Spelling suggestions: "subject:"photoncounting"" "subject:"photocounting""
91 |
Spectro-imagerie optique à faible flux et comparaison de la cinématique Ha et HI d'un échantillon de galaxies prochesDaigle, Olivier 02 1900 (has links)
Un nouveau contrôleur de EMCCD (Electron multiplying Charge Coupled Device) est présenté. Il permet de diminuer significativement le bruit qui domine lorsque la puce EMCCD est utilisé pour du comptage de photons: le bruit d'injection de charge. À l'aide de ce contrôleur, une caméra EMCCD scientifique a été construite, caractérisée en laboratoire et testée à l'observatoire du mont Mégantic. Cette nouvelle caméra permet, entre autres, de réaliser des observations de la cinématique des galaxies par spectroscopie de champ intégral par interférométrie de Fabry-Perot en lumière Ha beaucoup plus rapidement, ou de galaxies de plus faible luminosité, que les caméras à comptage de photon basées sur des tubes amplificateurs. Le temps d'intégration nécessaire à l'obtention d'un rapport signal sur bruit donné est environ 4 fois moindre qu'avec les anciennes caméras. Les applications d'un tel appareil d'imagerie sont nombreuses: photométrie rapide et faible flux, spectroscopie à haute résolution spectrale et temporelle, imagerie limitée par la diffraction à partir de télescopes terrestres (lucky imaging), etc. D'un point de vue technique, la caméra est dominée par le bruit de Poisson pour les flux lumineux supérieurs à 0.002 photon/pixel/image.
D'un autre côté, la raie d'hydrogène neutre (HI) à 21 cm a souvent été utilisée pour étudier la cinématique des galaxies. L'hydrogène neutre a l'avantage de se retrouver en quantité détectable au-delà du disque optique des galaxies. Cependant, la résolution spatiale de ces observations est moindre que leurs équivalents réalisés en lumière visible. Lors de la comparaison des données HI, avec des données à plus haute résolution, certaines différences étaient simplement attribuées à la faible résolution des observations HI. Le projet THINGS (The HI Nearby Galaxy Survey a observé plusieurs galaxies de l'échantillon SINGS (Spitzer Infrared Nearby Galaxies Survey). Les données cinématiques du projet THIGNS seront comparées aux données cinématiques obtenues en lumière Ha, afin de déterminer si la seule différence de résolution spatiale peut expliquer les différences observées. Les résultats montrent que des différences intrinsèques aux traceurs utilisées (hydrogène neutre ou ionisé), sont responsables de dissemblances importantes. La compréhension de ces particularités est importante: la distribution de la matière sombre, dérivée de la rotation des galaxies, est un test de certains modèles cosmologiques. / A new EMCCD (Electron multiplying Charge Coupled Device) controller is presented. It allows the EMCCD to be used for photon counting by drastically taking down its dominating source of noise : the clock induced charges. A new EMCCD camera was built using this controller. It has been characterized in laboratory and tested at the observatoire du mont Mégantic. When compared to the previous generation of photon counting cameras based on intensifier tubes, this new camera renders the observation of the galaxies kinematics with an integral field spectrometer with a Fabry-Perot interferometer in Ha light much faster, and allows fainter galaxies to be observed. The integration time required to reach a given signal-to-noise ratio is about 4 times less than with the intensifier tubes. Many applications could benefit of such a camera: fast, faint flux photometry, high spectral and temporal resolution spectroscopy, earth-based diffraction limited imagery (lucky imaging), etc. Technically, the camera is dominated by the shot noise for flux higher than 0.002 photon/pixel/image.
The 21 cm emission line of the neutral hydrogen (HI) is often used to map the galaxies kinematics. The extent of the distribution of the neutral hydrogen in galaxies, which goes well beyond the optical disk, is one of the reasons this line is used so often. However, the spatial resolution of such observations is limited when compared to their optical equivalents. When comparing the HI data to higher resolution ones, some differences were simply attributed to the beam smearing of the HI caused by its lower resolution. The THINGS (The HI Nearby Galaxy Survey) project observed many galaxies of the SINGS (Spitzer Infrared Nearby Galaxies Survey) project. The kinematics of THINGS will be compared to the kinematic data of the galaxies obtained in Ha light. The comparison will try to determine whether the sole beam smearing is responsible of the differences observed. The results shows that intrinsic dissimilarities between the kinematical tracers used are responsible of some of the observed disagreements. The understanding of theses differences is of a high importance as the dark matter distribution, inferred from the rotation of the galaxies, is a test to some cosmological models.
|
92 |
Novel fabrication and testing of light confinement devicesRing, Josh January 2016 (has links)
The goal of this project is to study novel nanoscale excitation volumes, sensitive enoughto study individual chromophores and go on to study new and exciting self assemblyapproaches to this problem. Small excitation volumes may be engineered using light con-finement inside apertures in metal films. These apertures enhance fluorescence emissionrates, quantum yields, decrease fluorescence quenching, enable higher signal-to-noiseratios and allow higher concentration single chromophore fluorescence, to be studied byrestricting this excitation volume. Excitation volumes are reported on using the chro-mophore's fluorescence by utilising fluorescence correlation spectroscopy, which monitorsfluctuations in fluorescence intensity. From the correlation in time, we can find the res-idence time, the number of chromophores, the volume in which they are diffusing andtherefore the fluorescence emission efficiency. Fluorescence properties are a probe ofthe local environment, a particularly powerful tool due to the high brightness (quantumyield) fluorescent dyes and sensitive photo-detection equipment both of which are readilyavailable, (such as avalanche photodiodes and photomultiplier tubes). Novel materialscombining the properties of conducting and non-conducting materials at scales muchsmaller than the incident wavelength are known as meta-materials. These allow combi-nations of properties not usually possible in natural materials at optical frequencies. Theproperties reported so far include; negative refraction, negative phase velocity, fluorescenceemission enhancement, lensing and therefore light confinement has also been proposed tobe possible. Instead of expensive and slow lithography methods many of these materialsmay be fabricated with self assembly techniques, which are truly nanoscopic and otherwiseinaccessible with even the most sophisticated equipment. It was found that nanoscaled volumes from ZMW and HMMs based on NW arrays wereall inefficient at enhancing fluorescence. The primary cause was the reduced fluorescencelifetime reducing the fluorescence efficiency, which runs contrary to some commentatorsin the literature. NW based lensing was found to possible in the blue region of the opticalspectrum in a HMM, without the background fluorescence normally associated with a PAAtemplate. This was achieved using a pseudo-ordered array of relatively large nanowireswith a period just smaller than lambda / 2 which minimised losses. Nanowires in the traditionalregime lambda / 10 produced significant scattering and lead to diffraction, such that they werewholly unsuitable for an optical lensing application.
|
93 |
Spectral Mammography with X-Ray Optics and a Photon-Counting DetectorFredenberg, Erik January 2009 (has links)
Early detection is vital to successfully treating breast cancer, and mammography screening is the most efficient and wide-spread method to reach this goal. Imaging low-contrast targets, while minimizing the radiation exposure to a large population is, however, a major challenge. Optimizing the image quality per unit radiation dose is therefore essential. In this thesis, two optimization schemes with respect to x-ray photon energy have been investigated: filtering the incident spectrum with refractive x-ray optics (spectral shaping), and utilizing the transmitted spectrum with energy-resolved photon-counting detectors (spectral imaging). Two types of x-ray lenses were experimentally characterized, and modeled using ray tracing, field propagation, and geometrical optics. Spectral shaping reduced dose approximately 20% compared to an absorption-filtered reference system with the same signal-to-noise ratio, scan time, and spatial resolution. In addition, a focusing pre-object collimator based on the same type of optics reduced divergence of the radiation and improved photon economy by about 50%. A photon-counting silicon detector was investigated in terms of energy resolution and its feasibility for spectral imaging. Contrast-enhanced tumor imaging with a system based on the detector was characterized and optimized with a model that took anatomical noise into account. Improvement in an ideal-observer detectability index by a factor of 2 to 8 over that obtained by conventional absorption imaging was found for different levels of anatomical noise and breast density. Increased conspicuity was confirmed by experiment. Further, the model was extended to include imaging of unenhanced lesions. Detectability of microcalcifications increased no more than a few percent, whereas the ability to detect large tumors might improve on the order of 50% despite the low attenuation difference between glandular and cancerous tissue. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise. / QC 20100714
|
94 |
Spectro-imagerie optique à faible flux et comparaison de la cinématique Ha et HI d'un échantillon de galaxies prochesDaigle, Olivier 02 1900 (has links)
Un nouveau contrôleur de EMCCD (Electron multiplying Charge Coupled Device) est présenté. Il permet de diminuer significativement le bruit qui domine lorsque la puce EMCCD est utilisé pour du comptage de photons: le bruit d'injection de charge. À l'aide de ce contrôleur, une caméra EMCCD scientifique a été construite, caractérisée en laboratoire et testée à l'observatoire du mont Mégantic. Cette nouvelle caméra permet, entre autres, de réaliser des observations de la cinématique des galaxies par spectroscopie de champ intégral par interférométrie de Fabry-Perot en lumière Ha beaucoup plus rapidement, ou de galaxies de plus faible luminosité, que les caméras à comptage de photon basées sur des tubes amplificateurs. Le temps d'intégration nécessaire à l'obtention d'un rapport signal sur bruit donné est environ 4 fois moindre qu'avec les anciennes caméras. Les applications d'un tel appareil d'imagerie sont nombreuses: photométrie rapide et faible flux, spectroscopie à haute résolution spectrale et temporelle, imagerie limitée par la diffraction à partir de télescopes terrestres (lucky imaging), etc. D'un point de vue technique, la caméra est dominée par le bruit de Poisson pour les flux lumineux supérieurs à 0.002 photon/pixel/image.
D'un autre côté, la raie d'hydrogène neutre (HI) à 21 cm a souvent été utilisée pour étudier la cinématique des galaxies. L'hydrogène neutre a l'avantage de se retrouver en quantité détectable au-delà du disque optique des galaxies. Cependant, la résolution spatiale de ces observations est moindre que leurs équivalents réalisés en lumière visible. Lors de la comparaison des données HI, avec des données à plus haute résolution, certaines différences étaient simplement attribuées à la faible résolution des observations HI. Le projet THINGS (The HI Nearby Galaxy Survey a observé plusieurs galaxies de l'échantillon SINGS (Spitzer Infrared Nearby Galaxies Survey). Les données cinématiques du projet THIGNS seront comparées aux données cinématiques obtenues en lumière Ha, afin de déterminer si la seule différence de résolution spatiale peut expliquer les différences observées. Les résultats montrent que des différences intrinsèques aux traceurs utilisées (hydrogène neutre ou ionisé), sont responsables de dissemblances importantes. La compréhension de ces particularités est importante: la distribution de la matière sombre, dérivée de la rotation des galaxies, est un test de certains modèles cosmologiques. / A new EMCCD (Electron multiplying Charge Coupled Device) controller is presented. It allows the EMCCD to be used for photon counting by drastically taking down its dominating source of noise : the clock induced charges. A new EMCCD camera was built using this controller. It has been characterized in laboratory and tested at the observatoire du mont Mégantic. When compared to the previous generation of photon counting cameras based on intensifier tubes, this new camera renders the observation of the galaxies kinematics with an integral field spectrometer with a Fabry-Perot interferometer in Ha light much faster, and allows fainter galaxies to be observed. The integration time required to reach a given signal-to-noise ratio is about 4 times less than with the intensifier tubes. Many applications could benefit of such a camera: fast, faint flux photometry, high spectral and temporal resolution spectroscopy, earth-based diffraction limited imagery (lucky imaging), etc. Technically, the camera is dominated by the shot noise for flux higher than 0.002 photon/pixel/image.
The 21 cm emission line of the neutral hydrogen (HI) is often used to map the galaxies kinematics. The extent of the distribution of the neutral hydrogen in galaxies, which goes well beyond the optical disk, is one of the reasons this line is used so often. However, the spatial resolution of such observations is limited when compared to their optical equivalents. When comparing the HI data to higher resolution ones, some differences were simply attributed to the beam smearing of the HI caused by its lower resolution. The THINGS (The HI Nearby Galaxy Survey) project observed many galaxies of the SINGS (Spitzer Infrared Nearby Galaxies Survey) project. The kinematics of THINGS will be compared to the kinematic data of the galaxies obtained in Ha light. The comparison will try to determine whether the sole beam smearing is responsible of the differences observed. The results shows that intrinsic dissimilarities between the kinematical tracers used are responsible of some of the observed disagreements. The understanding of theses differences is of a high importance as the dark matter distribution, inferred from the rotation of the galaxies, is a test to some cosmological models.
|
95 |
Deep Learning Semantic Segmentation of 3D Point Cloud Data from a Photon Counting LiDAR / Djupinlärning för semantisk segmentering av 3D punktmoln från en fotonräknande LiDARSüsskind, Caspian January 2022 (has links)
Deep learning has shown to be successful on the task of semantic segmentation of three-dimensional (3D) point clouds, which has many interesting use cases in areas such as autonomous driving and defense applications. A common type of sensor used for collecting 3D point cloud data is Light Detection and Ranging (LiDAR) sensors. In this thesis, a time-correlated single-photon counting (TCSPC) LiDAR is used, which produces very accurate measurements over long distances up to several kilometers. The dataset collected by the TCSPC LiDAR used in the thesis contains two classes, person and other, and it comes with several challenges due to it being limited in terms of size and variation, as well as being extremely class imbalanced. The thesis aims to identify, analyze, and evaluate state-of-the-art deep learning models for semantic segmentation of point clouds produced by the TCSPC sensor. This is achieved by investigating different loss functions, data variations, and data augmentation techniques for a selected state-of-the-art deep learning architecture. The results showed that loss functions tailored for extremely imbalanced datasets performed the best with regard to the metric mean intersection over union (mIoU). Furthermore, an improvement in mIoU could be observed when some combinations of data augmentation techniques were employed. In general, the performance of the models varied heavily, with some achieving promising results and others achieving much worse results.
|
96 |
Étude de la tomodensitométrie spectrale quantitative et ses applications en radiothérapieSimard, Mikaël 02 1900 (has links)
La tomodensitométrie par rayons-X (CT) est une modalité d’imagerie produisant une carte tridimensionnelle du coefficient d’atténuation des rayons-X d’un objet. En radiothérapie, le CT fournit de l’information anatomique et quantitative sur le patient afin de permettre la planification du traitement et le calcul de la dose de radiation à livrer. Le CT a plusieurs problèmes, notamment (1) une limitation au niveau de l’exactitude des paramètres physiques quantitatifs extraits du patient, et (2) une sensibilité aux biais causés par des artéfacts de durcissement du faisceau. Enfin, (3) dans le cas où le CT est fait en présence d’un agent de contraste pour améliorer la planification du traitement, il est nécessaire d’effectuer un deuxième CT sans agent de contraste à des fins de calcul de dose, ce qui augmente la dose au patient. Ces trois problèmes limitent l’efficacité du CT pour certaines modalités de traitement qui sont plus sensibles aux incertitudes comme la protonthérapie.
Le CT spectral regroupe un ensemble de méthodes pour produire plusieurs cartes d’atténuation des rayons-X moyennées sur différentes plages énergétiques. L’information supplémentaire, pondérée en énergie qui est obtenue permet une meilleure caractérisation des matériaux analysés. Le potentiel de l’une de ces modalités spectrales, le CT bi-énergie (DECT), est déjà bien démontré en radiothérapie, alors qu’une approche en plein essor, le CT spectral à comptage de photons (SPCCT), promet davantage d’information spectrale à l’aide de détecteurs discriminateurs en énergie. Par contre, le SPCCT souffre d’un bruit plus important et d’un conditionnement réduit. Cette thèse investigue la question suivante : y a-t-il un bénéfice à utiliser plus d’information résolue en énergie, mais de qualité réduite pour la radiothérapie ? La question est étudiée dans le contexte des trois problèmes ci-haut.
Tout d’abord, un estimateur maximum a posteriori (MAP) est introduit au niveau de la caractérisation des tissus post-reconstruction afin de débruiter les données du CT spectral. L’approche est validée expérimentalement sur un DECT. Le niveau de bruit du pouvoir d’arrêt des protons diminue en moyenne d’un facteur 3.2 à l’aide de l’estimateur MAP. Celui-ci permet également de conserver généralement le caractère quantitatif des paramètres physiques estimés, le pouvoir d’arrêt variant en moyenne de 0.9% par rapport à l’approche conventionnelle. Ensuite, l’estimateur MAP est adapté au contexte de l’imagerie avec agent de contraste. Les résultats numériques démontrent un bénéfice clair à utiliser le SPCCT pour l’imagerie virtuellement sans contraste par rapport au DECT, avec une réduction de l’erreur RMS sur le pouvoir d’arrêt des protons de 2.7 à 1.4%. Troisièmement, les outils développés ci-haut sont validés expérimentalement sur un micro-SPCCT de la compagnie MARS Bioimaging, dont le détecteur à comptage de photons est le Medipix 3, qui est utilisé pour le suivi de particules au CERN. De légers bénéfices au niveau de l’estimation des propriétés physiques à l’aide du SPCCT par rapport au DECT sont obtenus pour des matériaux substituts à des tissus humains. Finalement, une nouvelle paramétrisation du coefficient d’atténuation pour l’imagerie pré-reconstruction est proposée, dans le but ultime de corriger les artéfacts de durcissement du faisceau. La paramétrisation proposée élimine les biais au niveau de l’exactitude de la caractérisation des tissus humains par rapport aux paramétrisations existantes. Cependant, aucun avantage n’a été obtenu à l’aide du SPCCT par rapport au DECT, ce qui suggère qu’il est nécessaire d’incorporer l’estimation MAP dans l’imagerie pré-reconstruction via une approche de reconstruction itérative. / X-ray computed tomography (CT) is an imaging modality that produces a tridimensional map of the attenuation of X-rays by the scanned object. In radiation therapy, CT provides anatomical and quantitative information on the patient that is required for treatment planning. However, CT has some issues, notably (1) a limited accuracy in the estimation of quantitative physical parameters of the patient, and (2) a sensitivity to biases caused by beam hardening artifacts. Finally, (3) in the case where contrast-enhanced CT is performed to help treatment planning, a second scan with no contrast agent is required for dose calculation purposes, which increases the overall dose to the patient. Those 3 problems limit the efficiency of CT for some treatment modalities more sensitive to uncertainties, such as proton therapy.
Spectral CT regroups a set of methods that allows the production of multiple X-ray attenuation maps evaluated over various energy windows. The additional energy-weighted information that is obtained allows better material characterization. The potential of one spectral CT modality, dual-energy CT (DECT), is already well demonstrated for radiation therapy, while an upcoming method, spectral photon counting CT (SPCCT), promises more spectral information with the help of energy discriminating detectors. Unfortunately, SPCCT suffers from increased noise and poor conditioning. This thesis thus investigates the following question: is there a benefit to using more, but lower quality energy-resolved information for radiotherapy? The question is studied in the context of the three problems discussed earlier.
First, a maximum a posteriori (MAP) estimator is introduced for post-reconstruction tissue characterization for denoising purposes in spectral CT. The estimator is validated experimentally using a commercial DECT. The noise level on the proton stopping power is reduced, on average, by a factor of 3.2 with the MAP estimator. The estimator also generally con- serves the quantitative accuracy of estimated physical parameters. For instance, the stopping power varies on average by 0.9% with respect to the conventional approach. Then, the MAP estimation framework is adapted to the context of contrast-enhanced imaging. Numerical results show clear benefits when using SPCCT for virtual non-contrast imaging compared to DECT, with a reduction of the RMS error on the proton stopping power from 2.7 to 1.4%. Third, the developed tools are validated experimentally on a micro-SPCCT from MARS Bioimaging, which uses the Medipix 3 chip as a photon counting detector. Small benefits in the accuracy of physical parameters of tissue substitutes materials are obtained. Finally, a new parametrization of the attenuation coefficient for pre-reconstruction imaging is pro- posed, whose ultimate aim is to correct beam hardening artifacts. In a simulation study, the proposed parametrization eliminates all biases in the estimated physical parameters of human tissues, which is an improvement upon existing parametrizations. However, no ad- vantage has been obtained with SPCCT compared to DECT, which suggests the need to incorporate MAP estimation in the pre-reconstruction framework using an iterative reconstruction approach.
|
97 |
Solvatationsdynamik an biologischen Grenzschichten / Solvation dynamics at biological interfacesSeidel, Marco Thomas 05 November 2003 (has links)
No description available.
|
Page generated in 0.0843 seconds