• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 9
  • 9
  • 3
  • 2
  • 1
  • Tagged with
  • 94
  • 94
  • 94
  • 22
  • 16
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Monolithic separation media synthesized in capillaries and their applications for molecularly imprinted networks

Courtois, Julien January 2006 (has links)
The thesis describes the synthesis of chromatographic media using several different approaches, their characterizations and applications in liquid chromatography. The steps to achieve a separation column for a specific analyte are presented. The main focus of the study was the design of novel molecularly imprinted polymers. Attachment of monolithic polymeric substrates to the walls of fused silica capillaries was studied in Paper I. With a broad literature survey, a set of common methods were tested by four techniques and ranked by their ability to improve anchoring of polymers. The best procedure was thus used for all further studies. Synthesis of monoliths in capillary columns was studied in Paper II. With the goal of separating proteins without denaturation, various monoliths were polymerized in situ using a set of common monomers and cross-linkers mixed with poly(ethylene glycol) as porogen. The resulting network was expected to present “protein-friendly pores”. Chemometrics were used to find and describe a set of co-porogens added to the polymerization cocktails in order to get good porosity and flow-through properties. Assessment of the macroporous structure of a monolith was described in Paper III. An alternative method to mercury intrusion porosimetry was proposed. The capillaries were embedded in a stained resin and observed under transmission electron microscope. Images were then computed to determine the pore sizes. Synthesis of molecularly imprinted polymers grafted to a core mono-lith in a capillary was described in Paper IV. The resulting material, imprinted with local anaesthetics, was tested for its chromatographic performance. Similar imprinted polymers were characterized by microcalorimetry in Paper V. Finally, imprinted monoliths were also synthesized in a glass tube and further introduced in a NMR rotor to describe the interactions between stationary phase and template in Paper VI.
72

Hemocompatibility of N-trimethyl chitosan chloride nanoparticles / Lizl du Toit

Du Toit, Lizl January 2014 (has links)
Research on nanoparticles for pharmaceutical applications has become increasingly popular in recent years. N-trimethyl chitosan chloride (TMC) is a cationic polymer that can enhance absorption across mucosal surfaces. It has been explored as a nanoparticulate drug delivery system for the delivery of vaccines, vitamins, insulin and cancer medication. It has special interest for intravenous use, as it is soluble over a wide range of pH values. However, polycationic nanoparticles run a great risk for intravenous toxicity, as the positive surface charge allows easy electrostatic interactions with negatively charged blood components, such as red blood cells and plasma proteins. Additionally, the small size of the nanoparticles permits the binding of more proteins per mass, than larger particles do. These interactions can lead to extensive hemolysis, cell aggregation, complement activation, inflammation and fast clearance of the particles from the circulation. A decrease in the surface charge density can ameliorate these toxic interactions. Such a decrease is achieved by adding poly(ethylene) glycol (PEG) to the particle’s formulation. PEG creates a steric shield around the particles, preventing a certain extent of interaction between the particles and the blood components. To be able to use TMC nanoparticles as a successful drug delivery system, the hemocompatibility must first be determined, which was the aim of this study. The influence of particle size, concentration and the addition of PEG were also examined. The extent of hemolysis and cell aggregation caused by the experimental groups (20% and 60% concentration small TMC nanoparticles, 20% larger TMC nanoparticles and 20% cross-linked PEGTMC nanoparticles) were determined by incubating the groups with whole blood and/or blood components. Complement activation was determined with a Complement C3 Human enzyme-linked immunosorbent assay (ELISA) and plasma protein interactions were quantified through rapid equilibrium dialysis and a colorimetric assay. It was determined that 60% concentration small TMC nanoparticles caused 49.08 ± 2.538% hemolysis at the end of a 12-hour incubation period, significantly more than any other experimental group. This group had also caused mild aggregation of the white blood cells and platelets. This was the greatest extent of cell aggregation seen in any of the groups. No significant complement activation was seen by any of the experimental groups. Because of the cationic nature of the particles, all groups had more than 50% of the initial particles in the sample bound to plasma proteins after a 4-hour incubation period. However, at 90.68 ± 0.828%, the 60% small TMC nanoparticles had had significantly more interaction with the plasma proteins than the other groups. Through the experimental measurements it was revealed that TMC nanoparticles had hemotoxic effects at high concentrations. The addition of PEG to the particle formulation stabilized the particles and decreased their zeta potential , but had no significant effect on improving hemocompatibility. It was concluded that although further tests are needed, TMC nanoparticles seem to have potential as a successful intravenous carrier for high molecular weight active pharmaceutical ingredients. / MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
73

Hemocompatibility of N-trimethyl chitosan chloride nanoparticles / Lizl du Toit

Du Toit, Lizl January 2014 (has links)
Research on nanoparticles for pharmaceutical applications has become increasingly popular in recent years. N-trimethyl chitosan chloride (TMC) is a cationic polymer that can enhance absorption across mucosal surfaces. It has been explored as a nanoparticulate drug delivery system for the delivery of vaccines, vitamins, insulin and cancer medication. It has special interest for intravenous use, as it is soluble over a wide range of pH values. However, polycationic nanoparticles run a great risk for intravenous toxicity, as the positive surface charge allows easy electrostatic interactions with negatively charged blood components, such as red blood cells and plasma proteins. Additionally, the small size of the nanoparticles permits the binding of more proteins per mass, than larger particles do. These interactions can lead to extensive hemolysis, cell aggregation, complement activation, inflammation and fast clearance of the particles from the circulation. A decrease in the surface charge density can ameliorate these toxic interactions. Such a decrease is achieved by adding poly(ethylene) glycol (PEG) to the particle’s formulation. PEG creates a steric shield around the particles, preventing a certain extent of interaction between the particles and the blood components. To be able to use TMC nanoparticles as a successful drug delivery system, the hemocompatibility must first be determined, which was the aim of this study. The influence of particle size, concentration and the addition of PEG were also examined. The extent of hemolysis and cell aggregation caused by the experimental groups (20% and 60% concentration small TMC nanoparticles, 20% larger TMC nanoparticles and 20% cross-linked PEGTMC nanoparticles) were determined by incubating the groups with whole blood and/or blood components. Complement activation was determined with a Complement C3 Human enzyme-linked immunosorbent assay (ELISA) and plasma protein interactions were quantified through rapid equilibrium dialysis and a colorimetric assay. It was determined that 60% concentration small TMC nanoparticles caused 49.08 ± 2.538% hemolysis at the end of a 12-hour incubation period, significantly more than any other experimental group. This group had also caused mild aggregation of the white blood cells and platelets. This was the greatest extent of cell aggregation seen in any of the groups. No significant complement activation was seen by any of the experimental groups. Because of the cationic nature of the particles, all groups had more than 50% of the initial particles in the sample bound to plasma proteins after a 4-hour incubation period. However, at 90.68 ± 0.828%, the 60% small TMC nanoparticles had had significantly more interaction with the plasma proteins than the other groups. Through the experimental measurements it was revealed that TMC nanoparticles had hemotoxic effects at high concentrations. The addition of PEG to the particle formulation stabilized the particles and decreased their zeta potential , but had no significant effect on improving hemocompatibility. It was concluded that although further tests are needed, TMC nanoparticles seem to have potential as a successful intravenous carrier for high molecular weight active pharmaceutical ingredients. / MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
74

Estudo do efeito da adição de poli(glicol etilênico-b-glicol propilênico) na formação de dispersões aquosas poliuretânicas à base de poli(glicol propilênico) / Estudo do efeito da adição de poli(glicol etilênico-b-glicol propilênico) na formação de dispersões aquosas poliuretânicas à base de poli(glicol propilênico) / Study of the effects of the addition of poly(ethylene glycol-b-propylene glycol)in the formation of polyurethanics aqueous dispersions with a poly(propylene glycol) basis / Study of the effects of the addition of poly(ethylene glycol-b-propylene glycol)in the formation of polyurethanics aqueous dispersions with a poly(propylene glycol) basis

Rosiléa Braga Luciano de Almeida 06 March 2007 (has links)
Foram produzidas dispersões aquosas não-poluentes e inovadoras de poli(uretano-uréia) à base de poli(glicol propilênico) (PPG) e de copolímeros em bloco, poli(glicol etilênicob-glicol propilênico), (EG-b-PG) com teor de 7% de unidades de glicol etilênico. Os poli(uretano-uréia)s foram preparados, em duas etapas, pelo método do prepolímero. Na primeira etapa, foram obtidos anionômeros, sintetizados em massa, à base do copolímero EG-bPG, PPG, ácido dimetilol propiônico (DMPA) (gerador dos sítios aniônicos) e diisocianato de isoforona (IPDI). Ainda na primeira etapa, os grupos carboxílicos do DMPA foram submetidos à neutralização com trietilamina (TEA). Na segunda etapa, foi realizada a dispersão do prepolímero anionômero e, em seguida, foi conduzida a reação de extensão de cadeia com a hidrazina (HYD). Nas diferentes formulações, foram variadas a razão NCO/OH e as proporções de PPG e do copolímero em bloco EG-b-PG. Além disso, foram obtidas dispersões aquosas programadas para teores de sólidos de 40 e 50%. As dispersões foram avaliadas quanto ao teor de sólidos totais, tamanho médio de partícula e viscosidade. Os filmes, obtidos por vazamento das dispersões, foram avaliados quanto à absorção de água, termogravimetria (TG) e propriedades mecânicas (ensaio de tração). Os filmes vazados e os monômeros foram caracterizados por espectrometria na região de infravermelho (FTIR) As dispersões obtidas se mostraram adequadas para serem aplicadas como revestimento para madeira, metais e vidro / Non-polluting and poly(urethane-urea) aqueous dispersions based on poly(propylene glycol) (PPG) and block copolymers of poly(ethylene glycol-b-propylene glycol) (EG-b-PG) containing 7% of ethylene glycol repeating units, were produced in an innovative way. The poly(urethane-urea)s were prepared, in two steps, by the prepolymer method. In the first step, anionomers, synthesized in bulk, based on EG-b-PG, PPG, dimethylolpropionic acid (DMPA) (anionomer sites generator) and isophorone diisocyanate (IPDI) were obtained. Still in the first step, the DMPA carboxylic groups were neutralized with triethylamine (TEA), generating the anionomer groups. In the second step, the anionomer prepolymer was dispersed in water under vigorous stirring and afterwards was chain extended with hydrazine. Different formulations were obtained by varying the NCO/OH ratio, and the proportions of PPG and EG-b-PG. Besides, poly(urethane-urea) aqueous dispersions with 40% and 50% of solid contents were obtained. The dispersions were evaluated in terms of their solid-contents, particle size and viscosity. The cast films, obtained from the dispersions concernig of water absorption, thermogravimetry (TG) and mechanical properties (stress and elongation at break). The films and monomers were characterized by infrared spectrometry (FTIR). The obtained dispersions were suitable when applied as for wood, metals and glass surfaces
75

Estudo físico-químico de copoliéteres por viscosimetria / Physical-chemical study of copolyethers by viscosimetry

Rodrigo Teixeira da Costa 23 July 2009 (has links)
A viscosimetria é um procedimento experimental simples e pouco oneroso, que pode fornecer informações valiosas sobre o volume hidrodinâmico e a conformação de macromoléculas em solução, num determinado solvente, em uma dada temperatura. Os parâmetros viscosimétricos podem ser matematicamente calculados por extrapolação gráfica, cuja execução experimental é mais demorada. Em contrapartida, é possível que a determinação seja feita por um único ponto. Neste trabalho, os dois métodos de cálculo, empregando uma série de seis equações: Huggins, Kraemer e Schulz-Blaschke, por extrapolação gráfica, e Schulz-Blaschke, Solomon-Ciuta e Deb-Chanterjee por um único ponto, foram utilizados em soluções de poli(glicol propilênico) (PPG) e copolímeros em bloco à base de poli(glicol propilênico) e poli(glicol etilênico) (EG-b-PG), com diferentes teores de poli(glicol etilênico), tendo isopropanol, tetra-hidrofurano (THF) e tolueno como solventes puros, além das misturas em proporções iguais de THF/ isopropanol e THF/ tolueno, a 25C. Os valores de viscosidade intrínseca e de algumas constantes indicaram que os solventes puros e as misturas se apresentaram no limite entre o bom e o mau solvente. Verificou-se também que o método de cálculo por um único ponto foi válido, especialmente quando a equação de Schulz-Blaschke foi empregada, apresentando um baixo percentual de erro sendo possível assim reduzir o tempo de análise para a maioria dos sistemas estudados / The viscosimetry is a simple and inexpensive polymer characterization method that provides valuable information about the hydrodynamic volume and conformation of macromolecules in solution, in a solvent, at a given temperature. The viscosimetric parameters can be mathematically calculated by graphic extrapolation. Nevertheless, these experimental tests demands a lot of time. However, it is possible to achieve results by a single point determination. In this work, the two calculation methods, employing a series of six equations: Huggins, Kraemer and Schulz-Blaschke, by graphic extrapolation; and Schulz-Blaschke, Solomon-Ciuta and Deb-Chanterjee, by a single point determination, were performed in solutions of poly(propylene glycol) (PPG) and block copolymers based on poly(glycol ethylene) and poly(glycol propylene) (EG-b-PG) with different poly (glycol ethylene) segments content. Isopropanol, tetrahydrofuran (THF) and toluene were employed as solvents. Mixtures of equal proportions of THF/ isopropanol and THF/ toluene were utilized as well. The viscosimetric determinations were performed at 25 0,1 C. The values of intrinsic viscosity and of some constants indicated that the pure solvents and the mixtures were in the limit between good and bad solvent. It was also observed that the method of calculation by a single point was valid, specially when Schulz-Blaschke equation was used, showing a low error percentage for most systems studied, reducing the time of analysis
76

Estudo do efeito da adição de poli(glicol etilênico-b-glicol propilênico) na formação de dispersões aquosas poliuretânicas à base de poli(glicol propilênico) / Estudo do efeito da adição de poli(glicol etilênico-b-glicol propilênico) na formação de dispersões aquosas poliuretânicas à base de poli(glicol propilênico) / Study of the effects of the addition of poly(ethylene glycol-b-propylene glycol)in the formation of polyurethanics aqueous dispersions with a poly(propylene glycol) basis / Study of the effects of the addition of poly(ethylene glycol-b-propylene glycol)in the formation of polyurethanics aqueous dispersions with a poly(propylene glycol) basis

Rosiléa Braga Luciano de Almeida 06 March 2007 (has links)
Foram produzidas dispersões aquosas não-poluentes e inovadoras de poli(uretano-uréia) à base de poli(glicol propilênico) (PPG) e de copolímeros em bloco, poli(glicol etilênicob-glicol propilênico), (EG-b-PG) com teor de 7% de unidades de glicol etilênico. Os poli(uretano-uréia)s foram preparados, em duas etapas, pelo método do prepolímero. Na primeira etapa, foram obtidos anionômeros, sintetizados em massa, à base do copolímero EG-bPG, PPG, ácido dimetilol propiônico (DMPA) (gerador dos sítios aniônicos) e diisocianato de isoforona (IPDI). Ainda na primeira etapa, os grupos carboxílicos do DMPA foram submetidos à neutralização com trietilamina (TEA). Na segunda etapa, foi realizada a dispersão do prepolímero anionômero e, em seguida, foi conduzida a reação de extensão de cadeia com a hidrazina (HYD). Nas diferentes formulações, foram variadas a razão NCO/OH e as proporções de PPG e do copolímero em bloco EG-b-PG. Além disso, foram obtidas dispersões aquosas programadas para teores de sólidos de 40 e 50%. As dispersões foram avaliadas quanto ao teor de sólidos totais, tamanho médio de partícula e viscosidade. Os filmes, obtidos por vazamento das dispersões, foram avaliados quanto à absorção de água, termogravimetria (TG) e propriedades mecânicas (ensaio de tração). Os filmes vazados e os monômeros foram caracterizados por espectrometria na região de infravermelho (FTIR) As dispersões obtidas se mostraram adequadas para serem aplicadas como revestimento para madeira, metais e vidro / Non-polluting and poly(urethane-urea) aqueous dispersions based on poly(propylene glycol) (PPG) and block copolymers of poly(ethylene glycol-b-propylene glycol) (EG-b-PG) containing 7% of ethylene glycol repeating units, were produced in an innovative way. The poly(urethane-urea)s were prepared, in two steps, by the prepolymer method. In the first step, anionomers, synthesized in bulk, based on EG-b-PG, PPG, dimethylolpropionic acid (DMPA) (anionomer sites generator) and isophorone diisocyanate (IPDI) were obtained. Still in the first step, the DMPA carboxylic groups were neutralized with triethylamine (TEA), generating the anionomer groups. In the second step, the anionomer prepolymer was dispersed in water under vigorous stirring and afterwards was chain extended with hydrazine. Different formulations were obtained by varying the NCO/OH ratio, and the proportions of PPG and EG-b-PG. Besides, poly(urethane-urea) aqueous dispersions with 40% and 50% of solid contents were obtained. The dispersions were evaluated in terms of their solid-contents, particle size and viscosity. The cast films, obtained from the dispersions concernig of water absorption, thermogravimetry (TG) and mechanical properties (stress and elongation at break). The films and monomers were characterized by infrared spectrometry (FTIR). The obtained dispersions were suitable when applied as for wood, metals and glass surfaces
77

Functionalized Materials Based on the Clay Mineral Kaolinite

Fafard, Jonathan January 2018 (has links)
The use of kaolinite for preparing functionalized materials for specialized applications is still a relatively niche research subject. This is in spite of its low cost, high availability, and the potential for covalently grafting organic functional groups to its inner and outer surfaces. These grafted compounds have been shown to be highly resistant to heat and solvents, making them very useful for certain applications, for example in polymer nanocomposite materials that require high thermal resistance during polymer processing. Solid state NMR has been shown to play an essential role in solving the structure of functionalized kaolinite materials, however the current knowledge base for these functionalized kaolinites is notably lacking for some nuclei such as 1H, 27Al and 17O. Research was undertaken to address these concerns by developing new synthetic strategies for preparing kaolinite based materials for use as nanocomposites and to examine commonly prepared modified kaolinite precursors materials by 1H and 27Al MAS NMR in an attempt to demonstrate their utility for characterizing kaolinite intercalated and grafted complexes. Solid state 1H NMR of a natural kaolinite, kGa-1b, identified two main proton signals attributed to inner and inner surface hydroxyl protons. The different affinity of these two types of hydroxyl groups towards exchange with deuterium was used to differentiate between the two. The 1H NMR spectra of a DMSO intercalated kaolinite, kDMSO, and a methanol grafted kaolinite, kmethoxy, were fitted with high accuracy using models consistent with the known structures of these materials. The 27Al MAS NMR spectra of a natural kaolinite, kGa-1b, a DMSO intercalated kaolinite, kDMSO, and a methanol grafted kaolinite, kmethoxy measured at 21.1T showed little difference between one another, while noticeable differences could be seen at 4.7T. 27Al MQMAS experiments found almost no difference between these materials in the multiple quantum dimension, suggesting the differences that were observed are a result of differences in quadrupolar parameters rather than chemical shifts. The 27Al NMR spectra of kGa-1b, kDMSO and kmethoxy were fitted with good accuracy using models consistent with known structures of these materials. Different Al(III) sites with CQ values varying by up to 0.6MHz were found. The 27Al NMR spectra of two different methanol grafted kaolinites were also compared and it was found that the intensities of the sites with lower values of CQ were dependent on the quantity of grafted aluminum sites. The interlayer space of kaolinite was functionalized with a block copolymer: poly(ethylene)-block-poly(ethylene glycol) using a kaolinite pre-intercalated with DMSO, kDMSO, and with a biodegradable polymer: poly(lactide) using a kaolinite pre-intercalated with urea, kurea, both by using melts of the polymer. The polymers were found to completely displace their precursors from the interlayer space giving a monolayer type arrangement of the polymer. Attempts were made to graft compounds containing polymerizable functional groups: 3-allyloxy-1,2-propanediol and ethylene glycol vinyl ether to kaolinite’s inner surfaces using a kaolinite pre-intercalated and grafted with methanol, kmethoxy, and a kaolinite pre-intercalated with DMSO, kDMSO, respectively. Both compounds were found to displace their precursors from the interlayer space, adopting a monolayer type arrangement. 13C and 29Si NMR results suggest 3-allyloxy-1,2-propanediol’s allyl group remains intact and partially keys into the clay mineral’s siloxane rings. Ethylene glycol vinyl ether was found to undergo intramolecular cyclization to form an acetal product, consuming its vinyl group in the process. This reaction was observed using an unmodified kaolinite, kGa-1b, suggesting that the clay mineral’s surfaces, both inner and outer, act as an acid catalyst.
78

Atmospheric pressure plasma synthesis of biocompatible poly(ethylene glycol)-like coatings

Nisol, Bernard 26 May 2011 (has links)
The role of a protein-repelling coating is to limit the interaction between a device and its physiological environment. Plasma-polymerized-PEG (pp-PEG) surfaces are of great interest since they are known to avoid protein adsorption. and cell attachment. However, in all the studies previously published in the literature, the PEG coatings have been prepared using low pressure processes. <p>In this thesis, we synthesize biocompatible pp-PEG coatings using atmospheric pressure plasma. Two original methods are developed to obtain these pp-PEG films. 1. Atmospheric pressure plasma liquid deposition (APPLD) consists in the injection of the precursor, tetra(ethylene glycol)dimethylether (tetraglyme), by means of a liquid spray, directly in the post-discharge of an atmospheric argon plasma torch. 2. In atmospheric pressure plasma-enhanced chemical vapor deposition (APPECVD), tetraglyme vapors are brought in the post-discharge trough a heating sprinkler. The chemical composition, as well as the non-fouling properties of the APPLD and APPECVD films, are compared to those of PEG coatings synthesized by conventional low pressure plasma processes.<p>In the first part of the study, the effect of the power on the chemical composition of the films has been investigated by infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and secondary ions mass spectroscopy (SIMS). <p>The surface analysis reveals that for the APPECVD samples, the fragmentation of the precursor increases as the power of the treatment is increased. In other terms, the lower the plasma power is, the higher the “PEG character” of the resulting films is. Indeed, the C-O component (286.5 eV) of the XPS C 1s peak is decreasing while the hydrocarbon component (285 eV) is increasing as the power of the plasma is increased. The same conclusion can be drawn from the signature ToF-SIMS peaks (m/z = 45 (CH3&61485;O&61485;CH2+ and +CH2CH2&61485;OH), 59 (CH3&61485;O&61485;CH2&61485;CH2+), 103 (CH3&61485;(O&61485;CH2&61485;CH2)2+)) that are decreasing in the case of high power treatments. Accordingly, IRRAS measurements show that the C-O stretching band is decreasing for high power plasma deposition. This is in agreement with the observations made from the analysis of the LP PECVD coatings and from the literature.<p>The films deposited by the APPLD process do not show the same behavior. Indeed, whatever the power injected into the discharge is, we are able to achieve films with a relatively high PEG character (&61566;83 %).<p>The second part of this study is dedicated to the evaluation of the non-fouling properties of the coatings by exposing them to proteins (bovine serum albumin and human fibrinogen) and cells (mouse fibroblasts (L929 and MEF)) and controlling the adsorption with XPS (proteins) and SEM (cells).<p>For the APPECVD samples, a low plasma power (30 W) leads to an important reduction of protein adsorption and cell adhesion (over 85%). However, higher-powered treatments tend to reduce the non-fouling ability of the surfaces (around 50% of reduction for a 80 W deposition). <p>The same order of magnitude (over 90% reduction of the adsorption) is obtained for the APPLD surfaces, whatever is the power of the treatment. <p>Those results show an important difference between the two processes in terms of power of the plasma treatment, and a strong relationship between the surface chemistry and the adsorption behavior: the more the PEG character is preserved, the more protein-repellent and cell-repellent is the surface. / Le rôle d’une couche empêchant l’adsorption de protéines est de limiter les interactions entre un implant et le milieu physiologique auquel il est exposé. Les films de poly(éthylène glycol) polymérisés par plasma (pp-PEG) sont d’intérêt majeur car ils sont connus pour empêcher l’adsorption de protéines ainsi que l’attachement cellulaire. Cependant, dans toutes les études publiées précédemment, les couches de type PEG ont été réalisées sous vide.<p>Dans cette thèse de doctorat, nous synthétisons des couches de type pp-PEG biocompatibles par plasmas à pression atmosphérique. A cette fin, deux méthodes originales ont été développées. 1. La première méthode consiste en l’injection du précurseur, le tetra(éthylène glycol) diméthyl éther (tetraglyme), en phase liquide, en nébulisant ce dernier au moyen d’un spray, directement dans la post-décharge d’une torche à plasma atmosphérique fonctionnant à l’argon. En anglais, nous appelons ce procédé « Atmospheric pressure plasma liquid deposition (APPLD) ». 2. Dans la deuxième méthode, appelée en anglais « Atmospheric pressure plasma-enhanced chemical vapor deposition (APPECVD)», le tetraglyme est amené en phase vapeur dans la post-décharge, au moyen d’un diffuseur chauffant. La composition chimique des dépôts de type APPLD et APPECVD, ainsi que leurs propriétés d’anti-adsorption sont évaluées, et comparées aux dépôts pp-PEG obtenus par les méthodes à basse pression conventionnelles.<p>Dans la première partie de cette étude, nous nous focalisons sur la composition chimique des films déposés, et plus particulièrement sur l’influence de la puissance injectée dans le plasma sur cette composition chimique. A cette fin, nous avons fait appel à des techniques d’analyse telles que la spectroscopie de réflexion-absorption infrarouge (IRRAS), la spectroscopie des photoélectrons X (XPS) et la spectrométrie de masse des ions secondaires (SIMS). <p>Il en ressort que les films de type APPECVD perdent progressivement leur « caractère PEG » à mesure que la puissance de la décharge plasma est élevée. Cela serait dû à une plus grande fragmentation du précurseur dans la post-décharge d’un plasma plus énergétique. Cette tendance est cohérente avec ce que nous avons observé pour les dépôts à basse pression ainsi que dans la littérature.<p>Dans le cas des films de type APPLD, un tel comportement n’a pas été mis en évidence :quelle que soit la puissance dissipée dans le plasma, les films présentent un « caractère PEG » relativement élevé.<p>La deuxième partie de cette thèse est dédiée à l’évaluation des propriétés d’anti-adsorption des films synthétisés, en les exposant à des protéines (albumine de sérum bovin et fibrinogène humain) et des cellules (fibroblastes de souris, L929 et MEF). L’adsorption de protéines est contrôlée par XPS tandis que l’attachement cellulaire est contrôlé par imagerie SEM.<p>Pour les échantillons de type APPECVD, un dépôt à faible puissance (30 W) mène à une importante réduction de l’adsorption de protéines et de cellules (> 85%) tandis qu’à de plus hautes puissances (80 W), l’anti-adsorption est sensiblement diminuée (50% de réduction). Dans le cas des dépôts de type APPLD, quelle que soit la puissance du plasma, une forte diminution de l’adsorption de protéines et de cellules est observée (> 90 %).<p>Ces résultats montrent une différence majeure entre les deux procédés quant à l’influence de la puissance du plasma ainsi qu’une forte relation entre la composition chimique de la surface synthétisée et son pouvoir d’anti-adsorption :plus le « caractère PEG » du dépôt est conservé, plus la surface empêchera l’interaction avec les protéines et les cellules. <p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
79

Probing protein adsorption modes onto poly(ethylene glycol) brushes by neutron reflection / Probing protein adsorption modes onto poly ethylene glycol brushes by neutron reflection

Schollier, Audrey 18 March 2011 (has links)
Adsorption of proteins at interfaces has an important role in biotechnological and pharmaceutical applications. Indeed, several undesirable processes are related to protein adsorption, as for example: fouling of contact lenses, clotting on blood contacting devices, triggering inflammation around artificial organs, diminished circulation time of therapeutic proteins and drug bearing liposomes. Neutral water soluble polymers, such as poly(ethylene glycol) (PEG), are used to repress protein adsorption: by coating the surface with a polymer brush, a "cushion" is created between the protein and the surface, that can reduce, or even completely repress the adsorption. Understanding the mechanism that inhibits the adsorption at interfaces is an active field of research, and could lead to relevant improvements in biomaterials performances and design.<p><p>A clear understanding of the mechanism of protein adsorption onto polymer brushes is still missing. The first models describing the interactions of a polymer brush with adsorbing particles predicted two adsorption modes: primary adsorption at the grafting surface, and secondary adsorption at the outer edge of the brush (occurring for large cylindrical proteins). Primary adsorption can be repressed by increasing the grafting density of the brush, and secondary adsorption by increasing its thickness, in agreement with the experiments reported in the literature. But experimental evidences (a maximum in the adsorbed amount observed for long brushes) suggested then the existence of a third mode: ternary adsorption within the brush itself, due to attractive interactions between the protein and the brush. Standard techniques can in general only probe the total adsorbed amount. The aim of this work was to separate primary and ternary adsorption isotherms, by using neutron reflectivity and deuterated proteins. As neutrons interact differently with hydrogen and deuterium atoms, the contrast between the hydrogenated brush and the deuterated protein is high enough to separate the two contributions.<p><p>We studied the adsorption of deuterated myoglobin on PEG brushes with different degrees of polymerisation (N = 56, 146 and 770), and as a function of the area per grafted chain. The contribution of primary and ternary adsorption was separated for the different systems, and the adsorbed amount was extracted and the adsorption isotherms compared to the theoretical predictions. The ability to distinguish between the different adsorption modes, and the quantification of their relative contribution to the overall amount of adsorbed proteins, represents a major advance in optimising surface properties. In particular, the occurrence of ternary adsorption onto PEG brushes affects their status as tool for repressing protein adsorption.<p><p><p>L’adsorption de protéines aux interfaces a un rôle important pour certaines applications pharmaceutiques ou biotechnologiques. En effet, plusieurs processus indésirables sont liés à l’adsorption de protéines, par exemple l’encrassement de lentilles de contact, la coagulation dans des appareils contenant du sang, l’inflammation d’organes artificiels ou encore la diminution du temps de circulation dans le corps de protéines ou liposomes thérapeutiques. Certains polymères, tels que le polyéthylène glycol (PEG), sont utilisés pour réprimer l’adsorption de protéines :en greffant une brosse de PEG sur la surface, une couche est créée entre la protéine et celle-ci qui diminue, voire même réprime complètement l’adsorption. Comprendre le mécanisme qui entrave l’adsorption aux interfaces est un sujet de recherche actif, qui pourrait mener à des améliorations significatives dans la conception de biomatériaux.<p><p>À ce jour, la compréhension du mécanisme d’adsorption de protéines sur des brosses de polymère n’est pas claire. Les premiers modèles décrivant les interactions entre brosses de polymères et particules adsorbantes prédisaient deux modes d’adsorption :l’adsorption primaire sur la surface de greffage, et l’adsorption secondaire à l’extérieur de la brosse (pour les grandes protéines cylindriques uniquement). L’adsorption primaire peut-être réprimée en augmentant la densité de greffage de la brosse, et l’adsorption secondaire en augmentant son épaisseur, en accord avec les expériences reportées dans la littérature. Mais d’autres évidences expérimentales (un maximum dans la quantité adsorbée observé pour les brosses longues) ont ensuite suggéré l’existence d’un troisième mode :l’adsorption ternaire à l’intérieur même de la brosse, due aux interactions attractives entre la protéine et la brosse.<p><p>Les techniques standards peuvent en général mesurer la quantité adsorbée totale. Le but de ce travail était de séparer les isothermes d’adsorption primaire et ternaire, en utilisant la réflectivité de neutrons et des protéines deutérées. Comme les neutrons interagissent différemment avec les atomes d’hydrogène ou de deutérium, le contraste entre la brosse hydrogénée et la protéine deutérée est ainsi suffisant pour séparer les deux contributions.<p><p>Nous avons étudié l’adsorption de myoglobine deutérée sur des brosses de PEG avec différents degrés de polymérisation (N = 56, 146 and 770), en fonction de l’aire par chaîne Σ. La contribution des adsorptions primaire et ternaire put être séparée pour les différents systèmes, et les quantités adsorbées extraites pour finalement comparer les isothermes d’adsorption aux prédictions théoriques. La possibilité de distinguer les différents modes d’adsorption, et la quantification de leur contribution relative à la quantité totale de protéines adsorbées représente une avancée majeure dans l’optimisation des propriétés des surfaces. L’adsorption ternaire dans les brosses de PEG en particulier remet en question leur utilisation pour réprimer l’adsorption de protéines. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
80

Conception, réalisation et évaluation d'un implant diffractif bifocal intracornéen pour la correction de la presbytie / Design, elaboration and implementation of a diffractive bifocal intracorneal implant to correct presbyopia

Castignoles, Fannie 25 November 2011 (has links)
Actuellement, la presbytie peut être corrigée chirurgicalement à l’aide d’implants intraoculaires réfractifs ou diffractifs multifocaux (chirurgie endoculaire invasive et irréversible) ou en intracornéen avec une correction multifocale réfractive (correction laser irréversible, ou insertion d’un implant dans le stroma). L’objectif de ce travail est de développer un nouvel implant permettant de corriger la presbytie, qui allie l’innocuité et la réversibilité d’une correction intracornéenne, à l’efficacité du diffractif. Le design des profils optiques bifocaux a été permis grâce au développement d’outils de simulation optique. Les efficacités de diffraction sont calculées à partir de la propagation du champ électrique par spectre angulaire. La qualité optique est déterminée d’après les simulations de Fonction de Transfert de Modulation obtenues sous Zemax. Des simulations de rendu d’images permettent de visualiser les effets de différents profils envisagés. Les paramètres critiques du design optique sont déterminés. Le choix du matériau dépend des contraintes de biocompatibilité de l’implant et des techniques de fabrication. La solution retenue est un hydrogel à forte teneur en eau, couplé à une nouvelle architecture de l’implant. L’hydrogel est obtenu par polymérisation radicalaire de macromonomères difonctionnels de poly(éthylène glycol) de masses molaires de l’ordre de 8000 g.mol‐1 qui conduisent à des propriétés mécaniques et une perméabilité aux nutriments compatibles avec l’application. La réalisation, la stérilisation et la caractérisation optique de prototypes ont abouti à la preuve du concept d’un implant bifocal diffractif intracornéen / Presbyopia can be corrected with surgery by means of refractive or diffractive multifocal intraocular lenses (which imply an irreversible and invasive endocular surgery) or by intracorneal multifocal refractive correction (irreversible laser correction, or insertion of an intrastromal implant). This work aims at developing a new implant to correct presbyopia, which takes advantage of both the harmlessness and the reversibility of an intracorneal correction, and the efficiency of diffractive optics. The design of the bifocal optical profiles was based on the development of optical simulation tools. The diffractive efficiencies are calculated from the distribution of the electric field with the method of angular spectrum. The optical quality is determined according to the simulations of Modulation Transfer Function obtained with Zemax. Images simulations show the effects of the different profiles studied. The critical parameters of the optical design are also determined. The choice of the material depends on several constraints such as biocompatibility and techniques of manufacturing. The adopted solution relies on the used of an hydrogel with high water content and the design of a new implant architecture. The hydrogel is obtained by radical polymerization of difunctional macromonomers of poly(ethylene glycol) with molar masses around 8000 g.mol‐1, allowing mechanical properties and permeability to nutriments compatible with the application. The realization, the sterilization and the characterization of prototypes showed the proof of the concept of a diffractive bifocal intracorneal implant

Page generated in 0.0637 seconds