Spelling suggestions: "subject:"planification duu mouvement"" "subject:"planification dud mouvement""
31 |
Priority-based coordination of mobile robots / Coordination de robots mobiles par affectation de prioritésGregoire, Jean 29 September 2014 (has links)
Depuis la fin des années 1980, le développement de véhicules autonomes, capables de rouler sans l'intervention d'un être humain, est un champ de recherche très actif dans la plupart des grands pays industrialisés. La diminution du nombre d'accidents, des temps de trajet plus courts, une meilleure efficacité énergétique et des besoins en infrastructure plus limités, sont autant d'effets socio-économiques espérés de leur déploiement. Des formes de coopération inter-véhicules et entre les véhicules et l'infrastructure routière sont nécessaires au fonctionnement sûr et efficace du système de transport dans sa globalité. Cette thèse s'intéresse à une forme de coopération particulière en étudiant la coordination de robots mobiles aux intersections. La majorité des systèmes de coordination existants planifie une trajectoire que les robots doivent exécuter afin d'assurer l'absence de collision. C'est une approche classique de la planification, qui est alors considérée comme un mécanisme de génération de l'action. Dans cette thèse, seules les priorités entre les véhicules sont planifiées, c'est-à-dire l'ordre relatif de passage des véhicules dans l'intersection, ce qui est bien plus faible car un grand nombre de trajectoires respectent les même priorités. Les priorités sont alors simplement utilisées comme une ressource de coordination pour guider les robots dans l'intersection. Une fois les priorités affectées, les robots suivent une loi de contrôle qui s'assure qu'elles soient bien respectées. Il en découle un système de coordination robuste, capable de gérer toute une classe d'événements imprévisibles de façon réactive, ce qui est particulièrement adapté pour une application à la coordination de véhicules autonomes aux intersections où voitures, transports en commun et piétons partagent la route. / Since the end of the 1980's, the development of self-driven autonomous vehicles is an intensive research area in most major industrial countries. Positive socio-economic potential impacts include a decrease of crashes, a reduction of travel times, energy efficiency improvements, and a reduced need of costly physical infrastructure. Some form of vehicle-to-vehicle and/or vehicle-to-infrastructure cooperation is required to ensure a safe and efficient global transportation system. This thesis deals with a particular form of cooperation by studying the problem of coordinating multiple mobile robots at an intersection area. Most of coordination systems proposed in previous work consist of planning a trajectory and to control the robots along the planned trajectory: that is the plan-as-program paradigm where planning is considered as a generative mechanism of action. The approach of the thesis is to plan priorities – the relative order of robots to go through the intersection – which is much weaker as many trajectories respect the same priorities. Then, priorities are merely used as a coordination resource to guide robots through the intersection. Once priorities are assigned, robots are controlled through a control law preserving the assigned priorities. It results in a more robust coordination system – able to handle a large class of unexpected events in a reactive manner – particularly well adapted for an application to the coordination of autonomous vehicles at intersections where cars, public transport and pedestrians share the road.
|
32 |
Rôle du cortex pariétal postérieur dans le processus d'intégration visuomotrice - connexions anatomiques avec le cortex moteur et activité cellulaire lors de la locomotion chez le chatAndujar, Jacques-Étienne 08 1900 (has links)
La progression d’un individu au travers d’un environnement diversifié dépend des informations visuelles qui lui permettent d’évaluer la taille, la forme ou même la distance et le temps de contact avec les obstacles dans son chemin. Il peut ainsi planifier en avance les modifications nécessaires de son patron locomoteur afin d’éviter ou enjamber ces entraves. Ce concept est aussi applicable lorsque le sujet doit atteindre une cible, comme un prédateur tentant d’attraper sa proie en pleine course. Les structures neurales impliquées dans la genèse des modifications volontaires de mouvements locomoteurs ont été largement étudiées, mais relativement peu d’information est présentement disponible sur les processus intégrant l’information visuelle afin de planifier ces mouvements. De nombreux travaux chez le primate suggèrent que le cortex pariétal postérieur (CPP) semble jouer un rôle important dans la préparation et l’exécution de mouvements d’atteinte visuellement guidés. Dans cette thèse, nous avons investigué la proposition que le CPP participe similairement dans la planification et le contrôle de la locomotion sous guidage visuel chez le chat. Dans notre première étude, nous avons examiné l’étendue des connexions cortico-corticales entre le CPP et les aires motrices plus frontales, particulièrement le cortex moteur, à l’aide d’injections de traceurs fluorescents rétrogrades. Nous avons cartographié la surface du cortex moteur de chats anesthésiés afin d’identifier les représentations somatotopiques distales et proximales du membre antérieur dans la partie rostrale du cortex moteur, la représentation du membre antérieur située dans la partie caudale de l’aire motrice, et enfin la représentation du membre postérieur. L’injection de différents traceurs rétrogrades dans deux régions motrices sélectionnées par chat nous a permis de visualiser la densité des projections divergentes et convergentes pariétales, dirigées vers ces sites moteurs. Notre analyse a révélé une organisation topographique distincte de connexions du CPP avec toutes les régions motrices identifiées. En particulier, nous avons noté que la représentation caudale du membre antérieur reçoit majoritairement des projections du côté rostral du sillon pariétal, tandis que la partie caudale du CPP projette fortement vers la représentation rostrale du membre antérieur. Cette dernière observation est particulièrement intéressante, parce que le côté caudal du sillon pariétal reçoit de nombreux inputs visuels et sa cible principale, la région motrice rostrale, est bien connue pour être impliquée dans les fonctions motrices volontaires. Ainsi, cette étude anatomique suggère que le CPP, au travers de connexions étendues avec les différentes régions somatotopiques du cortex moteur, pourrait participer à l’élaboration d’un substrat neural idéal pour des processus tels que la coordination inter-membre, intra-membre et aussi la modulation de mouvements volontaires sous guidage visuel.
Notre deuxième étude a testé l’hypothèse que le CPP participe dans la modulation et la planification de la locomotion visuellement guidée chez le chat. En nous référant à la cartographie corticale obtenue dans nos travaux anatomiques, nous avons enregistré l’activité de neurones pariétaux, situés dans les portions des aires 5a et 5b qui ont de fortes connexions avec les régions motrices impliquées dans les mouvements de la patte antérieure. Ces enregistrements ont été effectués pendant une tâche de locomotion qui requiert l’enjambement d’obstacles de différentes tailles. En dissociant la vitesse des obstacles de celle du tapis sur lequel le chat marche, notre protocole expérimental nous a aussi permit de mettre plus d’emphase sur l’importance de l’information visuelle et de la séparer de l’influx proprioceptif généré pendant la locomotion. Nos enregistrements ont révélé deux groupes de cellules pariétales activées en relation avec l’enjambement de l’obstacle: une population, principalement située dans l’aire 5a, qui décharge seulement pendant le passage du membre au dessus del’entrave (cellules spécifiques au mouvement) et une autre, surtout localisée dans l’aire 5b, qui est activée au moins un cycle de marche avant l’enjambement (cellules anticipatrices). De plus, nous avons observé que l’activité de ces groupes neuronaux, particulièrement les cellules anticipatrices, était amplifiée lorsque la vitesse des obstacles était dissociée de celle du tapis roulant, démontrant l’importance grandissante de la vision lorsque la tâche devient plus difficile. Enfin, un grand nombre des cellules activées spécifiquement pendant l’enjambement démontraient une corrélation soutenue de leur activité avec le membre controlatéral, même s’il ne menait pas dans le mouvement (cellules unilatérales). Inversement, nous avons noté que la majorité des cellules anticipatrices avaient plutôt tendance à maintenir leur décharge en phase avec l’activité musculaire du premier membre à enjamber l’obstacle, indépendamment de sa position par rapport au site d’enregistrement (cellules bilatérales). Nous suggérons que cette disparité additionnelle démontre une fonction diversifiée de l’activité du CPP. Par exemple, les cellules unilatérales pourraient moduler le mouvement du membre controlatéral au-dessus de l’obstacle, qu’il mène ou suive dans l’ordre d’enjambement, tandis que les neurones bilatéraux sembleraient plutôt spécifier le type de mouvement volontaire requis pour éviter l’entrave.
Ensembles, nos observations indiquent que le CPP a le potentiel de moduler l’activité des centres moteurs au travers de réseaux corticaux étendus et contribue à différents aspects de la locomotion sous guidage visuel, notamment l’initiation et l’ajustement de mouvements volontaires des membres antérieurs, mais aussi la planification de ces actions afin d’adapter la progression de l’individu au travers d’un environnement complexe. / When progressing through a varied environment, an individual will depend on visual information to evaluate the size, shape or the distance and time to contact of objects in his path. This will allow him to plan in advance the gait requirements necessary to avoid or step over these obstacles. This concept is also applicable in situations where the subject must reach a target, as with a predator chasing down its prey. The neural structures involved in generating voluntary gait modifications during locomotion have been extensively studied, but relatively little information is available on the processes that integrate visual information to plan these movements. Numerous studies in the primate suggest that the posterior parietal cortex (PPC) plays an important role in the preparation and execution of visually-guided reaching movements. In this thesis, we investigated the proposition that the PPC is similarly involved in the planning and control of visually-guided locomotion in the cat.
Our first study examined the extent of cortico-cortical connections between the PPC and the more frontal motor areas, particularly the motor cortex, using injections of fluorescent retrograde tracers. We mapped the cortical surface of anaesthetized cats to identify the somatotopical representations of the distal and proximal forelimb in the rostral portion of the motor cortex, the forelimb representation in the caudal motor area, and also the hindlimb representation. The injection of different tracers in two selected regions, for every cat, allowed us to visualize the density of divergent and convergent parietal projections to these motor sites. Our analysis revealed a distinct topographical organization of parietal connections with all of the identified motor regions. In particular, the caudal motor representation of the forelimb primarily received projections from the rostral bank of the parietal cortex, while the caudal portion of the PPC strongly projected to the rostral forelimb representation. The latter observation is particularly interesting, since the caudal bank of the PPC receives numerous visual inputs and its target, the rostral motor region, is well-known for its involvement in voluntary motor functions. Therefore, this study suggests that the PPC, through extensive connections with the different somatotopic representations of the motor cortex, could constitute an ideal neural substrate for processes such as inter- and intra-limb coordination, as well as the modulation of visually-guided voluntary movements.
Our second study tested the hypothesis that the PPC participates in the modulation and planning of voluntary gait modifications during locomotion in the cat. Using the cortical mapping established in our anatomical study, we recorded the activity of parietal neurons, localized in parts of areas 5a and 5b which are known to project strongly towards motor regions involved in forelimb movements. These recordings were obtained during a locomotion task requiring the cat to step over several obstacles of different sizes. By dissociating the speed of the obstacles from that of the treadmill onto which the cat is walking, our experimental protocol also allows us to increase the importance of visual information from the obstacles and to separate it from the influx of proprioceptive influx generated during locomotion. Our recordings revealed two groups of parietal cells on the basis of their activity in relation with the step over the obstacle: one population, mostly localized in area 5a, discharged solely as the lead forelimb passed over the obstacle (step-related cells), and another group, mainly found in area 5b, that showed significant activity at least one step cycle before the gait modification (step-advanced cells). Additionally, we observed an increase of cell activity in these groups, but particularly in step-advanced cells, when the speed of the obstacles was dissociated from that of the treadmill, demonstrating the growing importance of visual information as the task’s difficulty is increased. Finally, a great number of step-related cells were found to discharge specifically in correlation with muscle activity in the contralateral forelimb, regardless of whether or not it led over the obstacle (limb-specific cells). Inversely, the majority of step-advanced neurons tended to maintain their discharge in phase with the leading limb during the gait modification, independently of its position in relation with the recording site (limb-independent cells). We suggest that this additional disparity indicates diversified functions in PPC activity. For example, limb-specific cells could be involved in modulating the movement of the contralateral forelimb over the obstacle, regardless of its order of passage, while limb-independent neurons could instead specify the type of voluntary movement required to overcome the obstacle.
Together, our observations indicate that the PPC can potentially influence the activity of motor centers through extensive cortical networks, and contributes to different aspects of visually-guided locomotion, such as initiation and modulation of voluntary forelimb movements, as well as the planning of these gait modifications to allow an individual to walk through a complex environment.
|
33 |
Compréhension et prédiction de l'énantiosélectivité des lipases / Comprehension and prediction of lipases enantioselectivityLafaquière, Vincent 19 January 2010 (has links)
Cette étude a porté sur l’analyse de l’énantiosélectivité de la lipase de Burkholderia cepacia (BCL) pour les acides 2-substitués, synthons chiraux d’intérêt pharmaceutique, avec pour objectif d’examiner le rôle de l’accès au site actif enfoui de BCL sur l’énantiosélectivité et de développer une procédure d’ingénierie permettant de créer des mutants d’énantiosélectivité améliorée. Pour traiter le problème, une nouvelle approche de calcul, basée sur des algorithmes de planification de mouvements issus de la robotique a été développée. Elle permet l’exploration conformationnelle des espaces multi-dimensionnels contraints et a été appliquée au calcul des trajectoires de plusieurs racémiques dans le site actif de BCL et à l’identification de résidus pouvant potentiellement gêner le déplacement du substrat le long du site actif. Les résultats obtenus in silico ont révélé une corrélation qualitative avec les valeurs d’énantiosélectivité et ont permis de proposer des cibles de mutagénèse. Sur cette base, l’ingénierie du site actif de BCL a été entreprise pour moduler sélectivement l’accès des énantiomères R et S à la triade catalytique. Un système d’expression hétérologue de BCL chez E. coli compatible avec une expression en microplaque, a été développé. Une librairie de 57 (3x19) mono-mutants sur les positions : Leu17, Val266 et Leu287 a été construite par iPCR puis criblée en utilisant une procédure à moyen débit pour identifier les variants actifs pour l’hydrolyse du pNPB. L’énantiosélectivité de ces mutants a ensuite été évaluée pour l’hydrolyse du racémique (R,S)-2 bromophényl acétate de 2-chloro-éthyle, par utilisation d’une nouvelle procédure de criblage en deep-wells. Ce crible a permis de mettre en évidence plusieurs mutants dont les plus prometteurs ont été caractérisés. Ainsi les mutants Leu17Ser et Leu17Met présentent une augmentation de l’énantiosélectivité d’un facteur 10 accompagnée d’une augmentation de leur activité d’un facteur 4 à 5. Le mutant Val266Gly présente, quant à lui, une inversion de l’énantiosélectivité pour le substrat d’intérêt. L’étude des trajectoires par les techniques de planification combinée à une représentation sous la forme de carte de voxels a été réalisée en parallèle. Pour les mutants sélectionnés, une bonne corrélation a été observée entre les résultats obtenus in silico et expérimentalement. De plus, cela a permis de proposer de nouvelles combinaisons de mutations ayant conduit à l’identification de deux double-mutants Leu17Met/Val266Met et Leu17Ser/Leu287Ile d’énantiosélectivité supérieure à 150 pour le substrat modèle, révélant ainsi l’intérêt de l’approche semi-rationnelle proposée / This work has been focused on the understanding of the Burkholderia cepacia lipase (BCL) enantioselectivity towards 2-substituted acids which are chiral building blocks of pharmaceutical interest. The main objective of this work was the investigation of the potential role of substrate accessibility toward the buried active site of BCL on enantioselectivity and the development of an engineering procedure for the design of enantioselective mutants. To study further this hypothesis, a novel computational approach, based on motion-planning algorithms, originally used in robotics, was developed. It allows the conformational exploration of constrained high-dimensional spaces and was applied to the computation of trajectories for a set of racemates within the catalytic site. This methodology also enables the identification of residues potentially hindering substrates displacement along the active site. Results obtained in silico were correlated qualitatively with experimental values of enantioselectivity. On the basis of these results, engineering of the narrow active site of BCL has been undertaken to modulate selectively the access of R and S enantiomers to the catalytic triade. An heterologous expression system of BCL in E. coli compatible with production at microplate scale was developed. A library of 57 (3x19) variants targeted at positions Leu17, Val266 and Leu287 was built by iPCR and subsequently screened using a medium-throughput procedure to identify active variants against pNPB hydrolysis. Next, the enantioselectivity of these mutants was evaluated towards a given racemate, the (R,S)-2-chloro ethyl 2-bromophenylacetate, using a novel screening procedure developed in deep wells. Such screening enabled the identification of several variants amongst which the most promising were characterized. Mutants Leu17Ser and Leu17Met showed a remarkable 10-fold increase of their enantioselectivity and a 4- and 5-fold improvement of their specific activity. Compared to the wild-type enzyme, mutant Val266Gly displayed a reversed enantioselectivity for the substrate of interest. Investigation of the trajectories using motion-planning techniques combined to a voxel map representation was carried out. For selected variants, a fair correlation was observed between in silico and experimental results. Moreover, this enabled us to suggest novel combinations of mutations that led to the identification of two double-mutants Leu17Met/Val266Met and Leu17Ser/Leu287Ile showing an enantioselectivity value higher than 150 for the racemic substrate, revealing thus the effiency of the semi-rational strategy
|
34 |
Contribution du cortex pariétal postérieur au contrôle de la locomotion sous guidage visuel chez le chatLajoie, Kim 01 1900 (has links)
La vision fournit des informations essentielles sur la surface de marche, ainsi que sur la taille, la forme et la position d’obstacles potentiels dans notre environnement. Dans le cas d’un prédateur, la vision fournit également des informations sur la vitesse d’une proie potentielle. Les mécanismes neuronaux impliqués dans l’exécution des modifications de la marche sous guidage visuel sont relativement bien connus, mais ceux impliqués dans la planification de ces modifications de la marche sont peu étudiés. Le cortex pariétal postérieur (CPP) semble être un candidat approprié si l’on considère les propriétés du CPP lors des mouvements d’atteinte vers une cible. Le but des présents travaux est de déterminer la contribution du CPP au contrôle de la locomotion sous guidage visuel.
La première étude présentée dans cette thèse a pour hypothèse que le CPP du chat est impliqué dans la planification du placement précis du pied lors des modifications volontaires de la marche. Nous avons entraîné les animaux à enjamber des obstacles en mouvement attachés à la ceinture d’un tapis roulant. Afin d’augmenter la nécessité d’intégrer les informations visuelles et proprioceptives, nous avons dissocié la vitesse des obstacles de celle du tapis roulant. Nous avons observé que plus la vision devient critique pour la tâche, plus les déficits sont importants. Notre analyse démontre que ceux-ci résultent d’un placement inapproprié du pied dans le cycle de marche précédant l’enjambement de l’obstacle. Ceci suggère que le CPP est impliqué dans la planification du placement précis du pied pendant la locomotion sous guidage visuel.
La vision directe est disponible lors de la modification de l’activité des membres antérieurs, mais n’est plus disponible lorsque l’obstacle passe sous le corps. Par conséquent, la modification de l’activité des membres postérieurs doit être basée sur l’information gardée en mémoire et coordonnée avec celle des membres antérieurs. Notre deuxième étude a pour but de caractériser les mécanismes neuronaux responsables de cette coordination. Nous avons proposé que le CPP soit impliqué dans la coordination des membres antérieurs et postérieurs lors de l’enjambement d’obstacles. Pour tester cette hypothèse, nous avons enregistré l’activité de neurones de l’aire 5 pendant la même tâche. Nous avons découvert deux populations: une qui décharge lors du passage de l’obstacle entre les membres antérieurs et postérieurs et une autre qui décharge lors du passage de l’obstacle par les membres postérieurs. Dans la tâche de dissociation visuelle, la décharge est modifiée en fonction du temps de passage de l’obstacle sous le corps et reflète la modification du couplage entre les membres lors du changement dans la stratégie d’enjambement. De plus, ces mêmes neurones maintiennent une décharge soutenue lorsqu’un obstacle fixe se trouve entre les membres antérieurs et postérieurs ou les deux membres postérieurs (limite testée : 1-2min). Ces neurones pourraient être responsables de l’emmagasinage à plus long terme des caractéristiques d’un obstacle pour le guidage des mouvements des membres postérieurs.
Nos résultats suggèrent que le CPP est impliqué dans l’intégration des informations visuelles et proprioceptives pour la planification du placement précis du pied devant un obstacle. Le patron de décharge de nos populations neuronales suggère qu’il encode également l’information temporelle et spatiale concernant la vitesse et la position de l’obstacle afin de coordonner l’activité des quatre membres pendant la tâche. Finalement, nous proposons qu’une des fonctions du CPP soit d’estimer la position des membres par rapport à l’obstacle en mouvement. / During locomotion, vision provides crucial information about the type of terrain one walks on, as well as the size, shape and location of possible obstacles in the path. In the case of a predator, vision also provides information about the speed of a potential prey. The neuronal mechanisms involved in the execution of visually guided gait modifications are now well studied, but those related to their planning remain poorly understood. One likely candidate involved in movement planning is the posterior parietal cortex (PPC). Based on a consideration of the properties of the PPC in visually-guided reaching, the present study was designed to determine the contribution of the PPC to the control of visually-guided locomotion.
In the first study presented in this thesis, we hypothesize that the cat PPC is involved in the planning of precise foot placement during voluntary gait modifications. We trained animals to step over moving obstacles attached on a treadmill belt before and after a lesion to area 5. To increase the need for visual and proprioceptive integration, we dissociated the speed of the obstacles from that of the treadmill. We noticed that deficits were largest when the importance of vision was the greatest. Our analysis showed that the deficits were due to inappropriate paw placement prior to the step over the obstacle and thus suggests that the PPC is involved in the planning of precise paw placement during visually-guided locomotion.
Direct visual information is available to guide forelimb gait modifications, but is lost when the obstacle passes under the body. Therefore, hindlimb gait modifications must rely on remembered information and must be coordinated with those of the forelimbs. Our second study is designed to determine the neuronal mechanisms responsible for this coordination. We propose that the PPC is responsible for coordinating the activity of the forelimbs and the hindlimbs during obstacle negotiation. To test this hypothesis, we recorded the activity of area 5 neurones in the same task and found two cell populations: one that discharged in relation to the passage of the obstacle between the fore and hindlimbs, and the other between the two hindlimbs. In the visual dissociation task, the discharge was modified to account for the increased time taken by the obstacle to pass under the body and the change in interlimb coupling when cats modified their stepping strategy during the step over the obstacle. We also found that these same cells maintained their discharge when the cat straddled an obstacle either between the fore and hindlimbs or between the two hindlimbs. The discharge was sustained up to the limit tested (~ 1-2min). These neurones could be responsible for the retention of obstacles characteristics to guide future hindlimb movements.
Our results provide support for the hypothesis that the PPC is involved in the integration of visual and proprioceptive information for the planning of precise paw placement in front of obstacles. The discharge of our neuronal populations suggests it also encodes temporal and spatial information regarding obstacle’s location and speed to coordinate all four limbs during the task. Finally, we propose that one function of the PPC is to estimate the position of the limbs with respect to the advancing obstacle.
|
35 |
Theory and Applications for Control and Motion Planning of Aerial Robots in Physical Interaction with particular focus on Tethered Aerial Vehicles / Commande et Planification de Mouvement pour des Robots Aériens en Interaction Physique avec leur Environnement : Théorie et ApplicationsTognon, Marco 13 July 2018 (has links)
Cette thèse se concentre sur les robots aériens autonomes qui interagissent avec l’environnement et en particulier sur la conception de nouvelles méthodes de commande et de planification de mouvement pour tels systèmes. De nos jours, les véhicules aériens autonomes sont de plus en plus utilisés dans des nombreux domaines d’application, mais ils viennent utilisés surtout comme des simples capteurs. Au vu de ça, les défis majeurs dans le domaine de l’interaction physique aérienne, est aujourd’hui d’aller au-delà de cette application limitée, et d’exploiter entièrement les capacités des robots aériens afin d’interagir avec l’environnement. Dans le but de réaliser cet objectif, cette thèse considère l’analyse d’une classe spécifique de systèmes aériens interagissant avec l’environnement : les véhicules aériens attachés avec des câbles ou des bars. Ce travail se concentre sur l’analyse formelle et minutieuse de véhicules aériens attachés, en allant du contrôle et l’évaluation d’état à la planification du mouvement. Nous avons examiné notamment la platitude différentielle du système, trouvant deux sorties plate possibles qui révèlent des nouvelles capacités de tel système pour l’interaction physiques. En plus, poussé par l’intérêt pour l’interaction physique aérienne d’A à Z, nous avons abordés des problèmes supplémentaires liés à la conception, au contrôle et à la planification du mouvement pour des manipulateurs aériens. / This thesis focuses on the study of autonomous aerial robots interacting with the surrounding environment, and in particular on the design of new control and motion planning methods for such systems. Nowadays, autonomous aerial vehicles are extensively employed in many fields of application but mostly as autonomously moving sensors. On the other hand, in the recent field of aerial physical interaction, the goal is to go beyond sensing-only applications and fully exploit the aerial robots capabilities in order to interact with the environment. With the aim of achieving this goal, this thesis considers the analysis of a particular class of aerial robots interacting with the environment: tethered aerial vehicles. This work focuses on the thorough formal analysis of tethered aerial vehicles ranging from control and state estimation to motion planning. In particular, the differential flatness property of the system is investigated, finding two possible flat outputs that reveal new capabilities of such system for the physical interaction. The theoretical results were finally employed to solve the challenging problem of landing and takeoff on/from a sloped surface. In addition, moved by the interest on aerial physical interaction from A to Z, we addressed supplementary problems related to the design, control and motion planning for aerial manipulators.
|
36 |
Planification et Suivi de Mouvement d’un Système de Manipulateur Mobile non-holonome à deux bras / Motion Planning and Tracking of a Hyper Redundant Non-holonomic Mobile Dual-arm ManipulatorWei, Yan 18 June 2018 (has links)
Cette thèse se situe dans la planification et le suivi de mouvement d’un humanoïde mobile à deux bras. Premièrement, MDH est utilisé pour la modélisation cinématique. Afin de surmonter les insuffisances de la méthode d’Euler-Lagrange qui nécessitent des calculs d’énergie et ses dérivées partielles, la méthode de Kane est utilisée. En plus, la stabilité physique est analysée et un contrôleur est conçu. Deuxièmement, un algorithme avancée MaxiMin NSGA-II est proposée pour concevoir l’orientation et la position optimales de la plate-forme mobile (PB) et la configuration optimale du manipulateur supérieur (MS) étant donnée uniquement la pose initiale et les positions et orientations souhaitées des EEs. Un algorithme à connexion directe combinant BiRRT et la gradient-descente est conçu pour réaliser la transition de la pose initiale à la pose optimale, et une méthode d'optimisation géométrique est conçue pour optimiser et cohérer le chemin. En outre, les motions en avant sont obtenues en attribuant des orientations pour MB indiquant ainsi l'intention du robot. Afin de résoudre le problème d'échec de l’algorithme hors ligne, un algorithme en ligne est proposé en estimant les motions des obstacles dynamiques. De plus, afin d'optimiser les via-poses, un algorithme basé sur les via-points des EEs et MOGA est proposé en optimisant quatre fonctions objectives. Enfin, le problème de suivi de motion est étudié étant donné les motions des EEs dans l'espace de tâche. Au lieu de contrôler la motion absolue, deux motions relatives sont introduites pour réaliser la coordination et la coopération entre MB et MS. De plus, une technique mWLN est proposée pour éviter les limites des joints. / This thesis focuses on the motion planning and tracking of a dual-arm mobile humanoid. First, MDH is used for kinematic modeling. The co-simulation via Simulink-Adams on prototype is realized to validate the effectiveness of RBFNN controller. In order to overcome the shortcomings of Euler-Lagrange’s formulations that require calculating energy and energy derivatives, Kane’s method is used. In addition, physical stability is analyzed based on Kane’s method and a controller is designed using back-stepping technique. Secondly, an improved MaxiMin NSGA-II is proposed to design the mobile base’s (MB) optimal position-orientation and the upper manipulator’s (UM) optimal configuration given only the initial pose and end-effectors’ (EEs) desired positions-orientations. A direct connect algorithm combining BiRRT and gradient-descent is designed to plan the transition from initial pose to optimal pose, and a geometric optimization method is designed to optimize and cohere the path. In addition, forward motions are obtained by assigning orientations for MB thus indicating robot’s intention. In order to solve the failure problem of offline algorithm, an online algorithm is proposed while estimating dynamic obstacles’ motions. In addition, in order to optimize via-poses, an algorithm based on EEs’ via-points and MOGA is proposed by optimizing four via-pose-based objective functions. Finally, the motion tracking problem is studied given EEs’ motions in the task space. Instead of controlling the absolute motion, two relative motions are introduced to realize the coordination and cooperation between MB and UM. In addition, an modulated WLN technique is proposed to avoid joints’ limits.
|
37 |
Contribution du cortex pariétal postérieur au contrôle de la locomotion sous guidage visuel chez le chatLajoie, Kim 01 1900 (has links)
La vision fournit des informations essentielles sur la surface de marche, ainsi que sur la taille, la forme et la position d’obstacles potentiels dans notre environnement. Dans le cas d’un prédateur, la vision fournit également des informations sur la vitesse d’une proie potentielle. Les mécanismes neuronaux impliqués dans l’exécution des modifications de la marche sous guidage visuel sont relativement bien connus, mais ceux impliqués dans la planification de ces modifications de la marche sont peu étudiés. Le cortex pariétal postérieur (CPP) semble être un candidat approprié si l’on considère les propriétés du CPP lors des mouvements d’atteinte vers une cible. Le but des présents travaux est de déterminer la contribution du CPP au contrôle de la locomotion sous guidage visuel.
La première étude présentée dans cette thèse a pour hypothèse que le CPP du chat est impliqué dans la planification du placement précis du pied lors des modifications volontaires de la marche. Nous avons entraîné les animaux à enjamber des obstacles en mouvement attachés à la ceinture d’un tapis roulant. Afin d’augmenter la nécessité d’intégrer les informations visuelles et proprioceptives, nous avons dissocié la vitesse des obstacles de celle du tapis roulant. Nous avons observé que plus la vision devient critique pour la tâche, plus les déficits sont importants. Notre analyse démontre que ceux-ci résultent d’un placement inapproprié du pied dans le cycle de marche précédant l’enjambement de l’obstacle. Ceci suggère que le CPP est impliqué dans la planification du placement précis du pied pendant la locomotion sous guidage visuel.
La vision directe est disponible lors de la modification de l’activité des membres antérieurs, mais n’est plus disponible lorsque l’obstacle passe sous le corps. Par conséquent, la modification de l’activité des membres postérieurs doit être basée sur l’information gardée en mémoire et coordonnée avec celle des membres antérieurs. Notre deuxième étude a pour but de caractériser les mécanismes neuronaux responsables de cette coordination. Nous avons proposé que le CPP soit impliqué dans la coordination des membres antérieurs et postérieurs lors de l’enjambement d’obstacles. Pour tester cette hypothèse, nous avons enregistré l’activité de neurones de l’aire 5 pendant la même tâche. Nous avons découvert deux populations: une qui décharge lors du passage de l’obstacle entre les membres antérieurs et postérieurs et une autre qui décharge lors du passage de l’obstacle par les membres postérieurs. Dans la tâche de dissociation visuelle, la décharge est modifiée en fonction du temps de passage de l’obstacle sous le corps et reflète la modification du couplage entre les membres lors du changement dans la stratégie d’enjambement. De plus, ces mêmes neurones maintiennent une décharge soutenue lorsqu’un obstacle fixe se trouve entre les membres antérieurs et postérieurs ou les deux membres postérieurs (limite testée : 1-2min). Ces neurones pourraient être responsables de l’emmagasinage à plus long terme des caractéristiques d’un obstacle pour le guidage des mouvements des membres postérieurs.
Nos résultats suggèrent que le CPP est impliqué dans l’intégration des informations visuelles et proprioceptives pour la planification du placement précis du pied devant un obstacle. Le patron de décharge de nos populations neuronales suggère qu’il encode également l’information temporelle et spatiale concernant la vitesse et la position de l’obstacle afin de coordonner l’activité des quatre membres pendant la tâche. Finalement, nous proposons qu’une des fonctions du CPP soit d’estimer la position des membres par rapport à l’obstacle en mouvement. / During locomotion, vision provides crucial information about the type of terrain one walks on, as well as the size, shape and location of possible obstacles in the path. In the case of a predator, vision also provides information about the speed of a potential prey. The neuronal mechanisms involved in the execution of visually guided gait modifications are now well studied, but those related to their planning remain poorly understood. One likely candidate involved in movement planning is the posterior parietal cortex (PPC). Based on a consideration of the properties of the PPC in visually-guided reaching, the present study was designed to determine the contribution of the PPC to the control of visually-guided locomotion.
In the first study presented in this thesis, we hypothesize that the cat PPC is involved in the planning of precise foot placement during voluntary gait modifications. We trained animals to step over moving obstacles attached on a treadmill belt before and after a lesion to area 5. To increase the need for visual and proprioceptive integration, we dissociated the speed of the obstacles from that of the treadmill. We noticed that deficits were largest when the importance of vision was the greatest. Our analysis showed that the deficits were due to inappropriate paw placement prior to the step over the obstacle and thus suggests that the PPC is involved in the planning of precise paw placement during visually-guided locomotion.
Direct visual information is available to guide forelimb gait modifications, but is lost when the obstacle passes under the body. Therefore, hindlimb gait modifications must rely on remembered information and must be coordinated with those of the forelimbs. Our second study is designed to determine the neuronal mechanisms responsible for this coordination. We propose that the PPC is responsible for coordinating the activity of the forelimbs and the hindlimbs during obstacle negotiation. To test this hypothesis, we recorded the activity of area 5 neurones in the same task and found two cell populations: one that discharged in relation to the passage of the obstacle between the fore and hindlimbs, and the other between the two hindlimbs. In the visual dissociation task, the discharge was modified to account for the increased time taken by the obstacle to pass under the body and the change in interlimb coupling when cats modified their stepping strategy during the step over the obstacle. We also found that these same cells maintained their discharge when the cat straddled an obstacle either between the fore and hindlimbs or between the two hindlimbs. The discharge was sustained up to the limit tested (~ 1-2min). These neurones could be responsible for the retention of obstacles characteristics to guide future hindlimb movements.
Our results provide support for the hypothesis that the PPC is involved in the integration of visual and proprioceptive information for the planning of precise paw placement in front of obstacles. The discharge of our neuronal populations suggests it also encodes temporal and spatial information regarding obstacle’s location and speed to coordinate all four limbs during the task. Finally, we propose that one function of the PPC is to estimate the position of the limbs with respect to the advancing obstacle.
|
38 |
Rôle du cortex pariétal postérieur dans le processus d'intégration visuomotrice - connexions anatomiques avec le cortex moteur et activité cellulaire lors de la locomotion chez le chatAndujar, Jacques-Étienne 08 1900 (has links)
La progression d’un individu au travers d’un environnement diversifié dépend des informations visuelles qui lui permettent d’évaluer la taille, la forme ou même la distance et le temps de contact avec les obstacles dans son chemin. Il peut ainsi planifier en avance les modifications nécessaires de son patron locomoteur afin d’éviter ou enjamber ces entraves. Ce concept est aussi applicable lorsque le sujet doit atteindre une cible, comme un prédateur tentant d’attraper sa proie en pleine course. Les structures neurales impliquées dans la genèse des modifications volontaires de mouvements locomoteurs ont été largement étudiées, mais relativement peu d’information est présentement disponible sur les processus intégrant l’information visuelle afin de planifier ces mouvements. De nombreux travaux chez le primate suggèrent que le cortex pariétal postérieur (CPP) semble jouer un rôle important dans la préparation et l’exécution de mouvements d’atteinte visuellement guidés. Dans cette thèse, nous avons investigué la proposition que le CPP participe similairement dans la planification et le contrôle de la locomotion sous guidage visuel chez le chat. Dans notre première étude, nous avons examiné l’étendue des connexions cortico-corticales entre le CPP et les aires motrices plus frontales, particulièrement le cortex moteur, à l’aide d’injections de traceurs fluorescents rétrogrades. Nous avons cartographié la surface du cortex moteur de chats anesthésiés afin d’identifier les représentations somatotopiques distales et proximales du membre antérieur dans la partie rostrale du cortex moteur, la représentation du membre antérieur située dans la partie caudale de l’aire motrice, et enfin la représentation du membre postérieur. L’injection de différents traceurs rétrogrades dans deux régions motrices sélectionnées par chat nous a permis de visualiser la densité des projections divergentes et convergentes pariétales, dirigées vers ces sites moteurs. Notre analyse a révélé une organisation topographique distincte de connexions du CPP avec toutes les régions motrices identifiées. En particulier, nous avons noté que la représentation caudale du membre antérieur reçoit majoritairement des projections du côté rostral du sillon pariétal, tandis que la partie caudale du CPP projette fortement vers la représentation rostrale du membre antérieur. Cette dernière observation est particulièrement intéressante, parce que le côté caudal du sillon pariétal reçoit de nombreux inputs visuels et sa cible principale, la région motrice rostrale, est bien connue pour être impliquée dans les fonctions motrices volontaires. Ainsi, cette étude anatomique suggère que le CPP, au travers de connexions étendues avec les différentes régions somatotopiques du cortex moteur, pourrait participer à l’élaboration d’un substrat neural idéal pour des processus tels que la coordination inter-membre, intra-membre et aussi la modulation de mouvements volontaires sous guidage visuel.
Notre deuxième étude a testé l’hypothèse que le CPP participe dans la modulation et la planification de la locomotion visuellement guidée chez le chat. En nous référant à la cartographie corticale obtenue dans nos travaux anatomiques, nous avons enregistré l’activité de neurones pariétaux, situés dans les portions des aires 5a et 5b qui ont de fortes connexions avec les régions motrices impliquées dans les mouvements de la patte antérieure. Ces enregistrements ont été effectués pendant une tâche de locomotion qui requiert l’enjambement d’obstacles de différentes tailles. En dissociant la vitesse des obstacles de celle du tapis sur lequel le chat marche, notre protocole expérimental nous a aussi permit de mettre plus d’emphase sur l’importance de l’information visuelle et de la séparer de l’influx proprioceptif généré pendant la locomotion. Nos enregistrements ont révélé deux groupes de cellules pariétales activées en relation avec l’enjambement de l’obstacle: une population, principalement située dans l’aire 5a, qui décharge seulement pendant le passage du membre au dessus del’entrave (cellules spécifiques au mouvement) et une autre, surtout localisée dans l’aire 5b, qui est activée au moins un cycle de marche avant l’enjambement (cellules anticipatrices). De plus, nous avons observé que l’activité de ces groupes neuronaux, particulièrement les cellules anticipatrices, était amplifiée lorsque la vitesse des obstacles était dissociée de celle du tapis roulant, démontrant l’importance grandissante de la vision lorsque la tâche devient plus difficile. Enfin, un grand nombre des cellules activées spécifiquement pendant l’enjambement démontraient une corrélation soutenue de leur activité avec le membre controlatéral, même s’il ne menait pas dans le mouvement (cellules unilatérales). Inversement, nous avons noté que la majorité des cellules anticipatrices avaient plutôt tendance à maintenir leur décharge en phase avec l’activité musculaire du premier membre à enjamber l’obstacle, indépendamment de sa position par rapport au site d’enregistrement (cellules bilatérales). Nous suggérons que cette disparité additionnelle démontre une fonction diversifiée de l’activité du CPP. Par exemple, les cellules unilatérales pourraient moduler le mouvement du membre controlatéral au-dessus de l’obstacle, qu’il mène ou suive dans l’ordre d’enjambement, tandis que les neurones bilatéraux sembleraient plutôt spécifier le type de mouvement volontaire requis pour éviter l’entrave.
Ensembles, nos observations indiquent que le CPP a le potentiel de moduler l’activité des centres moteurs au travers de réseaux corticaux étendus et contribue à différents aspects de la locomotion sous guidage visuel, notamment l’initiation et l’ajustement de mouvements volontaires des membres antérieurs, mais aussi la planification de ces actions afin d’adapter la progression de l’individu au travers d’un environnement complexe. / When progressing through a varied environment, an individual will depend on visual information to evaluate the size, shape or the distance and time to contact of objects in his path. This will allow him to plan in advance the gait requirements necessary to avoid or step over these obstacles. This concept is also applicable in situations where the subject must reach a target, as with a predator chasing down its prey. The neural structures involved in generating voluntary gait modifications during locomotion have been extensively studied, but relatively little information is available on the processes that integrate visual information to plan these movements. Numerous studies in the primate suggest that the posterior parietal cortex (PPC) plays an important role in the preparation and execution of visually-guided reaching movements. In this thesis, we investigated the proposition that the PPC is similarly involved in the planning and control of visually-guided locomotion in the cat.
Our first study examined the extent of cortico-cortical connections between the PPC and the more frontal motor areas, particularly the motor cortex, using injections of fluorescent retrograde tracers. We mapped the cortical surface of anaesthetized cats to identify the somatotopical representations of the distal and proximal forelimb in the rostral portion of the motor cortex, the forelimb representation in the caudal motor area, and also the hindlimb representation. The injection of different tracers in two selected regions, for every cat, allowed us to visualize the density of divergent and convergent parietal projections to these motor sites. Our analysis revealed a distinct topographical organization of parietal connections with all of the identified motor regions. In particular, the caudal motor representation of the forelimb primarily received projections from the rostral bank of the parietal cortex, while the caudal portion of the PPC strongly projected to the rostral forelimb representation. The latter observation is particularly interesting, since the caudal bank of the PPC receives numerous visual inputs and its target, the rostral motor region, is well-known for its involvement in voluntary motor functions. Therefore, this study suggests that the PPC, through extensive connections with the different somatotopic representations of the motor cortex, could constitute an ideal neural substrate for processes such as inter- and intra-limb coordination, as well as the modulation of visually-guided voluntary movements.
Our second study tested the hypothesis that the PPC participates in the modulation and planning of voluntary gait modifications during locomotion in the cat. Using the cortical mapping established in our anatomical study, we recorded the activity of parietal neurons, localized in parts of areas 5a and 5b which are known to project strongly towards motor regions involved in forelimb movements. These recordings were obtained during a locomotion task requiring the cat to step over several obstacles of different sizes. By dissociating the speed of the obstacles from that of the treadmill onto which the cat is walking, our experimental protocol also allows us to increase the importance of visual information from the obstacles and to separate it from the influx of proprioceptive influx generated during locomotion. Our recordings revealed two groups of parietal cells on the basis of their activity in relation with the step over the obstacle: one population, mostly localized in area 5a, discharged solely as the lead forelimb passed over the obstacle (step-related cells), and another group, mainly found in area 5b, that showed significant activity at least one step cycle before the gait modification (step-advanced cells). Additionally, we observed an increase of cell activity in these groups, but particularly in step-advanced cells, when the speed of the obstacles was dissociated from that of the treadmill, demonstrating the growing importance of visual information as the task’s difficulty is increased. Finally, a great number of step-related cells were found to discharge specifically in correlation with muscle activity in the contralateral forelimb, regardless of whether or not it led over the obstacle (limb-specific cells). Inversely, the majority of step-advanced neurons tended to maintain their discharge in phase with the leading limb during the gait modification, independently of its position in relation with the recording site (limb-independent cells). We suggest that this additional disparity indicates diversified functions in PPC activity. For example, limb-specific cells could be involved in modulating the movement of the contralateral forelimb over the obstacle, regardless of its order of passage, while limb-independent neurons could instead specify the type of voluntary movement required to overcome the obstacle.
Together, our observations indicate that the PPC can potentially influence the activity of motor centers through extensive cortical networks, and contributes to different aspects of visually-guided locomotion, such as initiation and modulation of voluntary forelimb movements, as well as the planning of these gait modifications to allow an individual to walk through a complex environment.
|
39 |
human-robot motion : an attention-based approach / Mouvement homme-robot : une approche basée sur l'attentionPaulin, Rémi 22 March 2018 (has links)
Pour les robots mobiles autonomes conçus pour partager notre environnement, la sécurité et l'efficacité de leur trajectoire ne sont pas les seuls aspects à prendre en compte pour la planification de leur mouvement: ils doivent respecter des règles sociales afin de ne pas gêner les personnes environnantes. Dans un tel contexte social, la plupart des techniques de planification de mouvement actuelles s'appuient fortement sur le concept d'espaces sociaux; de tels espaces sociaux sont cependant difficiles à modéliser et ils sont d'une utilisation limitée dans le contexte d'interactions homme-robot où l'intrusion dans les espaces sociaux est nécessaire. Ce travail présente une nouvelle approche pour la planification de mouvements dans un contexte social qui permet de gérer des environnements complexes ainsi que des situation d’interaction homme-robot. Plus précisément, le concept d'attention est utilisé pour modéliser comment l'influence de l'environnement dans son ensemble affecte la manière dont le mouvement du robot est perçu par les personnes environnantes. Un nouveau modèle attentionnel est introduit qui estime comment nos ressources attentionnelles sont partagées entre les éléments saillants de notre environnement. Basé sur ce modèle, nous introduisons le concept de champ attentionnel. Un planificateur de mouvement est ensuite développé qui s'appuie sur le champ attentionnel afin de produire des mouvements socialement acceptables. Notre planificateur de mouvement est capable d'optimiser simultanément plusieurs objectifs tels que la sécurité, l'efficacité et le confort des mouvements. Les capacités de l'approche proposée sont illustrées sur plusieurs scénarios simulés dans lesquels le robot est assigné différentes tâches. Lorsque la tâche du robot consiste à naviguer dans l'environnement sans causer de distraction, notre approche produit des résultats prometteurs même dans des situations complexes. Aussi, lorsque la tâche consiste à attirer l'attention d'une personne en vue d'interagir avec elle, notre planificateur de mouvement est capable de choisir automatiquement une destination qui exprime au mieux son désir d'interagir, tout en produisant un mouvement sûr, efficace et confortable. / For autonomous mobile robots designed to share their environment with humans, path safety and efficiency are not the only aspects guiding their motion: they must follow social rules so as not to cause discomfort to surrounding people. Most socially-aware path planners rely heavily on the concept of social spaces; however, social spaces are hard to model and they are of limited use in the context of human-robot interaction where intrusion into social spaces is necessary. In this work, a new approach for socially-aware path planning is presented that performs well in complex environments as well as in the context of human-robot interaction. Specifically, the concept of attention is used to model how the influence of the environment as a whole affects how the robot's motion is perceived by people within close proximity. A new computational model of attention is presented that estimates how our attentional resources are shared amongst the salient elements in our environment. Based on this model, the novel concept of attention field is introduced and a path planner that relies on this field is developed in order to produce socially acceptable paths. To do so, a state-of-the-art many-objective optimization algorithm is successfully applied to the path planning problem. The capacities of the proposed approach are illustrated in several case studies where the robot is assigned different tasks. Firstly, when the task is to navigate in the environment without causing distraction our approach produces promising results even in complex situations. Secondly, when the task is to attract a person's attention in view of interacting with him or her, the motion planner is able to automatically choose a destination that best conveys its desire to interact whilst keeping the motion safe, efficient and socially acceptable.
|
Page generated in 0.1784 seconds