• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 12
  • 5
  • 1
  • Tagged with
  • 43
  • 43
  • 43
  • 15
  • 14
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

In vitro and in vivo approaches in the characterization of XTH gene products

Kaewthai, Nomchit January 2011 (has links)
ABSTRACT The xyloglucan endo-transglycosylase/hydrolase (XTH) genes are found in all vascular and some nonvascular plants. The XTH genes encode proteins which comprise a subfamily of glycoside hydrolase (GH) family 16 in the Carbohydrate-Active enZYmes (CAZY) classification. The XTH gene products are believed to play intrinsic role in cell wall modification during growth and development throughout the lifetime of the plant. In the present investigation, biochemical and reverse genetic approaches were used to better understand the functions of individual members of the XTH gene family of two important plants: the model organism Arabidopsis thaliana and the grain crop barley (Hordeum vulgare). A phylogenetic tree of the xyloglucan-active enzymes of GH16 has previously been constructed, where enzymes with similar activities have been shown to cluster together. Several members of phylogenetic Group I/II and III-B, predicted to exhibit xyloglucan endo-transglycosylase activity (EC 2.4.1.207) and members of Group III-A, predicted to exhibit xyloglucan endo-hydrolase activity (EC 3.2.1.151), were included to analyze the functional diversity of XTH gene products. A heterologous expression system using the yeast Pichia pastoris was found to be effective for recombinant protein production with a success rate of ca. 50%. XTH gene products were obtained in soluble and active forms for subsequent biochemical characterization. In order to be able to screen larger numbers of protein producing clones, a fast and easy method is required to identify clones expressing active protein in high enough amounts. Thus, a miniaturized XET/XEH assay for high-throughput analysis was developed, which was able to identify activities with good precision and with a reduced time and materials consumption and a reduced work load. Enzyme kinetic analysis indicated that the XET or XEH activity of all XTH gene products characterized in the present study corresponded to predictions based on the previously revised phylogenetic clustering. To gain insight into the biological function of the predominant XEHs AtXTH31 and AtXTH32, which are highly expressed in rapidly developing tissues, a reverse genetic approach was employed using T-DNA insertion lines of the A. thaliana Columbia ecotype. Genotypic and phenotypic characterization, together with in situ assays of XET and XEH activities, in single- and double-knock-out mutants indicated that these Group III-A enzymes are active in expanding tissues of the A. thaliana roots and hypocotyl.  Although suppression of in muro XEH activity was clearly observed in the double-knock-out, no significant growth phenotype was observed, with the exception that radicle emergence appeared to be faster than in the wild type plants. Keywords: Arabidopis thaliana, Hordeum vulgare, plant cell wall, xyloglucan, glycoside hydrolase family 16, xyloglucan endo-transglycosylase/hydrolase gene family, xyloglucan endo-transglycosylase, xyloglucan endo-hydrolase, heterologous protein expression, Pichia pastoris, T-DNA insertion, in situ XET/XEH assay, high-throughput screening / QC 20110114
42

Kinetic studies of a xyloglucan endotransglycosylase, a key enzyme in plant cell morphogenesis

Saura Valls, Marc 28 September 2007 (has links)
El present treball de recerca s'emmarca en un projecte Europeu anomenat E.D.E.N. (Enzyme Discovery in hybrid aspen for fibre ENgineering, QLK5-CT-2001-00443), l'objectiu del qual és la identificació de nous enzims vegetals per entendre amb major profunditat els processos de formació i modificació de les fibres vegetals per abordar en el futur la millora dels paràmetres de qualitat d'aquestes fibres, mitjançant la generació de línies transgèniques de plantes. En el present projecte es pretén aprofundir en el coneixement de les xiloglucà endotransglicosilases (XET), enzims claus en la construcció i modificació controlada de la xarxa de xiloglucà cel·lulosa, estudiant el seu mecanisme d'acció i la seva especificitat per substrat. En aquest treball s'estudia una XET de Populus tremula x tremuloides, concretament la XET16A (Ptt-XET16A). Es dissenya i es valida un nou assaig enzimàtic mitjançant electroforesis capil·lar (HPCE), que permet l'estudi cinètic de les XET, emprant oligosacàrids de baix pes molecular de xiloglucà amb una estructura coneguda. Aquest substrats han estat sintetitzats en el present treball i també per l'equip del Dr. Driguez en el CERMAV-CNRS. Es determina que el màxim d'activitat de la Ptt-XET16A es dóna entre pH 5 i 5.5 i entre 30 i 40 ºC. Es demostra que aquest enzim actua mitjançant un mecanisme cinètic bi-bi ping-pong, en el que l'acceptor actua com a inhibidor competitiu del donador unint-se a l'enzim lliure i en el que, depenent del donador emprat, aquest també poc actuar com a inhibidor competitiu de l'acceptor, unint-se als subsetis positius de l'intermedi glicosil-enzim i donant diferent reaccions secundàries com són la polimerització del donador o l'elongació del producte, només en el cas que el donador presenti un grup glucosil en l'extrem no reductor. S'avalua un llibreria de xilogluco-oligosacàrids sintetitzada per l'equip del Dr. Driguez al CERMAV-CNRS com a donadors de la Ptt-XET16A. D'aquesta forma s'aprofundeix en el coneixement de l'activitat de les XTH, en el coneixement de la seva especificitat per substrat i es realitza un mapeig del centre actiu, obtenint la contribució dels diferents subsetis de la Ptt-XET16A en l'estabilització de l'estat de transició de la reacció de transglicosidació catalitzada per l'enzim estudiat. Finalment, s'ha dissenyat un substrat bifluorogènic derivat del tetradecasacàrid emprat com a substrat estàndard en el present treball, per mesurar les activitats hidrolasa i transglicosilasa de les XETs mitjançant fluorescence resonance energy transfer (FRET). El substrat bifluorogènic ha estat obtingut i caracteritzat, tanmateix, no s'ha pogut demostrar si aquest substrat és adequat per mesurar les activitats hidrolasa i transglicosilasa de les XETs ja que les propietats fluorescents del marcador s'han perdut en el procés de síntesis del substrat. / El presente trabajo de investigación se enmarca en un proyecto Europeo llamado E.D.E.N. (Enzyme Discovery in hybrid aspen for fibre ENgineering, QLK5-CT-2001-00443), el objetivo del cual es la identificación de nuevos enzimas vegetales para entender con mayor profundidad los procesos de formación y modificación de las fibras vegetales para abordar en el futuro la mejora de los parámetros de calidad de estas fibras, mediante la generación de líneas transgénicas de plantas. En el presente proyecto se pretende profundizar en el conocimiento de las xiloglucano endotransglicosilasas (XET), enzimas claves en la construcción y modificación controlada de la red de xiloglucano-celulosa, estudiando su mecanismo de acción y su especificidad por sustrato. En este trabajo se estudia una XET de Populus tremula x tremuloides, concretamente la XET16A (Ptt-XET16A). Se diseña y se valida un nuevo ensayo enzimático mediante electroforesis capilar (HPCE), que permite el estudio cinético de las XET, utilizando oligosacáridos de xiloglucano de bajo peso molecular y de estructura conocida como sustratos. Estos sustratos han estado sintetizados en el presente trabajo y también por el equipo del Dr. Driguez en el CERMAV-CNRS. Se determina que el máximo de actividad de la Ptt-XET16A se da entre pH 5 y 5.5 y entre 30 y 40 ºC. Se demuestra que este enzima actúa mediante un mecanismo cinético bi-bi ping-pong, en el que el aceptor actúa como inhibidor competitivo del dador uniéndose al enzima libre y en el que, dependiendo del dador utilizado , éste también puede actuar como inhibidor competitivo del aceptor uniéndose en los subsitios positivos del intermedio glicosilo-enzima y dando diferentes reacciones secundarias como son la polimerización del dador o la elongación del producto, solamente si el dador presenta un grupo glucosilo en el extremo no reductor. Se evalúa una librería de xilogluco-oligosacáridos sintetizada por el equipo del Dr. Driguez en el CERMAV-CNRS como dadores de la Ptt-XET16A. De esta forma se profundiza en el conocimiento de la actividad de las XTHs, en el conocimiento de su especificidad por sustrato y se realiza un mapeo del centro activo del enzima, obteniéndose la contribución de los diferentes subsitios de la Ptt-XET16A en la estabilización del estado de transición de la reacción de transglicosidación catalizada por el enzima estudiado. Finalmente, se ha diseñado un sustrato bifuorogénico derivado del tetradecasacárido utilizado como sustrato estándar en el presente trabajo para medir las actividades hidrolasa y transglicosilasa de las XETs mediante fluorescence resonance energy transfer (FRET). El sustrato biofluorogénico ha sido obtenido y caracterizado, sin embargo no se ha podido demostrar si este sustrato es adecuado para medir las actividades hidrolasa y transglicosilasas de las XETs, ya que las propiedades fluorescentes del marcador se han perdido durante la síntesis del sustrato. / The present work is part of an European project named E.D.E.N. (Enzyme Discovery in hybrid aspen for fibre ENgineering, QLK5-CT-2001-00443). The general objective of the project is to identify novel plant enzymes for deeper understanding of the process of fiber formation and modification for future improvement of the quality parameters of wood fibers. The present project pretends to increase the knowledge about xyloglucan endotransglycosylases (XET), which are thought to be key enzymes in the construction and controlled modification of the xyloglucan¬cellulose network. It is pretended to study the mechanism of action and the substrate specificity of a XET from Populus tremula x tremuloides, concretely XET16A (Ptt-XET16A). A new enzymatic assay based on capillary electrophoresis is designed and validated. This assay allows the kinetic study of XETs using as substrates, low molecular mass xyloglucan oligosaccharides with defined structures. These substrates have been synthesized in the present work and also in collaboration with Dr. Driguez team from CERMAV-CNRS. It is concluded that the maximum of activity of Ptt-XET16A is between pH 5 and 5.5 and 30 and 40 ºC. It is demonstrated that Ptt-XET16A follows a bi-bi ping-pong kinetic mechanism, in which the acceptor acts as competitive inhibitor of the donor binding to the free enzyme and depending on the donor used, this one can act also as competitive inhibitor of the acceptor binding to the acceptor subsites of the glycosyl-enzyme intermediate giving rise to side reaction such as donor polymerization and product elongation only in case that the donor shows a glucosyl residue in the non reducing end. A library of xylogluco-oligosaccharides, synthesized in CERMAV-CNRS by Dr. Driguez team, is evaluated as Ptt-XET16A donors. With this studies we are able to deeper understand the activity of XETs, their substrate specificity and a subsite maping of the binding cleft is done, obtaining the contribution of different subsites of Ptt-XET16A to the stabilization of the transition state of the transglycosylation reaction catalyzed by the studied enzyme. Finally, a bifluorogenic substrate derived from the tetradecasacharide used as standard substrate in this project has been designed to measure hydrolase and transferase activities of XET enzymes by fluorescense resonance energy transfer (FRET). The bifluorogenic substrate was obtained, however, it could not be demonstrated if it is an adequate substrate to measure hydrolase and transferase activities because the fluorescent properties of the label were lost during substrate synthesis.
43

Le Root Extracellular Trap (RET), un réseau au coeur de la défense racinaire : caractérisation moléculaire et fonctionnelle chez deux légumineuses, Glycine max (Merr.) L. et Pisum sativum (L.) / The Root Extracellular Trap, a Network at the Heart of Root Defense : Molecular and Functional Characterization in Two Leguminous Species, Glycine Max (Merr.) L. and Pisum Sativum L.

Ropitaux, Marc 30 November 2018 (has links)
Chez les plantes, le RET (Root Extracellular Trap) est une structure cellulo-moléculaire jouant un rôle central dans la défense racinaire face aux stress abiotiques et biotiques. De nombreuses similitudes de composition ont été observées entre le RET et le NET (Neutrophil Extracellular Trap) du système immunitaire des mammifères, connu pour capturer et tuer certains microorganismes bactériens et fongiques. Le RET est composé de cellules frontières et de leurs sécrétions (composés de haut et de bas poids moléculaire) comprenant des polysaccharides de la paroi cellulaire, des protéoglycannes et des métabolites secondaires. Il contient également des protéines antimicrobiennes et de l'ADN extracellulaire, tout comme le NET. Dans le cadre de mon projet de thèse, nous avons caractérisé la composition moléculaire et la structuration de cette entité de défense chez deux légumineuses, le soja (Glycine max (Merr) L.) et le pois (Pisum sativum L.), par des approches d’imagerie cellulaire photonique et électronique. Nous avons également étudié l’impact du RET du soja sur des pathogènes telluriques, à savoir Phytophthora parasitica et Aphanomyces euteiches. Nous avons ainsi pu mettre en évidence la présence de différents morphotypes de cellules frontières et de mucilage au sein du RET de soja et de pois. Pour la première fois, nous avons montré la présence d’hétéromannanes, de xyloglucane et de cellulose dans le RET, formant une ossature stabilisant le mucilage et reliant les cellules frontières entre elles. Ces polysaccharides structuraux semblent être essentiels à l’intégrité structurale et fonctionnelle du RET. Enfin, nos résultats ont montré que le RET de soja était impliqué dans la défense précoce de la racine contre P. parasitica. Cette étude apporte de nouvelles connaissances relatives à la composition moléculaire et la structure du RET, nous amenant ainsi à comparer le RET à d’autres modèles que le NET des mammifères, tels que les biofilms bactériens et les mucilages de graines. En effet, de nombreuses similitudes existent entre ces différents complexes en termes de composition et de fonctionnement, qui méritent d’être explorer plus en détail dans l’avenir. / In higher plants, the RET (Root Extracellular Trap) is a complex made up of border cells and secretions, released by root tips and believed to play a central role in biotic and abiotic stress tolerance. This structure is quite similar to the Neutrophil Extracellular Trap (NET) known as one of the first lines of defense in mammals, able to trap and kill microbial pathogens. RET secretions consist of high and low-molecular weight compounds including cell wall polysaccharides, proteoglycans and secondary metabolites. They also contain a variety of anti-microbial proteins and extracellular DNA much like the NET. During my thesis work, we investigated the release and morphology of root border cells in soybean (Glycine max (Merr) L.) using light and scanning electron microscopy. The molecular composition of the mucilage was also investigated using immunocytochemistry, anti-cell wall glycan antibodies and confocal microscopy. Immunocytochemistry was also applied to pea (Pisum sativum L.) border cells and secretions to examine the occurrence of specific polysaccharides. We also studied the impact of soybean RET on the soilborne pathogens, Phytophthora parasitica and Aphanomyces euteiches. Our findings showed that root tips of soybean released three border cell morphotypes all of which secreted substantial amounts of mucilage. Immunocytochemical data showed that mucilage was enriched in pectin and the two hemicellulosic polysaccharides xyloglucan and heteromannan. Mucilage also contained cellulose, histone and extracellular DNA. Interestingly, the structural polysaccharides formed a fibrous network surrounding the cells and holding them together, supporting their role in maintaining mucilage architecture and integrity. In addition, we found that xyloglucan and cellulose were also secreted into the mucilage of pea, connecting border cells together. Finally, our findings revealed that RET prevented P. parasitica zoospores from colonizing soybean root tip, by stopping their penetration and inducing their death. Overall the study revealed novel insights into the composition, structure and function of plant RETs. Currently, the RET is much less studied than its mammal counterpart, the NET, but structural and functional similarities exist between these two traps. Interestingly, similarities do also exist between the RET and other important biological complexes, including bacterial biofilms and seed mucilage, that deserve to be further investigated and compared in the context of immunity.

Page generated in 0.0573 seconds