Spelling suggestions: "subject:"point clouds"" "subject:"joint clouds""
81 |
Image and RADAR fusion for autonomous vehicles / Bild och RADAR för autonoma fordonde Gibert Duart, Xavier January 2023 (has links)
Robust detection, localization, and tracking of objects are essential for autonomous driving. Computer vision has largely driven development based on camera sensors in recent years, but 3D localization from images is still challenging. Sensors such as LiDAR or RADAR are used to compute depth; each having its own advantages and drawbacks. The main idea of the project is to be able to mix images from the camera and RADAR detections in order to estimate depths for the objects appearing in the images. Fusion strategies can be considered the solution to give a more detailed description of the environment by utilizing both the 3D localization capabilities of range sensors and the higher spatial resolution of image data. The idea is to fuse 3D detections from the RADAR onto the image plane, this requires a high level of synchronization of the sensors and projections of the RADAR data on the required image. / Robust detektering, lokalisering och spårning av objekt är avgörande för autonom körning. Datorseende har till stor del drivit utvecklingen baserad på kamerasensorer de senaste åren, men 3D-lokalisering från bilder är fortfarande utmanande. Sensorer som LiDAR eller RADAR används för att beräkna djup; var och en har sina egna fördelar och nackdelar. Huvudtanken med projektet är att kunna blanda bilder från kameran och RADAR-detektioner för att uppskatta djup för de objekt som förekommer i bilderna. Fusionsstrategier kan anses vara lösningen för att ge en mer detaljerad beskrivning av miljön med både 3D-lokaliseringsförmågan hos avståndssensorer och den högre rumsliga upplösningen av bilddata. Tanken är att smälta samman 3D-detektioner från RADAR till bildplanet, detta kräver en hög nivå av synkronisering av sensorerna och projektioner av RADAR-data på den önskade bilden.
|
82 |
Punktwolken von Handscannern und ihr PotenzialMartienßen, Thomas 16 July 2019 (has links)
Der Beitrag beschäftigt sich mit dem Handscanner ZEB-REVO der Firma GeoSLAM. Es werden die Handhabung der Hardware im untertägigen Einsatz und die Weiterverarbeitung der Punktwolken für Anwendungen im Bergbau näher betrachtet. Die Notwendigkeit der Referenzierung der Punktwolken und eine Möglichkeit diese umzusetzen, werden dargelegt. Über den Vergleich der Daten mit Punktwolken von terrestrischen Laserscannern der Firma Riegl in der Software RiScanPro werden Genauigkeitsuntersuchungen angestellt, die dem Anwender die Grenzen des Systems aufzeigen. Schließlich führen die angestellten Untersuchungen zu einer kritischen Bewertung des Systems. / This contribution addresses practical aspects, abilities and limitations in using the ZEBREVO hand-held scanner from GeoSLAM for underground mine mapping. Besides mapping activities, also post-processing of generated point clouds and requirements for georeferencing are discussed. An accuracy assessment is presented by the means of a point cloud comparison, generated by a terrestrial laser scanner from Riegl. Results demonstrate the technical ability and also the limitations of the system ZEB-REVO. Concluding, a critical evaluation of the system is presented.
|
83 |
Point Cloud Registration in Augmented Reality using the Microsoft HoloLensKjellén, Kevin January 2018 (has links)
When a Time-of-Flight (ToF) depth camera is used to monitor a region of interest, it has to be mounted correctly and have information regarding its position. Manual configuration currently require managing captured 3D ToF data in a 2D environment, which limits the user and might give rise to errors due to misinterpretation of the data. This thesis investigates if a real time 3D reconstruction mesh from a Microsoft HoloLens can be used as a target for point cloud registration using the ToF data, thus configuring the camera autonomously. Three registration algorithms, Fast Global Registration (FGR), Joint Registration Multiple Point Clouds (JR-MPC) and Prerejective RANSAC, were evaluated for this purpose. It was concluded that despite using different sensors it is possible to perform accurate registration. Also, it was shown that the registration can be done accurately within a reasonable time, compared with the inherent time to perform 3D reconstruction on the Hololens. All algorithms could solve the problem, but it was concluded that FGR provided the most satisfying results, though requiring several constraints on the data.
|
84 |
既有建物作為空載光達系統點雲精度評估程序之研究 / The Study of Accuracy Assessment Procedure on Point Clouds from Airborne LiDAR Systems Using Existing Buildings詹立丞, Chan, Li Cheng Unknown Date (has links)
空載光達系統於建置國土測繪基本資料扮演關鍵角色,依國土測繪法,為確保測繪成果品質,應依測量計畫目的及作業精度需求辦理儀器校正。國土測繪中心已於102年度建置航遙測感應器系統校正作業中,提出矩形建物之平屋頂面做為空載光達系統校正之可行性,而其所稱之校正,是以點雲精度評估待校件空載光達系統所得最終成果品質,並不對儀器做任何參數改正,但其校正成果可能因不同人員操作而有差異,因此本研究嘗試建立一套空載光達點雲半自動化精度評估程序,此外探討以山形屋脊線執行點雲精度評估之可行性。
由於光達點雲為離散的三維資訊,不論是以山形屋脊線或矩形建物之平屋頂面作為標物執行點雲精度評估,均須先萃取屋頂面上之點,為避免萃取成果受雜訊影響,本研究引入粗差偵測理論,發展最小一乘法結合李德仁以後驗變方估計原理導出的選擇權迭代法(李德仁法)將非屋頂點視為粗差排除。研究中分別對矩形建物之平屋頂面及山形屋脊線進行模擬及真實資料實驗,其中山形屋脊線作為點雲精度評估之可行性實驗中發現不適合用於評估點雲精度,因此後續實驗僅以萃取矩形建物之平屋頂面點雲過程探討粗差比率對半自動化點雲精度評估程序之影響。模擬實驗成果顯示最小一乘法有助於提升李德仁法偵測粗差數量5%至10%;真實資料實驗,以含有牆面點雲的狀況為例,則有助提升5%的偵測粗差數量。本研究由逐步測試結果提出能夠適用於真實狀況的半自動化之點雲精度評估程序,即使由不同人員操作,仍能獲得一致的成果,顯示本研究半自動化精度評估程序之可信度。 / The airborne LiDAR system plays a crucial role in building land surveying data. Based on the Land Surveying and Mapping Act, to ensure the quality of surveying, instrument calibration is required. The approach proposed by National Land Surveying and Mapping Center (NLSC) in 2013 was confirmed the feasibility for airborne LiDAR system calibration using rectangular horizontal roof plane. The calibration mean to assess the final quality of airborne LiDAR system based on the assessment of the accuracy of the point cloud, and do not adjust the instrument. But the results may vary according to different operators. This study attempts to establish a semi-automatic procedure for the accuracy assessment of point clouds from airborne LiDAR system. In addition, the gable roof ridge lines is discussed for its feasibility for the accuracy assessment of point cloud.
No matter that calibration is performed using rectangular horizontal roof plane or gable roof ridge line, point clouds located on roof planes need to be extracted at first. Therefore, Least Absolute Deviation (LAD) combined with the Iteration using Selected Weights (Deren Li method) is developed to exclude the non-roof points which regarded as gross errors and eliminate their influences. The simulated test and actual data test found that gable roof ridge lines are not suitable for accuracy assessment. As for the simulated test using horizontal roof planes, LAD combined with Deren Li method prompts the rate of gross error detection about 5% to 10% than that only by Deren Li method. In actual test, data contains wall points, LAD combined with Deren Li method can prompt about 5%. Meanwhile, a semi-automatic procedure for real operations is proposed by the step-by-step test. Even different operators employ this semi-automatic procedure, consistent results will be obtained and the reliability can achieve.
|
85 |
Méthodes non-paramétriques pour l'apprentissage et la détection de dissimilarité statistique multivariée / Nonparametric methods for learning and detecting multivariate statistical dissimilarityLhéritier, Alix 23 November 2015 (has links)
Cette thèse présente trois contributions en lien avec l'apprentissage et la détection de dissimilarité statistique multivariée, problématique d'importance primordiale pour de nombreuses méthodes d'apprentissage utilisées dans un nombre croissant de domaines. La première contribution introduit la notion de taille d'effet multivariée non-paramétrique, éclairant la nature de la dissimilarité détectée entre deux jeux de données, en deux étapes. La première consiste en une décomposition d'une mesure de dissimilarité (divergence de Jensen-Shannon) visant à la localiser dans l'espace ambiant, tandis que la seconde génère un résultat facilement interprétable en termes de grappes de points de forte discrépance et en proximité spatiale. La seconde contribution présente le premier test non-paramétrique d'homogénéité séquentiel, traitant les données issues de deux jeux une à une--au lieu de considérer ceux-ci- in extenso. Le test peut ainsi être arrêté dès qu'une évidence suffisamment forte est observée, offrant une flexibilité accrue tout en garantissant un contrôle del'erreur de type I. Sous certaines conditions, nous établissons aussi que le test a asymptotiquement une probabilité d'erreur de type II tendant vers zéro. La troisième contribution consiste en un test de détection de changement séquentiel basé sur deux fenêtres glissantes sur lesquelles un test d'homogénéité est effectué, avec des garanties sur l'erreur de type I. Notre test a une empreinte mémoire contrôlée et, contrairement à des méthodes de l'état de l'art qui ont aussi un contrôle sur l'erreur de type I, a une complexité en temps constante par observation, le rendant adapté aux flux de données. / In this thesis, we study problems related to learning and detecting multivariate statistical dissimilarity, which are of paramount importance for many statistical learning methods nowadays used in an increasingly number of fields. This thesis makes three contributions related to these problems. The first contribution introduces a notion of multivariate nonparametric effect size shedding light on the nature of the dissimilarity detected between two datasets. Our two step method first decomposes a dissimilarity measure (Jensen-Shannon divergence) aiming at localizing the dissimilarity in the data embedding space, and then proceeds by aggregating points of high discrepancy and in spatial proximity into clusters. The second contribution presents the first sequential nonparametric two-sample test. That is, instead of being given two sets of observations of fixed size, observations can be treated one at a time and, when strongly enough evidence has been found, the test can be stopped, yielding a more flexible procedure while keeping guaranteed type I error control. Additionally, under certain conditions, when the number of observations tends to infinity, the test has a vanishing probability of type II error. The third contribution consists in a sequential change detection test based on two sliding windows on which a two-sample test is performed, with type I error guarantees. Our test has controlled memory footprint and, as opposed to state-of-the-art methods that also provide type I error control, has constant time complexity per observation, which makes our test suitable for streaming data.
|
86 |
Jämförelse av punktmoln genererade med terrester laserskanner och drönar-baserad Structure-from-Motion fotogrammetri : En studie om osäkerhet och kvalitet vid detaljmätning och 3D-modellering / Comparison of Point Clouds Generated by Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry with UAVs : A study on uncertainty and quality in detailed measurement and 3D modelingNyberg, Emil, Wolski, Alexander January 2024 (has links)
Fotogrammetri är en viktig metod för att skapa 3D-representationer av terräng och strukturer, men utmaningar kvarstår när det gäller noggrannheten på grund av faktorer som bildkvalitet, kamerakalibrering och positionsdata. Användningen av drönare för byggnadsdetaljmätning möjliggör snabb och kostnadseffektiv datainsamling, men noggrannheten kan påverkas av bildkvalitet och skuggning. Avhandlingen syftar till att jämföra noggrannheten och kvaliteten hos punktmoln genererade med två olika tekniker: terrester laserskanning (TLS) och struktur-från-rörelse (SfM) fotogrammetri med drönare. För att testa båda metodernas osäkerhet och noggrannhet vid detaljmätning av bostäder. Genom att utföra mätningar på en villa har data samlats in med både TLS och drönare utrustade med 48 MP kamera, samt georeferering med markstöd (GCP). SfM-punktmoln bearbetades med Agisoft Metashape. Jämförelser gjordes mellan SfM- och TLS-punktmoln avseende täckning, lägesskillnad och lägesosäkerhet. Genom att följa riktlinjer från HMK - Terrester Laserskanning och tillämpa HMK Standardnivå 3 säkerställs hög noggrannhet i mätningarna. Kontroll av lägesosäkerhet av båda punktmolnen resulterade i en lägesosäkerhet som understeg toleranser satta enligt HMK - Terrester laserskanner Standardnivå 3. Kontrollen av lägesosäkerheten visade att kvadratiska medelfelet(RMSE) i plan och höjd var 0.011m respektive 0.007m för TLS-punktmolnet, och 0.02m respektive 0.015m för drönar-SfM-punktmolnet, vilket låg under toleransen enligt HMK- Terrester Detaljmätning 2021. Resultaten tyder på att Structure-from-Motion fotogrammetri med drönare kan generera punktmoln med god detaljrikedom, inte lika noggrann som med terrester laserskanner på sin lägsta inställning. TLS uppvisade mindre osäkerhet enligt kontrollen av lägesosäkerhet, ungefär en halvering av RMSE i både plan och höjd. I studien framgick det att TLS presterar sämre vid svåråtkomliga ytor med skymd sikt och ogynnsamma infallsvinklar, där effekten blir en lägre punkttäthet för punktmolnet. Vid gynnsamma förhållanden erbjuder TLS en högre noggrannhet och detaljnivå jämfört med SfM punktmoln. Enligt M3C2 punktmoln analys, med TLS punktmolnet som referens, antydde det att SfM punktmolnet genererade största felen vid takfot samt vid buskage. De större felen vid takfot tyder på att SfM presterar sämre gällande detaljnivå och fel vid buskageområdet varierar inte från det som dokumenterats om fotogrammetriska fel vid mappning av vegetation. SfM kan utföra en effektiv datainsamling för större samt svåråtkomliga ytor men kräver lång bearbetningstid med diverse hjälpmedel för att uppnå hög noggrannhet. TLS kräver istället en lång datainsamlingsprocess men kan generera ett detaljerat och noggrant punktmoln direkt utan långa bearbetningsprocesser. Val av metod styrs därmed baserat på specifika projektkrav. Långsiktiga implikationer inkluderar förbättrad effektivitet och säkerhet inom bygg- och anläggningsprojekt, samt potentialen för kostnadsbesparingar och mer detaljerade inspektioner. / Photogrammetry is a crucial method for creating 3D representations of terrain and structures, yet challenges remain regarding accuracy due to factors such as image quality, camera calibration, and positional data. The use of drones for building detail measurements enables rapid and cost-effective data collection, but accuracy can be affected by image quality and shading. This thesis aims to compare the accuracy and quality of point clouds generated using two different techniques: terrestrial laser scanning (TLS) and Structure-from-Motion (SfM) photogrammetry with drones. The objective is to test the uncertainty and accuracy of both methods in residential surveying. Data collection was performed on a villa using both TLS and a drone equipped with a 48 MP camera, along with georeferencing with ground control points (GCP). SfM point clouds were processed with Agisoft Metashape. Comparisons were made between SfM and TLS point clouds in terms of coverage, positional difference, and positional uncertainty. By following guidelines from HMK - Terrester laserskanning 2021 and applying HMK Standard Level 3, high measurement accuracy was ensured. Positional uncertainty checks of both point clouds resulted in positional uncertainty within tolerances set by HMK - Terrestrial Laser Scanning Standard Level 3. The positional uncertainty, with a sample of 41 points showed that the root mean square error (RMSE) in plane and height was 0.011m and 0.007m respectively for the TLS point cloud, and 0.02m and 0.015m for the drone-SfM point cloud, both within the tolerance according to HMK - Terrestrial Detail Measurement 2021. The results suggest that Structure-from-Motion photogrammetry with drones can generate point clouds with good detail, although not as accurate as terrestrial laser scanning at its lowest setting. TLS showed less uncertainty according to the positional uncertainty check, with approximately half the RMSE in both plan and height. The study found that TLS performs worse on difficult-to-access surfaces with obstructed views and unfavorable angles, resulting in lower point cloud density. Under favorable conditions, TLS offers higher accuracy and detail compared to SfM point clouds. According to M3C2 point cloud analysis, using the TLS point cloud as a reference, SfM point clouds showed the largest errors at eaves and shrubbery. The larger errors at eaves indicate that SfM performs worse in terms of detail level, and errors in the shrubbery area are consistent with documented photogrammetric errors in vegetation mapping. SfM can effectively collect data for larger and difficult-to-access areas but requires extensive processing time with various aids to achieve high accuracy. Conversely, TLS requires a long data collection process but can generate a detailed and accurate point cloud directly without lengthy processing. The choice of method thus depends on specific project requirements. Long-term implications include improved efficiency and safety in construction and infrastructure projects, as well as potential cost savings and more detailed inspections.
|
Page generated in 0.0542 seconds