• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing dynamic combinatorial chemistry as a platform for drug discovery

Ekström, Alexander Gösta January 2018 (has links)
Dynamic combinatorial chemistry (DCC) is a powerful tool to identify new ligands for biological targets. In the technique, library synthesis and hit identification are neatly combined into a single step. A labile functionality between fragments allows the biological target to self-select binders from a dynamic combinatorial library (DCL) of interconverting building blocks. The scope of suitable reversible reactions that proceed under thermodynamic control in physiological conditions has been gradually expanded over the last decades, however DCC has thus far failed to gain traction as a technique appropriate for drug discovery in the pharmaceutical industry. The constraints placed on library size by validated analytical techniques, and the effort-intensive reality of this academically elegant concept have not allowed DCC to develop into a broad-platform technique to compete with the high-throughput screening campaigns favoured by medicinal chemists. This thesis seeks to develop DCL analysis techniques, in an effort to increase the library size and accelerate the analysis of DCC experiments. Using a 19F-labelled core scaffold, we constructed a DCL that could be monitored non-invasively by 19F NMR. Building on NMR techniques developed by fragment screening and non-biological DCC campaigns, the method was developed to circumvent the undesired equilibrium-perturbing side effects arising from sample-consuming analytical methods. The N-acylhydrazone (NAH) DCL equilibrated rapidly at pH 6.2 using 4-amino-L-phenylalanine (4-APA) as a novel, physiologically benign, nucleophilic catalyst. The DCL was designed to target b-ketoacyl-ACP synthase III (FabH), an essential bacterial enzyme and antibiotic target. From the 5-membered DCL, a single combination was identified as a privileged structure by our 19F NMR method. The result correlated well with an in vitro assay, validating 19F NMR as a tool for DCL screening. During the 19F NMR study we identified an established antimicrobial compound, 4,5- dichloro-1,2-dithiole-3-one (HR45), to have potential as a core scaffold from which to develop future DCLs targeting FabH. Despite the potentially tractable chemistry of HR45 for DCC, lack of knowledge around the inhibitory mechanism of the compound prevented us from proceeding. Thus, we used mass spectrometry, NMR and molecular modelling to show that HR45 acts by forming a covalent adduct with S. aureus FabH. The 5-chloro substituent directs attack from the nucleophilic thiol side chain of the essential active site cysteine-112 residue via a Michael-type addition elimination mechanism. Although interesting, this mechanism disfavoured the use of HR45 as a core scaffold for NAH exchange in a DCC campaign. Electrospray ionisation mass spectrometry (ESI-MS) is a powerful technique that allows for larger DCLs by eliminating the size-limitations imposed by the need for spectral or chromatographic resolution of DCL members. We developed a 4-APAcatalysed NAH library targeting the pyridoxal 5’-phosphate (PLP) dependent enzyme 7,8-diaminopelargonic acid synthase (BioA), an essential enzyme in the biotin biosynthesis pathway. We exploited the aldehyde moiety of PLP to form an NAH DCL with a panel of hydrazides, and used the BioA isozymes from M. tuberculosis (Mtb) and E. coli to template the library. A combination of buffer exchange and denaturing ESI-MS allowed us to conduct a DCC experiment with a 29-member DCL. Hits from the DCC experiment correlated well with differential scanning fluorimetry (DSF) results. Of these hits, 5 compounds were selected for further study. In vivo activity was displayed by 2 compounds against E. coli and the ESKAPE pathogen A. baumannii. The identification of compounds with antibacterial activity from a DCL further validates ESI-MS as a platform technology for drug discovery.
2

Acceptance and adoption of mobile development technologies for accessibility in a public sector : A software practitioner's perspective

Falk Lundgren, Mikael January 2023 (has links)
With rapid technology growth and a rising disabled and aging population, mobile appaccessibility is vital. Stricter accessibility laws, especially in the public sector, highlight thisemphasis. However, despite this, the body of research focusing on software practitioners’perspectives, especially concerning cross-platform development, is lacking. In this qualitativecase study, six software practitioners at the Swedish Social Insurance Agency(Försäkringskassan) were interviewed about their experience during a migration betweenmobile development technologies, with a focus on enhancing mobile application accessibility.It explores their attitude to cross-platform development, their challenges with NativeScript, across-platform framework, and preferences for native technology. To further understand theiracceptance of native technology and their rejection of cross-platform technology in thiscontext, an extension of the Technology Acceptance Model (TAM2) was used. Respondents emphasized the legal and ethical obligations for accessibility in the publicsector, with evolving standards necessitating the selection of the most appropriate technologyfor the task. Prioritizing accessibility early on in public sector app development helps avoidadditional expenses later on. It's also possible that private sector apps may be required to shifttowards greater inclusivity in the future. The team successfully addressed previous accessibility issues using native technology, whichinfluenced the organization to migrate. Moreover, respondents believed that nativetechnology enhances professional image, especially as the industry favors it over unknowncross-platform frameworks. They perceived that cross-platform frameworks might lackthorough documentation and community support, making it more difficult to manage andimplement accessibility. Additionally, respondents are alarmed by the uncertain nature ofcross-platform technology, which can result in outdated frameworks and unworkablecodebases. It's crucial to consider the duration of the project, its accessibility needs, and theavailable support for implementing accessibility when deciding on mobile developmenttechnologies. These findings are valuable for various stakeholders, such as consultants,researchers and policy-makers.
3

Particulate systems and thin-film based platforms

Hecht, Mandy 06 October 2015 (has links)
Die Verbindung von hoch entwickelten Nanomaterialien mit fluoreszenzbasierten Technologien hat sich zu einem aufstrebenden Forschungsbereich entwickelt. Nichtsdestotrotz ist bis heute der Schritt von einem organischen Indikatormolekül zum anwendbaren Sensorsystem ein komplexer Prozess. Diese Arbeit zielte darauf ab, sensorische Materialien verschiedener chemischer Natur für diverse Analyten zu entwickeln, zu charakterisieren und zu etablieren. Hierbei wurden zunächst pH sensitive Fluoreszenzfarbstoffe entwickelt und in dünnen Membranen immobilisiert. Der Teststreifen ermöglicht die Beurteilung von pH-Änderungen mit dem Auge. Darüber hinaus wurde gezeigt, wie diese Farbstoffe auch in eine wasserlösliche Form überführt werden können. Damit konnten lokale pH-Änderungen an der Wachstumsfront von Silikat-Biomorphs detektiert werden. Auch partikuläre Systeme stellten sich als geeignete Materialien heraus. Es konnte gezeigt werden, wie die Silikat-Matrix von Partikeln zu verbesserten Eigenschaften für Farbstoffe führt. Mittels farbstoffbeladener Partikel konnte in einem Lateral-Flow-Assay ein schneller Nachweis von TATP etabliert werden. Ein anderer Ansatz verfolgte das Ziel des sensitiven Nachweises von Quecksilberionen in Wasser. In einem anderen System konnten Silikat-Nanopartikeln so funktionalisiert werden, dass ein sensitiver und selektiver Nachweis von Schwermetallionen und Anionen über ein Quencher-Displacement-Assay gelang. Zusätzlich wurde die einzigartige Oberfläche von Zellulosepartikeln mithilfe eines neu entwickelten Fluoreszenzfarbstoffs untersucht. Die untersuchten Materialien und Strategien zeigen, wie leicht innovative Moleküle für potentielle sensorische Systeme im wässrigen Medium auf Basis von fluoreszierenden Partikeln und dünnen Schichten geschaffen werden können. Das Verhalten der hergestellten Materialien wurde über spektroskopische Methoden evaluiert und dabei, wenn möglich, die Parameter Sensitivität, Selektivität und Ansprechzeit beurteilt. / The combination of fluorescence and nanomaterials has developed into an emerging research area. Nonetheless until now the step from an organic sensory molecule to a final sensor format is a complex endeavor. This thesis aimed at the preparation of particulate and thin-film based platforms for various analytes through combining the features of an appropriate host material with outstanding properties of dyes concomitant with sensitive fluorescence detection techniques. In particular, pH sensitive fluorescent probes were sterically immobilized into a thin membrane. The dip-stick allows the assessment upon change in pH with the eye. Especially a probe working at high basic pH range was converted into a water-soluble analogue and was directly applied at the growth front of silica biomorphs to detect local pH changes. But also particulate structures are suitable host materials. It is shown how the silica matrix of nanoparticles lead to improved optical properties for embedded dyes. The interactions of silica and fluorescent dyes within the pores of mesoporous particles were exploited to develop an actual sensor format based detection of TATP. In another approach it was possible to detect mercury ions in water. Heavy metal ions were also successfully detected in a quencher displacement assay involving receptor-dye functionalized silica nanoparticles. The impact of the unique surface properties of cellulose microparticles was shown by a fluorescent dye which allows an assessment of the surface functional groups and microenvironment through the reactivity and its changes in the optical properties. The performance of the prepared materials were evaluated mostly by spectroscopic methods and if possible assessed in terms of sensitivity, selectivity and response time. The newly developed and investigated materials based on fluorescent particulate and thin-films show the facile application of innovative sensor probes for potentially sensing devices.

Page generated in 0.0551 seconds