Spelling suggestions: "subject:"physique dess matériaux"" "subject:"physique dess mtériaux""
21 |
Couplages thermomécaniques dans les alliages à mémoire de forme : mesure de champs cinématique et thermique et modélisation multiéchelleMaynadier, Anne 30 November 2012 (has links) (PDF)
L'utilisation croissante des Alliages à Mémoire de Forme (AMF) dans des structures de plus en plus complexes, notamment en vue d'applications médicales, rend nécessaire la compréhension des phénomènes régissant leur comportement et plus précisément la pseudo-élasticité. Le fort couplage thermomécanique, résultant de la transformation de phase martensitique, est un point clé de ce comportement. Les travaux de thèse présentés sont consacrés à l'étude et la modélisation de ce couplage. Tout d'abord, la transformation de phase martensitique provoque une déformation et une émission de chaleur couplées qui peuvent se localiser en bandes de transformation sous sollicitation uniaxiale. Une partie de cette thèse a été consacrée au développement de la Corrélation d'Images InfraRouge, qui permet à partir d'un unique film IR de mesurer conjointement, en une seule analyse, les champs cinématiques et thermiques discrétisés sur un même maillage éléments finis. Une application à l'analyse d'un essai de traction sur AMF de type NiTi a été réalisée. Le comportement pseudo-élastique a aussi été abordé d'un point de vue modélisation. Une large part de ce travail de thèse a donc été consacrée à l'élaboration d'un modèle multiéchelle et multiaxial, décrivant le comportement d'un VER à partir de la physique de la transformation martensitique à l'échelle de la maille cristalline. L'approche est inspirée de modèles multiéchelles développés pour la modélisation d'autres couplages multiphysiques et notamment magnéto-élastique. La troisième partie de cette thèse a été consacrée à l'élaboration d'un modèle de structure 1D sous traction uniaxiale. Dans un premier temps un modèle de thermique 1D ainsi qu'un modèle mécanique phénoménologique à seuils ont été développés. Les simulations rendent compte des phénomènes de transformation diffuse accompagnant l'élasticité puis de la transformation localisée. L'algorithme est notamment capable de gérer les deux sens de transformation. Ce modèle met en compétition les deux phénomènes transitoires de génération et évacuation de la chaleur par la transformation de phase et les échanges thermiques avec l'environnement. Ainsi, il est capable de reproduire la relation liant le nombre de bandes de transformation générées à la vitesse de sollicitation et aux conditions aux limites thermiques. Un travail été initié pour coupler ce modèle de structure et de gestion de la thermique au modèle monocristallin multiaxial. Sans encore reproduire la localisation de la transformation en bande, les simulations de traction montrent un hystérésis, issu des pertes thermiques dans l'air ambiant, bien que le modèle de comportement multiéchelle élémentaire soit écrit dans un cadre réversible, l'irréversibilité et la localisation étant avant tout des effets de transferts. Le couplage thermomécanique à la source des comportements si spécifiques des AMF que sont la super élasticité et la mémoire de forme ont donc été étudiés sous divers points de vue : expérimentalement, par l'établissement de modèles de comportement, par la simulation de structures 1D et des échanges thermiques mis en jeu. Les outils et modèles ont été appliqués à l'étude du Ni49,75at%Ti, support de ce travail, mais sont facilement adaptables à tout autre AMF. L'approche utilisée pour la modélisation multi-échelle peut être étendue à d'autres couplages, par exemple en cumulant les couplages thermo- et magnéto- mécaniques en vu de l'étude des Alliages à Mémoire de Forme Magnétiques par exemple.
|
22 |
Modélisation et simulation multi-échelle et multi-physique du comportement acoustique de milieux poroélastiques : application aux mousses de faible densitéHoang, Minh Tan, Hoang, Minh Tan 03 December 2012 (has links) (PDF)
L'objectif de ce mémoire de recherche est de déterminer les propriétés acoustiques des milieux poroélastiques à partir d'une démarche multi-échelle et multi-physique. Il traite d'échantillons réels de mousses, à cellules ouvertes ou partiellement fermées, dont les propriétés microstructurales sont caractérisées par des techniques d'imagerie. Cette information est utilisée afin d'identifier une cellule périodique idéalisée tridimensionnelle, qui soit représentative du comportement acoustique du milieu poreux réel. Les paramètres gouvernant les propriétés acoustiques du milieu sont obtenus en appliquant la méthode d'homogénéisation des structures périodiques. Dans une première étape, la structure des mousses est supposée indéformable. Il a été montré que pour le cas d'une distribution étroite de tailles caractéristiques de la géométrie locale, le comportement macroscopique d'une mousse à cellule ouverte peut être calculé à partir des propriétés géométriques locales de manière directe. Dans le cas d'une distribution étendue, le comportement acoustique du milieu est gouverné par des tailles critiques qui sont déterminées à partir de la porosité et de la perméabilité statique pour une mousse à cellules ouvertes ; pour une mousse à cellules partiellement fermées il est nécessaire d'identifier en plus une dimension connue de la géométrie locale. Nos résultats sont comparés avec succès à des données expérimentales obtenues par des mesures au tube d'impédance. Dans une seconde étape, les propriétés élastiques effectives du milieu poreux sont déterminées. Une modélisation par éléments finis de la cellule représentative a été mise en œuvre. Les paramètres élastiques calculés sont finalement comparés avec les données de la littérature, ainsi qu'à des essais mécaniques
|
23 |
Design and performance of sulfur-resistant palladium-supported catalysts for methane oxidation using conventional and nanotechnological tools of preparationMelaet, Gérôme 16 December 2011 (has links)
Ce travail se concentre sur le développement de systèmes catalytiques capable d’oxyder complètement le méthane à basse température. Le sujet principal concerne la conception d'une nouvelle génération de catalyseurs à base de palladium qui sont résistants aux composés soufrés et à l'eau.<p>Notre objectif a été atteint grâce à l'utilisation d'un support oxyde mixte produit par sol-gel. En effet, nos catalyseurs de palladium supporté sur un oxyde de silicium dopé au titane se sont révélés être résistants à l’empoisonnement au soufre et présentent des performances élevées pour la conversion du méthane.<p>En variant les quantités de TiO2, il a été montré que les performances atteignent un maximum pour une composition en masse de 10% TiO2. Les analyses structurelles et de surface ont montré que nos supports mixtes contiennent des liens Ti-O-Si. Nous pensons que ces liens sont responsables de l’activité accrue du catalyseur.<p>Par ailleurs, les catalyseurs contenant du titane présentent une tolérance supérieure vis-à-vis du SO2 lorsque celui-ci est ajouté aux réactifs ou que le catalyseur est exposé à une atmosphère de SO2 pur à 350°C pendant 15 heures. Nous avons mis en évidence par XPS que les sites Ti-O-Si sont également responsables de cette tolérance aux composés soufrés. Ceci est accompli par l'insertion du SO2 dans le support qui forme des liens soit Ti-O-SOx•••Si soit Si-O-SOx•••Ti. L’analyse XPS a également montré que sur le long terme, l’exposition au SO2 conduit à la formation d’une couche de PdSO4 de 18 à 20 Å. Étonnamment, les catalyseurs sont capables de récupérer entièrement leur activité initiale après ce traitement. Cette régénération se produit grâce à un mécanisme concerté avec le méthane permettant la décomposition totale du PdSO4. Par ailleurs, des études en présence d'eau ont montré que ces propriétés restent inchangées.<p>L'état du palladium a également été étudié et nous a permis de prouver qu’une activation/stabilisation du catalyseur est nécessaire. Celle-ci est réalisée en présence des réactifs par de légères modifications chimiques du support et de la phase de palladium. En effet, l'augmentation de l'activité du catalyseur a été corrélée avec une augmentation des quantités de Ti3+ et Pd0. La présence de palladium métallique dans le catalyseur semble être l'élément clé dans l'activation des liaisons C-H.<p>Enfin, nous avons étudié l'influence de la taille/la dispersion des particules de palladium sur la vitesse de réaction. L'utilisation de synthèses en phase liquide nous a permis de produire des solutions colloïdales de particules de palladium avec des tailles contrôlées. Cette étude a révélé que la combustion du méthane est une réaction sensible à la structure. Néanmoins, un meilleur contrôle de la forme des nanoparticules devrait être réalisé pour déterminer les facteurs structurels influençant la réaction./ The present work focuses on the development of highly efficient catalytic systems able to completely oxidize methane at low temperature in order to comply with modern environmental legislation. The main subject concerns the design of a new generation of palladium-based catalysts that are sulfur and water resistant. <p>Our goal was achieved through the use of a mixed oxide support produced by sol-gel. In fact, palladium-supported on titanium-doped silica catalysts have proven to be sulfur tolerant and exhibit high performances for the methane conversion. <p>Varying the amounts of TiO2 showed that the performance reached an optimum for a 10 wt.% TiO2 loading. According to the structural and surface analyses, the mixed oxides contained Ti-O-Si linkages, believed to be responsible for the better activity as compared to PdO supported on pure oxides. <p>Moreover, the titania-containing catalysts exhibited a superior tolerance towards SO2 when either adding it to the reactants or feeding it as a pure pretreatment atmosphere at 350°C (15 hour on stream). We evidenced using XPS that the Ti-O-Si sites are also responsible for the higher sulfur tolerance of the catalysts by the insertion of SO2 in the support forming either Ti-O-SOx•••Si or Si-O-SOx•••Ti. XPS analyses also evidenced that the long-term SO2-treatment leads to the formation of PdSO4 with a thickness of 18 to 20 Å. However, the catalysts can entirely recover their initial activity after this treatment. This regeneration was proven to be occurring through a concerted mechanism with methane leading to the total decomposition of PdSO4. Moreover, studies in presence of water showed that these properties remained unchanged.<p>The state of the palladium was also investigated and allowed us to evidence that an activation/stabilization of the catalyst is necessary. This is achieved in presence of the reactants by slight and subtle changes in both the support and the palladium phase. The increase of the catalyst activity was correlated with an increase of Ti3+ and Pd0 fractions. The presence of metallic palladium in the catalyst seems to be the key element in the activation of the C-H bonds. <p>Finally, we have studied the influence of the size/dispersion of the palladium particles on the reaction rate. The use of wet-chemistry synthesis allowed us to produce colloidal solutions of palladium with controlled particles sizes. This study revealed that the methane combustion is a structure sensitive or demanding reaction. Nevertheless, a better control of the shape of the nanoparticles should be achieved to determine the structural factor influencing the reaction.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
24 |
Développement d'une nouvelle technique d'élaboration de mousses d'acier par fonderie et caractérisation mécaniqueDairon, Jonathan 10 December 2008 (has links) (PDF)
Les mousses métalliques sont des matériaux intéressants pour fabriquer des absorbeurs d'énergie et des panneaux de faible masse travaillant en flexion. Jusque là, l'aluminium a principalement été employé : sa masse volumique réduite et ses performances mécaniques assez élevées ont fait de lui le candidat idéal pour créer des structures rigides et légères pouvant absorber de grandes quantités d'énergie. Cette thèse étudie la possibilité d'employer de l'acier pour produire des mousses métalliques. L'objectif a été de tirer parti du faible coût et/ou des performances mécaniques très élevées de ce métal pour fabriquer des mousses rivalisant avec les mousses d'aluminium. Pour fabriquer des mousses d'acier, deux types de techniques ont été testés dans le cadre de cette thèse : le moussage d'un métal liquide et l'infiltration d'une préforme. Le premier consiste à former une mousse liquide qui est ensuite solidifiée. Pour cela, nous nous sommes attachés à introduire du gaz dans l'acier et à créer les conditions pour que la mousse formée soit stable. Le second consiste à couler le métal dans un réseau de porosités ayant la forme d'une mousse. Pour mettre en œuvre ce procédé, nous avons mis au point une nouvelle technique de fabrication de préformes. Nous avons également étudié les paramètres conditionnant ses possibilités en termes de taille de pièce. Finalement, les performances des mousses d'acier fabriquées par infiltration ont été évaluées, via des essais de compression uniaxiale, pour les comparer à celles des mousses d'aluminium. Une première modélisation numérique de la mousse d'acier a aussi été effectuée, pour en apprécier la pertinence à prévoir le comportement de ce matériau.
|
25 |
Hygromécanique du matériau bois appliquée à la conservation du patrimoine culturelColmars, Julien 18 April 2011 (has links) (PDF)
Avant la généralisation des toiles vers le XVI-XVIIème siècle, le bois a servi de support à d'innombrables peintures qui constituent aujourd'hui une part importante, dans les musées et les églises notamment, de notre patrimoine culturel. Après plusieurs siècles d'existence, les planches servant de support aux panneaux peints sont très souvent courbées : cette courbure est généralement imputée à la présence unilatérale de la couche picturale, imposant des échanges asymétriques d'humidité entre le bois, matériau hygroscopique, et son environnement de conservation. Par ailleurs il existe dans ces déformations une forte contribution de l'orthotropie cylindrique du bois qui est une conséquence de la croissance des arbres. Enfin, l'historique des variations hygrométriques à proximité d'un panneau peint renvoie à l'étude plus générale du comportement thermo-hygro-mécanique différé du bois. Une compréhension d'ensemble de ces phénomènes doit permettre d'orienter des décisions difficiles de conservation, notamment celles relatives au déplacement des œuvres ou à la maîtrise des environnements dans les musées. Nous proposons dans ce travail une approche générale de mécanique du matériau et des structures bois appliquée aux panneaux peints. La méthode utilisée intègre des moyens expérimentaux en laboratoire et sur des œuvres in-situ, des méthodes numériques, et l'accent est mis sur le lien fort existant entre les aspects " comportement " propres au bois (anisotropie, couplages hygromécaniques, etc.) et les aspects de structure relatifs aux panneaux peints (débit des planches, efforts extérieurs dus à leur assemblage, etc.). Un outil de calcul basé sur la modélisation mécanique des plaques orthotropes est développé. Il prend appui sur un code préexistant de transfert de masse et de chaleur décrivant les mouvements d'eau dans le support. Ce code de calcul complet est utilisé notamment sur un cas d'étude : un panneau peint de 500 ans environ, en situation d'exposition dans une église.
|
26 |
Mise en forme par emboutissage en température d'un alliage d'aluminium AA5754-OCoër, J. 13 December 2013 (has links) (PDF)
Les économies d'énergie et l'allègement des véhicules ont conduit les fabricants automobiles à se tourner vers de nouveaux matériaux métalliques, de plus en plus complexes, en lieu et place des aciers traditionnellement utilisés. Dans ce contexte, les alliages d'aluminium, du fait de leurs bonnes propriétés mécaniques et de leur bon rapport résistance/masse, connaissent un essor important, notamment pour la fabrication des éléments de carrosserie. Cependant, le retour élastique et l'apparition de défauts d'aspect consécutifs aux opérations de mise en forme complexifient la mise au point et allongent les délais de fabrication tout en impactant le prix de revient. Dans ce contexte, la mise en forme par emboutissage en température, bien que plus compliquée à mettre en oeuvre, semble être une alternative envisageable. En effet, l'augmentation de la température permet de réduire le retour élastique tout en diminuant les efforts mis en jeu sur les outils. Le matériau choisi est un alliage d'aluminium-magnésium (AA5754-O) habituellement employé dans le secteur automobile pour la réalisation de panneaux intérieurs d'ouvrants. Ce matériau présente, à température ambiante, l'inconvénient majeur d'être sujet à l'effet Portevin-Le Chatelier (PLC), se manifestant par des stries à la surface des pièces embouties, empêchant ainsi son utilisation pour des pièces d'aspect malgré un coût attrayant par rapport à d'autres alliages d'aluminium. La caractérisation expérimentale de ce matériau a été effectuée dans une gamme de température allant de 20 à 200~°C, en traction puis en cisaillement simple. Ces deux trajets de chargement ont permis, par le biais d'une mesure optique des déformations, de définir la gamme d'existence de l'effet PLC en fonction de la température et de la vitesse de déformation. Parallèlement, la formabilité de ce matériau a été évaluée à partir d'essais d'emboutissage de godets cylindriques. Les contraintes internes générées au cours du procédé, à l'origine du retour élastique, sont caractérisées à l'aide du test de Demeri, consistant à mesurer l'ouverture d'un anneau découpé dans le mur du godet. Afin d'étudier l'influence de la température sur l'emboutissabilité et le retour élastique, un dispositif, adaptable sur une machine d'essai BUP200, a été mis au point pour mettre en forme des godets jusqu'à 200°C. Ce dispositif permet par le biais d'inserts interchangeables, revêtus (ou non) par des films minces W-Ti-N, de modifier les propriétés de contact tôle/outil et d'analyser l'influence du frottement sur le procédé et les conséquences sur le retour élastique, en fonction de la température et du type d'insert utilisé. Les simulations numériques de ce procédé à température ambiante ont été effectuées avec le code de calcul Abaqus, en utilisant la base de données expérimentale pour identifier les coefficients des lois de comportement du matériau. Les simulations numériques sont alors confrontées aux résultats expérimentaux en termes d'effort d'emboutissage, de champs de déformation, d'épaisseurs de godet, de cornes d'emboutissage et de retour élastique.
|
27 |
Caractérisation in situ de l'endommagement volumique par spectroscopie Raman et rayon X de différents polypropylènes déformés en traction uniaxialeChaudemanche, S. 03 December 2013 (has links) (PDF)
L'utilisation de matériaux polymères a su s'imposer au cours du 20ième siècle, en remplaçant ou se combinant aux matériaux métalliques, pour des applications mécaniques toujours plus techniques. La grande diversité des propriétés physiques des polymères est intimement lié à leur forte complexité microstructurale, qui malgré leur utilisation massive reste, au demeurant, encore très incomprise. Afin de mieux comprendre les évolutions microstructurales aux échelles nano et micrométrique dont résultent le comportement macroscopique il est nécessaire de développer de nouvelles techniques de caractérisation in situ. Ce travail fait état de l'utilisation de la spectroscopie Raman couplée au système VidéoTractionTM afin d'obtenir des informations microstructurales de la déformation de polymère semi-cristallins. Pour cela, des polypropylènes de formulations diverses ont été étudiés, permettant de souligner le rôle joué par la matrice et les charges organiques et minérales dans le processus de déformation plastique. Des mesures in situ de l'orientation des chaînes macromoléculaires déterminées in situ par Raman ont été confirmées, au synchrotron Petra III d'Hambourg, par une expérience couplant le système VidéoTractionTM-Raman à un dispositif de diffusion des rayons X aux grands angles. L'endommagent volumique des matériaux a été étudié post mortem par Tomographie X et radiographie X. Les améliorations apportées au système VidéoTractionTM-Raman ainsi qu'une étude de la diffusion de la lumière incohérente de nos matériaux au cours de leurs déformations ont permis l'établissement d'un critère de mesure de l'endommagement volumique in situ par Raman.
|
28 |
Simulation avancée des problèmes thermiques rencontrés lors de la mise en forme des compositesGhnatios, Chady 02 October 2012 (has links) (PDF)
La modélisation des procédés de mise en forme de composites est confrontée à de nombreux verrous scientifiques malgré les avancées récentes en matière de modélisation mécanique, analyse numérique, stratégies de discrétisation et capacité de calcul. En effet, la mise en forme de composites est confrontée à la nécessité de la prise en compte des comportements non-linéaires anisotropes et fortement couplés, définis dans des géométries très complexes. De plus, l'optimisation des procédés ainsi que l'identification par calcul inverse nécessite de multiples résolutions du problème direct. Dans ce contexte les techniques de réduction de modèles offrent de nouvelles possibilités, permettant d'accélérer les calculs de quelques ordres de magnitude, et même de résoudre des modèles jamais résolus jusqu'à présent. La "Proper Generalized Decomposition" ou PGD est une des trois grandes familles des méthodes de réduction de modèles, susceptible de constituer un changement de paradigme en mécanique numérique. En effet, la PGD permet de résoudre des problèmes multidimensionnels résultants de l'introduction de paramètres physiques ou de conformation tout en évitant la malédiction de la dimensionnalité. Dans ce travail, on utilise la PGD pour adresser la solution de problèmes thermiques rencontrés lors de la mise en forme des composites. De plus, une approche de calcul "off-line/on-line" pour l'optimisation et le contrôle en temps réel est proposée. En effet, la PGD est utilisée pour calculer "off-line" des solutions paramétriques, exploitées ensuite "on-line" sur des plateformes de calcul légères (Smartphones ou tablettes).
|
29 |
Recherche et utilisation de solutions analytiques pour des problèmes inverses couplés thermo-élastiquesWeisz-Patrault, Daniel 06 December 2012 (has links) (PDF)
Ce travail de doctorat porte sur l'utilisation des mathématiques analytiques dans le cadre de méthodes inverses appliquées à l'industrie. Ces travaux tiennent au développement de capteurs inverses en temps réel adaptés au laminage industriel. Le producteur d'acier ArcelorMittal dirige un projet européen, qui vise à montrer la faisabilité de capteurs mesurant les champs (température, contraintes) dans le contact entre le produit et l'outil sans altérer les conditions de ce contact. Les travaux de thèse présentés dans ce mémoire ont été réalisés au sein du laboratoire Navier et financés par l'école des Ponts ParisTech. Cependant un contrat sur trois ans signé avec ArcelorMittal a permis à l'auteur d'être partie prenante de ce projet européen, et ainsi de voir ses recherches concrétisées par une demande industrielle réelle. L'enjeu de cette thèse est double, académique et industriel. Académique en ce sens que les travaux cherchent à recenser et utiliser efficacement les méthodes de résolution analytiques existantes, pour des problèmes inverses en thermoélasticité, dans le cadre d'une métrologie en temps réel. Les problématiques propres, liées au caractère inverse des problèmes à traiter, pénalisent les méthodes de résolution numériques (FEM BEM), en ce sens que les problèmes inverses sont mal posés, et qu'une stabilisation des codes de calcul numériques est nécessaire mais souvent délicate si l'on considère les conditions extrêmes (champs très singuliers) appliquées aux outils industriels de laminage. Par ailleurs la métrologie en temps réel exclut l'utilisation de codes numériques trop coûteux en temps de calcul (méthodes itératives etc...). Ces deux aspects contribuent à renouveler assez largement l'intérêt pour les solutions analytiques. Ainsi des algorithmes numériques efficaces ont été développés sur la base de résolutions analytiques inverses. Il convient alors d'en regrouper (dans la mesure du possible) les méthodes les plus efficaces (en termes de précision et de temps de calcul notamment) et les plus adaptées pour la métrologie. Différents développements en séries élémentaires sont passés en revue, permettant non seulement de donner à une suite de points mesurés une forme analytique, mais également de simplifier les équations aux dérivées partielles à résoudre. D'autre part l'enjeu de cette thèse est également industriel, car ces travaux s'inscrivent dans une démarche de développement de capteurs adaptés à la mise en forme de l'acier par laminage. Ainsi l'étude de la robustesse au bruit de mesure, les contraintes technologiques liées à l'insertion des capteurs, les limitations en termes de fréquence d'acquisition et les problématiques de calibrage sont au coeur des développements. Ainsi, l'ensemble des travaux présentés, peut constituer une sorte de réhabilitation des méthodes analytiques comme base à des algorithmes numériques efficaces, dont la supériorité sur les codes de calculs usuels (en termes de temps de calcul et parfois aussi de précision) est mise en lumière, dans le contexte précis de la métrologie en temps réel sur des géométries simples. Trois méthodes inverses en deux dimensions, adaptées au laminage industriel, ont été menées à bien (élastique isotherme, thermique et couplage thermo-élastique), ainsi qu'une série d'applications expérimentales réalisées sur le laminoir de laboratoire d'ArcelorMittal. Par ailleurs, des extensions en trois dimensions des méthodes inverses élastiques et thermiques sont également détaillées.
|
30 |
Stratégies numériques avancées pour la simulation de modèles définis sur des géométries de plaques et coques : solutions 3D avec une complexité 2DBognet, Brice 16 April 2013 (has links) (PDF)
La plupart des produits d'ingénierie actuels, que ce soit dans le domaine des transports (naval, aéronautique, automobile, ...), de l'énergie (éolien, ...) ou du génie civil, font massivement appel à des pièces de faible épaisseur de formes variées : les plaques et les coques. Les matériaux métalliques sont toujours très utilisés, bien que l'utilisation des matériaux composites augmente fortement. La conception et le dimensionnement des pièces métalliques et composites nécessite par conséquent des outils de calculs adaptés et performants. L'approche retenue est d'effectuer des simulations mécaniques 3D et d'utiliser la méthode de réduction de modèle PGD (Proper Generalized Decomposition) pour résoudre le problème en variables d'espace séparées. Cette méthode consiste à chercher la solution sous la forme d'une somme finie de produits de fonctions des coordonnées de la surface moyenne et de fonctions de la coordonnée de l'épaisseur. La résolution par la méthode des éléments finis des problèmes 2D (fonction des coordonnées de la surface moyenne) et 1D (fonction de la coordonnée de l'épaisseur) issus de la séparation des variables permet de construire de façon itérative la solution 3D du problème avec une complexité qui reste celle d'un problème 2D. Des variables supplémentaires sont également ajoutées en tant que coordonnées du problème afin d'inclure dans les simulations d'éventuelles incertitudes, variabilités, des paramètres de conception ou des paramètres du procédé d'élaboration. Ces simulations multidimensionnelles fournissent donc des abaques numériques qui peuvent ensuite être utilisées pour la conception et l'optimisation.
|
Page generated in 0.0899 seconds