• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 621
  • 237
  • 53
  • Tagged with
  • 886
  • 519
  • 220
  • 139
  • 110
  • 95
  • 83
  • 81
  • 78
  • 78
  • 73
  • 72
  • 63
  • 58
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

La plasticité du système nerveux entérique au cours de l'inflammation : réexpression de PSA-NCAM dans un modèle de colite expérimentale chez le rat adulte

Ouellet, Philippe January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
12

Periplum petroleum : une anthropologie de trottoirs en (non)milieu plastique

Lecuyer, Marie 05 September 2018 (has links)
Cette recherche est une invitation à repenser ce(ux) qui constituent l’humain et de manière plus large le vivant en s’intéressant à la manière dont le non-humain a priori inanimé, ici la matière plastique, dans son couplage avec l’humain, devient force d’animation. Je pose la question suivante : comment est-ce que l’introduction du medium plastique reconfigure le tissu de relations composant le territoire et ainsi un mode d’existence humaine ? À l’occasion d’un terrain multi-ligne qui a eu lieu entre Ottawa et Montréal, j’ai suivi la circulation du pétrole ainsi que sa signification dans sa concrétion plastique. Je me suis mise à l’écoute des bruits émergeant d’une f(r)iction pétromoderne et suis moi-même entrée dans un devenir-visqueux en interférant avec le milieu pour le révéler. Je suggère dans ce texte que le régime plastique est un régime de transparence, d’abstraction, qui se soustrait aux regards et reconfigure la response-abilité à la matière.
13

Développement d’outils numériques pour la prise en compte du couplage hydrogène-plasticité dans un code éléments finis : application à l’essai de pliage en U / Development of numerical tools for hydrogen-plasticity coupling in a finite element code : application the u-bend test

Nguyen, Tuan Hung 16 July 2014 (has links)
Dans le cadre de l’étude du couplage entre la plasticité et les interactions de l’hydrogène avec les matériaux métalliques, l’objectif de ce travail de thèse est l’implémentation dans le code de calcul par éléments finis Abaqus© de la loi de diffusion de l’hydrogène couplée aux champs mécaniques, tenant compte notamment du piégeage dû à la déformation plastique. La stratégie d’implémentation retenue permet de résoudre simultanément les problèmes de diffusion et de mécanique ; elle s’est appuyée sur les travaux de la littérature, et a nécessité le développement de procédures en fortran 77, et en particulier, de procédures utilisateur UMAT et UMATHT permettant de définir respectivement le comportement mécanique, et un flux de matière. Ces procédures ont été confrontées avec succès à plusieurs cas de la littérature. Les outils développés ont été appliqués à l’étude numérique d’un essai de pliage en U, utilisé pour la caractérisation de la rupture différée par fragilisation par l’hydrogène de tôles minces prédéformées plastiquement. Une étude paramétrique portant sur les conditions de l’essai, les conditions limites en hydrogène et la relation entre plasticité, hydrogène piégé et hydrogène diffusif a été menée. Enfin, une transposition à l’échelle du polycristal 3D a été effectuée, en utilisant une procédure UMAT de comportement polycristallin modifiée. Une étude sur les paramètres constitutifs d’un Volume Elémentaire Représentatif a été réalisée, puis, une étude de l’essai en U à l’échelle du polycristal effectuée grâce à un transfert de conditions limites entre un calcul global et le VER, afin de simuler l’effet de l’anisotropie cristalline sur les champs de concentration d’hydrogène. / In the framework of the coupling between plasticity and hydrogen interactions with the metallic material, the aim of this thesis is to implement in the finite element code Abaqus © the hydrogen diffusion law coupled with the mechanical fields, accounting particularly for the trapping caused by the plastic strain. The chosen implementation strategy allows to simultaneously solve the diffusion and mechanical problems. It is based on works from the literature and needs the development of procedures in fortran 77, in particular the user procedures UMAT and UMATHT allowing the definition of the mechanical behavior and the material flux respectively. These procedures were confronted with several cases in literature. The developed procedures were applied to the numerical study of the U-bend test, used for characterizing the delayed cracking caused by hydrogen embrittlement. A parametric study on test conditions, boundary conditions on hydrogen and relationship between plasticity, trapped hydrogen, diffusive hydrogen was carried out. Finally, a transposition to the scale of a 3D polycristal was performed using a modified UMAT procedure with crystalline elastoviscoplasticity. A numerical study on the relevant parameters for defining a Representative Volume Element was carried out. Then, the simulation of a virtual u-bend test at the polycristal scale was performed thanks to a boundary condition transfer between global calculation and the RVE, in order to simulate the effect of crystal anisotropy on hydrogen concentration field.
14

Experience-dependent plasticity in brain structure and olfactory learning capacities in honey bees (Apis mellifera) / Effets de l'expérience sur la plasticité de la structure cérébrale et des capacités d'apprentissage olfactif des abeilles (Apis mellifera)

Cabirol, Amélie 27 September 2017 (has links)
Les expériences vécues par un individu, vont moduler ses capacités d'apprentissage et induire des modifications structurales dans les régions cérébrales impliquées. Chez l'abeille, de la plasticité dépendante de l'expérience a été observée dans des centres cérébraux impliqués dans l'apprentissage et la mémoire : les corps pédonculés (CPs). Pourtant, les conséquences d'une telle plasticité sur les performances d'apprentissage sont inconnues. L'objectif de ma thèse était d'examiner les relations existantes entre expérience, capacités d'apprentissage et structure des CPs. La division du travail étant basée sur l'âge chez l'abeille, j'ai étudié la plasticité dépendante de l'expérience chez des abeilles jeunes, travaillant dans la ruche, mais aussi chez des abeilles plus âgées qui butinent à l'extérieur. J'ai d'abord observé que des abeilles exposées à un environnement appauvri en stimulations sensorielles et sociales pendant les premiers jours de vie adulte présentent un nombre élevé de boutons synaptiques dans les CPs, et une performance altérée dans un apprentissage dépendant des CPs, l'inversion de consigne. Cela suggère l'existence d'un élagage synaptique dépendant de l'expérience acquise dans la ruche, qui serait bénéfique pour les capacités d'apprentissage. J'ai observé un effet similaire de l'enrichissement environnemental lorsque les abeilles commencent à butiner. Le début du butinage s'est en effet accompagné d'une diminution du nombre de boutons synaptiques dans les CPs et d'une amélioration des performances en inversion de consigne. Une activité prolongée de butinage a eu les effets inverses, en particulier chez des abeilles qui, suite à un stress appliqué à la colonie, butinent avant l'âge normal. J'ai ainsi mis en évidence une relation négative entre le nombre de boutons synaptiques dans les CPs et les performances en inversion de consigne. Par la suite, j'ai utilisé un autre apprentissage dépendant des CPs, le patterning positif, afin de pouvoir conclure sur un déclin généralisé des capacités cognitives dépendantes des CPs chez les butineuses. J'ai montré l'implication du système cholinergique dans le déclin cognitif lié à l'expérience de butinage. Cette thèse réunit les premiers travaux analysant la plasticité dépendante de l'expérience à la fois dans la structure cérébrale, mais aussi dans les capacités cognitives. Elle devrait permettre de comprendre les mécanismes reliant connectivité synaptique et apprentissage, et encourager des études sur l'impact des agents stressants environnementaux sur le déclin cognitif lié au butinage. / Learning capacities, and the structure of the brain centres supporting them, vary greatly between individuals, partly due to different life experiences. In honey bees, experience-dependent plasticity has been reported in brain centres involved in learning and memory: the mushroom bodies (MBs). The consequences of such plasticity on learning performances are still unknown. The aim of my thesis was to examine the relationships between experience, learning capacities and MB organization in honey bees. The age-related division of labour in honey bees gave me the opportunity to study experience-dependent plasticity both in young bees working inside the hive, and in older bees foraging outdoors. I first observed that bees exposed to a sensory-impoverished environment for the first days of adulthood had a higher number of synaptic boutons in the MBs, and a reduced performance in a MB-dependent learning task; reversal learning. This suggests the occurrence of experience-dependent synaptic pruning in the natural environment, which improves learning capacities. I observed similar effects of environmental enrichment when the bees started foraging. Foraging onset was accompanied by a decrease in the number of synaptic boutons in the MBs, as well as by an improvement in reversal learning performance. Prolonged foraging activity, however, had the opposite effects, especially when a stress applied to the colony induced bees to forage earlier. Therefore, I highlighted a negative relationship between the number of synaptic boutons in the MBs and performance in reversal learning. I then confirmed the negative impact of foraging activity on learning capacities using a different MB-dependent task; positive patterning. I revealed the involvement of the cholinergic signalling pathway in this experience-dependent cognitive decline. This thesis presents the first integrated analyses of experience-dependent plasticity in both brain structure and cognitive capacities in honey bees. It helps to understand the mechanisms linking synaptic connectivity to learning performances, and will encourage further studies on the role of environmental stressors in the reported cognitive decline in foragers.
15

Plasticité cristalline des matériaux hexagonaux sous cisaillement : application au magnésium / Cristal plasticity of hexagonal materials under simple shear : application to magnesium

Beausir, Benoît 03 September 2007 (has links)
Les propriétés mécaniques des matériaux à structure cristalline hexagonale présentent actuellement un intérêt pour des applications techniques ainsi que pour la recherche académique. Ce travail s’articule autour du cas de magnésium utilisé notamment en aéronautique pour sa légèreté. Cependant, du fait du nombre restreint de symétries de leur structure cristalline, ces matériaux peuvent présenter certaines « difficultés » de mise en forme. La mise en forme impose la plupart de temps de grandes déformations au matériau, c’est pourquoi il est primordial d’y connaître son comportement. De grandes déformations plastiques impliquent le développement d’une anisotropie plastique qui peut être particulièrement forte dans les polycristaux hexagonaux. Ce travail propose en premier lieu les bases de compréhension et une revue de littérature sur la plasticité des matériaux hexagonaux. Le rôle de la sensibilité à la vitesse de déformation sur la plasticité des matériaux à structures hexagonales est ensuite discuté. Les orientations idéales de texture et leurs caractéristiques de persistance dans les cristaux hexagonaux en cisaillement simple sont déterminées. Une analyse de l’évolution de texture dans le magnésium durant une extrusion angulaire à section constante est ensuite effectuée. Puis l’évolution de texture et le comportement mécanique du magnésium en torsion est analysé. Finalement, une modélisation de la déformation en extrusion angulaire à section constante par une ligne de courant générale est proposée / The properties of materials with hexagonal crystalline structure are currently of interest for technical applications and for academic research. This work is articulated around the case of magnesium used in particular in aeronautics for its lightness. However, because of the restricted number of symmetries of the hexagonal crystal structure, these materials can present certain “difficulties” of forming. Forming usually imposes large deformations on the material; this is why it is of primary importance to know its behavior. Large plastic deformations imply the development of a plastic anisotropy which can be particularly strong in hexagonal polycrystals. This work initially shows the bases of comprehension and a review of literature on the plasticity of hexagonal materials. Then the role of strain‐rate sensitivity in the crystal plasticity of materials with hexagonal structures is discussed. The ideal orientations of texture and their characteristics of persistence of hexagonal closed‐packed crystals in simple shearing are identified. Then an analysis of texture evolution in magnesium during equal angular extrusion is carried out. The texture and mechanical behavior of magnesium during free end torsion are also analyzed. Finally, a modeling of the deformation during equal channel angular extrusion by a general flow function is proposed
16

Etude de la plasticité dans les métaux hexagonaux à l'échelle atomique : dynamique des dislocations par dynamique moléculaire / Study of the plasticity of hexagonal materials at the atomic scale : dynamic of dislocations by molecular dynamics

Poty, Alexandre 15 June 2011 (has links)
La mise en forme des matériaux passe par la déformation à l'échelle atomique de sa structure. Cette déformation implique la création et le déplacement de défauts tels que les dislocations. La mobilité des dislocations joue un rôle majeur dans la plasticité des matériaux. Il existe différents types de dislocations se déplaçant sur différents systèmes. Actuellement les systèmes de glissement principaux sont bien connus mais les systèmes secondaires, essentiels à la bonne modélisation du comportement plastique, ne le sont pas. Notre travail est de définir les systèmes principaux et secondaires, de les hiérarchiser et de donner une valeur de la contrainte permettant l'activation de la dislocation. Nous avons pour cela choisi d’utiliser la méthode de la Dynamique Moléculaire associée à des potentiels de type Embedded Atom Method (EAM). Nous avons débuté notre étude par la comparaison des performances des différents potentiels de Zirconium et de Titane publiés dans la littérature par rapport aux propriétés plastiques et élastiques obtenues expérimentalement ou par méthode ab initio. Nous avons ensuite étudié les dislocations coins dans les plans prismatiques 1, basal et pyramidal type 1. Nous avons calculé les cissions critiques d'activation de ces dislocations dans le Zirconium et le Titane. Nous nous sommes enfin intéressés aux énergies de fautes des différents plans de glissement du Zirconium et du Titane. Nous avons pour cela calculé toutes les surfaces γ de ces deux métaux. Nous avons comparé les résultats obtenus par dynamique moléculaire à des résultats obtenus par méthode ab initio. Nous avons ensuite donné un classement des différents plans de glissement / The forming of a material requires the deformation at an atomic level of his structure. This deformation involves the creation and movement of defaults like the dislocations. The dislocations mobility plays a major role in the plasticity of the materials. There are different types of dislocations gliding on different gliding systems. Currently the principal gliding systems are well known but the secondary systems aren't. Our work is to define the principal and the secondary gliding systems, to rank them and to calculate the value of the critical resolved shear stress responsible for the dislocation movement. For that we chose to use Molecular Dynamics with EAM (Embedded Atom Method) potentials. We began our studies by comparing the results of several EAM potentials for Zirconium and Titanium to the plastic and elastic properties obtained experimentally or by ab initio calculation.We studied edge dislocations in the prismatic, basal and pyramidal 1 planes. We calculated the critical resolved shear stress of these dislocations in Zirconium and Titanium. Finally we got interested in the fault energies of several gliding planes of Zirconium and Titanium. For that we calculated the γ surfaces of those planes. We compared results obtained by molecular dynamics to results obtained by ab initio calculation. We finally gave a classification of those planes
17

Caractérisation de la potentialisation à long terme des interneurones de la région CA1 de l'hippocampe chez la souris

Lapointe, Valérie January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
18

Syndrome douloureux régional complexe : apport de la neurostimulation périphérique - Plasticité cérébrale et amélioration cliniques

Allen Demers, Fannie 27 January 2024 (has links)
Malgré des traitements spécialisés et multidisciplinaires, les personnes souffrant du syndrome douloureux régional complexe (SDRC) peuvent conserver de la douleur et des limitations fonctionnelles qui s'expliqueraient par des changements cérébraux persistants, entre autres dans le cortex moteur primaire (M1). Étudier les changements de fonctionnement du M1 permettrait de mieux comprendre comment utiliser la neurostimulation non invasive, comme les stimulations magnétiques répétées en périphérie (rPMS des muscles, connues pour influencer la plasticité cérébrale), pour normaliser la fonction motrice corticale, réduire la douleur et augmenter les gains cliniques. Les objectifs de ce projet de maîtrise étaient donc de mieux comprendre la place dans la littérature de la neurostimulation non invasive en SDRC, de tester le fonctionnement de M1 en parallèle à la fonction sensorimotrice d'adultes avec SDRC au membre supérieur, ainsi que de mesurer l'effet d'une séance rPMS sur ces mesures et les symptômes de douleur de cette même population. Il a été observé que, indépendamment du côté atteint, l'excitabilité du M1 était asymétrique en SDRC avec une association avec la douleur et les troubles du mouvement. Les participants avec SDRC présentaient également une diminution et une latéralisation altérée des mesures de fonction sensorimotrice. Les rPMS ont permis de moduler bilatéralement l'excitabilité des M1 (diminution du débalancement) et, chez les personnes présentant avant la séance rPMS une hyperexcitabilité du M1 controlatéral au membre atteint, de diminuer leur douleur. Les rPMS ont également permis une amélioration de la fonction sensorimotrice et des changements centraux reliés à la plasticité cérébrale ont été mesurés dans l'hémisphère ipsilatéral au membre avec SDRC. Les rPMS seules ou comme adjuvant aux thérapies conventionnelles de réadaptation représentent donc une approche prometteuse pour dépasser les gains cliniques en SDRC. / Despite specialized and multidisciplinary treatments, people suffering from complex regional pain syndrome (CRPS) can present with persistent pain and functional limitations likely due to brain changes such as in the primary motor cortex (M1). Studying the changes of M1 functioning would permit to better understand how to use noninvasive neurostimulation, as repetitive peripheral magnetic stimulation (rPMS of muscles, known to influence brain plasticity) in CRPS to enable the normalization of cortical motor function, the reduction of pain and to go beyond gains already reached. The objectives of this master's project were thus to better understand the place in the literature of the noninvasive neurostimulation in SDRC, to test the functioning of M1 concurrent with the sensorimotor function of adults with CRPS of the upper limb, and to measure the effect of one rPMS session on these measures and pain symptoms of this same population. It has been measured that M1 excitability was asymmetrical in CRPS, regardless of the impaired side, with an association to pain and movement disorders. Participants with CRPS also exhibited a decreased and an altered lateralization of the measures of sensorimotor function. rPMS influenced bilateral M1 excitability (decrease of the imbalance) and, with people presenting before the rPMS session hyperactivity of M1 contralateral to the impaired limb, reduced pain. rPMS also improved sensorimotor function and central changes related to brain plasticity were measured in the hemisphere ipsilateral to the CRPS limb. rPMS alone or as adjuvant to conventional rehabilitation therapies thus represent a promising approach to overcome clinical gains in CRPS.
19

Effet de la douleur sur la plasticité corticospinale induite par une déafférentation ou un entraînement moteur

Mavromatis, Nicolas 24 April 2018 (has links)
Introduction : En réadaptation, un nombre important de patients devront réapprendre certains mouvements ou ont subi des lésions entrainant des déficits sensorimoteurs. Ces évènements impliquent la mise en place de mécanismes mettant en jeu la neuroplasticité. Cette neuroplasticité est définie comme la capacité du système nerveux central à se modifier pour s’adapter aux changements internes ou externes. De plus, une majorité des patients en réadaptation souffrent de douleur dont la présence est associée à une moins bonne récupération. De récentes études ont révélé que la douleur est capable d’influencer l’état d’excitabilité du cortex moteur. Étant donné que la neuroplasticité est influencée par l’état du système, l’objectif de cette thèse a été de tester, à l’aide de deux protocoles connus pour induire une plasticité, l’influence d’une douleur expérimentale sur la plasticité corticospinale. Méthodologie : Deux expérimentations ont été réalisées. Un devis intra-sujet nécessitant que les participants prennent part à deux sessions expérimentales (Douleur, NonDouleur) a été utilisé lors de la première expérimentation. La seconde étude a quant à elle utilisé un devis inter-sujets afin que le modèle de plasticité employé (entraînement moteur) ne puisse influer sur les comparaisons entre les deux conditions expérimentales (présence (groupe Douleur) ou absence de douleur (groupe NonDouleur)). Dans chacune des expérimentations, le niveau d’excitabilité corticospinale de base de chaque participant a été mesuré via l’enregistrement des potentiels moteurs évoqués (MEP) par stimulation magnétique transcrânienne (TMS). Ensuite, selon le groupe ou la séance, la douleur expérimentale était induite via l’application topique de crème de capsaïcine au niveau de la main. Après cette application, une seconde mesure de base était effectuée afin de s’assurer que les mesures neurophysiologiques entre groupes ou sessions demeuraient comparables avant l’exposition au protocole de plasticité. Dans la première expérimentation, le protocole permettant d’induire une plasticité corticospinale consistait à appliquer une déafférentation ischémique transitoire en présence ou absence de douleur selon la session expérimentale. L’influence de la douleur sur l’inhibition interhémisphérique a également été évaluée en mesurant la période de silence ipsilatérale. Lors de la seconde expérimentation, la plasticité était induite via la réalisation, en présence ou absence de douleur, d’un entraînement moteur. Des mesures de l’excitabilité corticospinale et de l’inhibition intracorticale à courte latence ont été effectuées afin de caractériser l’influence de l’entraînement et de la douleur sur ces variables. Des analyses de variance (ANOVAs) comparant les mesures neurophysiologiques effectuées avant et après l’application des protocoles de plasticité et entre les conditions ont été réalisées pour caractériser l’effet de la douleur. Résultats : Les deux expérimentations ont démontré un effet modulateur de la douleur sur la plasticité induite par un évènement subséquent. Cette modulation s’est traduite, dans la première expérimentation, par une augmentation de l’excitabilité corticospinale des muscles proximaux plus importante lorsque la déafférentation est appliquée en présence de douleur. Dans la seconde expérimentation, la réalisation de l’entraînement moteur a induit chez le groupe contrôle une augmentation de l’excitabilité corticospinale du muscle utilisé dans la tâche au milieu de l’entraînement, avant que cette excitabilité ne revienne à son niveau de base dans la seconde moitié de l’entraînement. Les participants ayant réalisé l’entraînement en présence de douleur n’ont, en revanche, pas montré de variation de leur excitabilité corticospinale. Pourtant, ces derniers ont présenté de meilleures performances comportementales, notamment une plus grande précision lors de la réalisation de la tâche. Dans l’ensemble des expérimentations, la douleur n’a pas influencé les mesures interhémisphériques ou intracorticales. Conclusion : Les résultats présentés dans cette thèse confirment l’hypothèse formulée selon laquelle la douleur possède la capacité de moduler la plasticité se développant en réponse à un évènement tel qu’une déafférentation ou un entraînement moteur. Ces résultats supportent les observations rapportées chez les patients souffrant de douleur chronique (e.g. amputés) présentant une organisation corticale altérée. La seconde expérimentation suggère également que si la présence de douleur n’a pas d’effet délétère sur les performances motrices lors d’un entraînement, elle peut tout de même influencer les modifications de l’excitabilité corticospinale qui lui sont associées. Les résultats obtenus au terme de ce projet permettent d’éclaircir les liens qui relient douleur, système moteur et plasticité et ouvrent la voie à de nouvelles recherches qui pourront à terme amener à proposer des soins optimaux aux patients présentant de la douleur. / Introduction: In rehabilitation, a large number of patients have to relearn certain movements or have suffered injuries leading to sensorimotor deficits. These events trigger or rely on neuroplasticity mechanisms. Neuroplasticity can be defined as the ability of the central nervous system to change itself in order to adapt to internal or external changes. Moreover, a majority of rehabilitation patients suffer from pain, and the presence of pain is associated with poorer recovery. Recent studies have shown that pain can influence the state of excitability of the motor cortex. Since neuroplasticity is influenced by the state of the system, the objective of this thesis was to test the influence of experimental pain on corticospinal plasticity using two protocols known to induce plasticity. Methodology: Two experiments were realized. An intra-subject design requiring participants to take part in two experimental sessions (Pain, NoPain) was used during the first study. The second study used an inter-subject design (Pain group or NoPain group)), as the model of plasticity used (motor training) could have involve carry-over effects. In each of the studies, transcranial magnetic stimulation (TMS) was used to assess the corticospinal excitability by recording motor evoked potentials (MEP). Subsequently, depending on the group or session, experimental pain was induced via the topical application of capsaicin cream on the hand. Afterward, a second baseline measurement was performed to ensure that neurophysiological measurements between groups or sessions remained comparable prior to exposure to the plasticity protocol. In the first study, corticospinal plasticity was induced by applying transient ischemic deafferentation in the presence or absence of pain. The influence of pain on interhemispheric inhibition was also assessed by measuring the ipsilateral silent period. In the second study, corticospinal plasticity was induced by performing a motor training, in the presence or absence of pain. Measurements of corticospinal excitability and short-latency intracortical inhibition were performed to characterize the influence of training and pain on these variables. Analyzes of variance (ANOVAs) were performed on the neurophysiological variables to assess the effect of the plasticity protocols (before vs. after) and the effect of pain (inter-condition or inter-group comparison). Results: Both experiments demonstrated a modulating effect of pain on the plasticity induced by a subsequent event. In the first study, a greater increase in the corticospinal excitability of the proximal muscles was observed when the deafferentation was applied in the presence of pain. In the second study, the motor training induced an increase in the corticospinal excitability of the muscle used in the task at mid-training in the NoPain group, but excitability returned to baseline level before the end of the training. However participants who performed training in the presence of pain did not show any significant change in their corticospinal excitability throughout the motor task. Importantly, participants performing the task in the presence of pain presented a better behavioral performance, including a greater accuracy when performing the task. In all experiments, pain did not influence interhemispheric or intracortical measures. Conclusion: The results presented in this thesis confirm the hypothesis that pain has the ability to modulate plasticity occurring in response to an event such as deafferentation or motor training. These results support findings obtained in patients with chronic pain (e.g. amputees) who show altered cortical organization. Results from the second study also suggest that if the presence of pain has no deleterious effect on motor performance during training, it may still influence the changes in corticospinal excitability associated with it. Overall the results presented in this thesis provide new insights into the links between pain, motor system and plasticity.
20

Slow-wave sleep : generation and propagation of slow waves, role in long-term plasticity and gating

Chauvette, Sylvain 19 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / Le sommeil est connu pour réguler plusieurs fonctions importantes pour le cerveau et parmi celles-ci, il y a le blocage de l’information sensorielle par le thalamus et l’amélioration de la consolidation de la mémoire. Le sommeil à ondes lentes, en particulier, est considéré être critique pour ces deux processus. Cependant, leurs mécanismes physiologiques sont inconnus. Aussi, la marque électrophysiologique distinctive du sommeil à ondes lentes est la présence d’ondes lentes de grande amplitude dans le potentiel de champ cortical et l’alternance entre des périodes d’activités synaptiques intenses pendant lesquelles les neurones corticaux sont dépolarisés et déchargent plusieurs potentiels d’action et des périodes silencieuses pendant lesquelles aucune décharge ne survient, les neurones corticaux sont hyperpolarisés et très peu d’activités synaptiques sont observées. Tout d'abord, afin de mieux comprendre les études présentées dans ce manuscrit, une introduction générale couvrant l'architecture du système thalamocortical et ses fonctions est présentée. Celle-ci comprend une description des états de vigilance, suivie d'une description des rythmes présents dans le système thalamocortical au cours du sommeil à ondes lentes, puis par une description des différents mécanismes de plasticité synaptique, et enfin, deux hypothèses sur la façon dont le sommeil peut affecter la consolidation de la mémoire sont présentées. Puis, trois études sont présentées et ont été conçues pour caractériser les propriétés de l'oscillation lente du sommeil à ondes lentes. Dans la première étude (chapitre II), nous avons montré que les périodes d'activité (et de silence) se produisent de façon presque synchrone dans des neurones qui ont jusqu'à 12 mm de distance. Nous avons montré que l'activité était initiée en un point focal et se propageait rapidement à des sites corticaux voisins. Étonnamment, le déclenchement des états silencieux était encore plus synchronisé que le déclenchement des états actifs. L'hypothèse de travail pour la deuxième étude (chapitre III) était que les états actifs sont générés par une sommation de relâches spontanées de médiateurs. Utilisant différents enregistrements à la fois chez des animaux anesthésiés et chez d’autres non-anesthésiés, nous avons montré qu’aucune décharge neuronale ne se produit dans le néocortex pendant les états silencieux du sommeil à ondes lentes, mais certaines activités synaptiques peuvent ii être observées avant le début des états actifs, ce qui était en accord avec notre hypothèse. Nous avons également montré que les neurones de la couche V étaient les premiers à entrer dans l’état actif pour la majorité des cycles, mais ce serait ainsi uniquement pour des raisons probabilistes; ces cellules étant équipées du plus grand nombre de contacts synaptiques parmi les neurones corticaux. Nous avons également montré que le sommeil à ondes lentes et l’anesthésie à la kétamine-xylazine présentent de nombreuses similitudes. Ayant utilisé une combinaison d'enregistrements chez des animaux anesthésiés à la kétamine-xylazine et chez des animaux non-anesthésiés, et parce que l'anesthésie à la kétamine-xylazine est largement utilisée comme un modèle de sommeil à ondes lentes, nous avons effectué des mesures quantitatives des différences entre les deux groupes d'enregistrements (chapitre IV). Nous avons trouvé que l'oscillation lente était beaucoup plus rythmique sous anesthésie et elle était aussi plus cohérente entre des sites d’enregistrements distants en comparaison aux enregistrements de sommeil naturel. Sous anesthésie, les ondes lentes avaient également une amplitude plus grande et une durée plus longue par rapport au sommeil à ondes lentes. Toutefois, les ondes fuseaux (spindles) et gamma étaient également affectées par l'anesthésie. Dans l'étude suivante (Chapitre V), nous avons investigué le rôle du sommeil à ondes lentes dans la formation de la plasticité à long terme dans le système thalamocortical. À l’aide de stimulations pré-thalamiques de la voie somatosensorielle ascendante (fibres du lemnisque médial) chez des animaux non-anesthésiés, nous avons montré que le potentiel évoqué enregistré dans le cortex somatosensoriel était augmenté dans une période d’éveil suivant un épisode de sommeil à ondes lentes par rapport à l’épisode d’éveil précédent et cette augmentation était de longue durée. Nous avons également montré que le sommeil paradoxal ne jouait pas un rôle important dans cette augmentation d'amplitude des réponses évoquées. À l’aide d'enregistrements in vitro en mode cellule-entière, nous avons caractérisé le mécanisme derrière cette augmentation et ce mécanisme est compatible avec la forme classique de potentiation à long terme, car il nécessitait une activation à la fois les récepteurs NMDA et des récepteurs AMPA, ainsi que la présence de calcium dans le neurone post-synaptique. iii La dernière étude incluse dans cette thèse (chapitre VI) a été conçue pour caractériser un possible mécanisme physiologique de blocage sensoriel thalamique survenant pendant le sommeil. Les ondes fuseaux sont caractérisées par la présence de potentiels d’action calcique à seuil bas et le calcium joue un rôle essentiel dans la transmission synaptique. En utilisant plusieurs techniques expérimentales, nous avons vérifié l'hypothèse que ces potentiels d’action calciques pourraient causer un appauvrissement local de calcium dans l'espace extracellulaire ce qui affecterait la transmission synaptique. Nous avons montré que les canaux calciques responsables des potentiels d’action calciques étaient localisés aux synapses et que, de fait, une diminution locale de la concentration extracellulaire de calcium se produit au cours d’un potentiel d’action calcique à seuil bas spontané ou provoqué, ce qui était suffisant pour nuire à la transmission synaptique. Nous concluons que l'oscillation lente est initiée en un point focal et se propage ensuite aux aires corticales voisines de façon presque synchrone, même pour des cellules séparées par jusqu'à 12 mm de distance. Les états actifs de cette oscillation proviennent d’une sommation de relâches spontanées de neuromédiateurs (indépendantes des potentiels d’action) et cette sommation peut survenir dans tous neurones corticaux. Cependant, l’état actif est généré plus souvent dans les neurones pyramidaux de couche V simplement pour des raisons probabilistes. Les deux types d’expériences (kétamine-xylazine et sommeil à ondes lentes) ont montré plusieurs propriétés similaires, mais aussi quelques différences quantitatives. Nous concluons également que l'oscillation lente joue un rôle essentiel dans l'induction de plasticité à long terme qui contribue très probablement à la consolidation de la mémoire. Les ondes fuseaux, un autre type d’ondes présentes pendant le sommeil à ondes lentes, contribuent au blocage thalamique de l'information sensorielle. / Sleep is known to mediate several major functions in the brain and among them are the gating of sensory information during sleep and the sleep-related improvement in memory consolidation. Slow-wave sleep in particular is thought to be critical for both of these processes. However, their physiological mechanisms are unknown. Also, the electrophysiological hallmark of slow-wave sleep is the presence of large amplitude slow waves in the cortical local field potential and the alternation of periods of intense synaptic activity in which cortical neurons are depolarized and fire action potentials and periods of silence in which no firing occurs, cortical neurons are hyperpolarized, and very little synaptic activities are observed. First, in order to better understand the studies presented in this manuscript, a general introduction covering the thalamocortical system architecture and function is presented, which includes a description of the states of vigilance, followed by a description of the rhythms present in the thalamocortical system during slow-wave sleep, then by a description of the mechanisms of synaptic plasticity, and finally two hypotheses about how sleep might affect the consolidation of memory are presented. Then, three studies are presented and were designed to characterize the properties of the sleep slow oscillation. In the first study (Chapter II), we showed that periods of activity (and silence) occur almost synchronously in neurons that are separated by up to 12 mm. The activity was initiated in a focal point and rapidly propagated to neighboring sites. Surprisingly, the onsets of silent states were even more synchronous than onsets of active states. The working hypothesis for the second study (Chapter III) was that active states are generated by a summation of spontaneous mediator releases. Using different recordings in both anesthetized and non-anesthetized animals, we showed that no neuronal firing occurs in the neocortex during silent states of slow-wave sleep but some synaptic activities might be observed prior to the onset of active states, which was in agreement with our hypothesis. We also showed that layer V neurons were leading the onset of active states in most of the cycles but this would be due to probabilistic reasons; these cells being equipped with the most numerous synaptic contacts among cortical neurons. We also showed that slow-wave sleep and ketamine-xylazine shares many similarities. v Having used a combination of recordings in ketamine-xylazine anesthetized and non-anesthetized animals, and because ketamine-xylazine anesthesia is extensively used as a model of slow-wave sleep, we made quantitative measurements of the differences between the two groups of recordings (Chapter IV). We found that the slow oscillation was much more rhythmic under anesthesia and it was also more coherent between distant sites as compared to recordings during slow-wave sleep. Under anesthesia, slow waves were also of larger amplitude and had a longer duration as compared to slow-wave sleep. However, spindles and gamma were also affected by the anesthesia. In the following study (Chapter V), we investigated the role of slow-wave sleep in the formation of long-term plasticity in the thalamocortical system. Using pre-thalamic stimulations of the ascending somatosensory pathway (medial lemniscus fibers) in non-anesthetized animals, we showed that evoked potential recorded in the somatosensory cortex were enhanced in a wake period following a slow-wave sleep episode as compared to the previous wake episode and this enhancement was long-lasting. We also showed that rapid eye movement sleep did not play a significant role in this enhancement of response amplitude. Using whole-cell recordings in vitro, we characterized the mechanism behind this enhancement and it was compatible with the classical form of long-term potentiation, because it required an activation of both NMDA and AMPA receptors as well as the presence of calcium in the postsynaptic neuron. The last study included in this thesis (Chapter VI) was designed to characterise a possible physiological mechanism of thalamic sensory gating occurring during sleep. Spindles are characterized by the presence of low-threshold calcium spikes and calcium plays a critical role in the synaptic transmission. Using several experimental techniques, we verified the hypothesis that these calcium spikes would cause a local depletion of calcium in the extracellular space which would impair synaptic transmission. We showed that calcium channels responsible for calcium spikes were co-localized with synapses and that indeed, local extracellular calcium depletion occurred during spontaneous or induced low-threshold calcium spike, which was sufficient to impair synaptic transmission. We conclude that slow oscillation originate at a focal point and then propagate to neighboring cortical areas being almost synchronous even in cells located up to 12 mm vi apart. Active states of this oscillation originate from a summation of spike-independent mediator releases that might occur in any cortical neurons, but happens more often in layer V pyramidal neurons simply due to probabilistic reasons. Both experiments in ketamine-xylazine anesthesia and non-anesthetized animals showed several similar properties, but also some quantitative differences. We also conclude that slow oscillation plays a critical role in the induction of long-term plasticity, which very likely contributes to memory consolidation. Spindles, another oscillation present in slow-wave sleep, contribute to the thalamic gating of information.

Page generated in 0.2762 seconds