo ao conceito de número. O foco da presente pesquisa está na polêmica existente entre a concepção de número apresentada por Russell (1872-1970) contraposta à de Peano (1858-1932), tomando-se por base as críticas de Otte, apresentadas no artigo: B. Russell Introduction to Mathematical Philosophy , de 2001. A pesquisa desenvolveu-se tendo por referência a noção de Complementaridade, tendo sido utilizados procedimentos metodológicos adequados às pesquisas qualitativas. Como conclusão pode-se afirmar que os números são: por um lado, características de certas classes e, por outro, conceitos operativos. Deste modo, a existência da polêmica entre filósofos como Frege e Russell, que favoreceram os aspectos predicativos, isto é, definem os números em termos de cardinalidade e, outros como Grassmann, Dedekind e Peano que destacam os números ordinais, justifica a proposição de Otte da complementaridade entre as abordagens. A possibilidade de existirem conseqüências cognitivas e didáticas na utilização no ensino de uma ou outra abordagem da conceituação de número ou de ambas como pretende Otte torna, este estudo, uma contribuição para a Educação Matemática
|
39 |
CARACTERISATION DE TEXTURES ET SEGMENTATION POUR LA RECHERCHE D'IMAGES PAR LE CONTENUHafiane, Adel 12 December 2005 (has links) (PDF)
Dans cette thèse nous avons élaboré puis automatisé une chaîne complète de recherche d'image par le contenu. Ceci nous a permis de définir une "sémantique limitée" relative à la satisfaction de l'utilisateur quant à la réponse du système. Notre approche est locale c'est-à-dire basée sur les régions de l'image. La décomposition en entités visuelles permet d'exhiber des interactions entres celles-ci et du coup faciliter l'accès à un niveau d'abstraction plus élevé. Nous avons considéré plus particulièrement trois points de la chaîne : l'extraction de régions fiables, leur caractérisation puis la mesure de similarité. Nous avons mis au point une méthode de type C-moyennes floues avec double contrainte spatiale et pyramidale. La classification d'un pixel donné est contrainte à suivre le comportement de ses voisins dans le plan de l'image et de ses ancêtres dans la pyramide. Pour la caractérisation des régions deux méthodes ont été proposées basées sur les courbes de Peano. La première repose sur un principe grammatical et la deuxième manipule le spectre par l'utilisation des filtres de Gabor. La signature de l'image requête ou cible consiste en une liste d'entités visuelles. La mesure de similarité entre entités guide l'appariement. Nous avons élaboré une méthode basée sur la mise en correspondance dans les deux sens, requête vers cible et vice versa, afin de donner indépendamment une grande priorité aux éléments qui se préfèrent mutuellement. Chaque partie du système a été testée et évaluée séparément puis ramenée à l'application CBIR. Notre technique a été évaluée sur des images aériennes (et ou satellitaires). Les résultats en terme de "rappel-précision" sont satisfaisants comparé notamment aux méthodes classiques type matrice de co-occurrence des niveaux de gris et Gabor standard. Pour ouvrir sur de futures extensions et montrer la généralité de notre méthode, la conclusion explique sa transposition à la recherche de situations en conduite automobile, au prix d'une adaptation limitée des paramètres.
|
Page generated in 0.0313 seconds