Spelling suggestions: "subject:"pontryagin"" "subject:"pontryagins""
31 |
Stratégies optimales multi-critères, prédictives, temps réel de gestion des flux d'énergie thermique et électrique dans un véhicule hybrideDebert, Maxime 09 November 2011 (has links) (PDF)
La gestion d'énergie d'un véhicule hybride consiste à développer une stratégie, qui détermine à chaque instant la répartition des flux d'énergie thermique et électrique, minimisant la consommation globale du véhicule. La modélisation de la consommation du véhicule hybride permet d'écrire cette problématique sous la forme d'un problème d'optimisation dynamique sous contraintes d'évolutions. Ce problème est résolu de façon optimale lorsque l'ensemble des conditions de roulage sont connues à priori. La commande optimale obtenue sert de référence pour évaluer la performance des stratégies embarquées dans le véhicule. En s'appuyant sur la théorie de l'optimisation optimale, deux stratégies ont été crées : l'une prédictive qui a été testée sur un simulateur numérique et une autre, reposant sur le principe du problème dual, qui a été embarqué avec succès sur deux véhicules hybrides conventionnels. Pour les hybrides rechargeables, leur capacité énergétique et la possibilité de se recharger sur le réseau électrique libère des contraintes dans la problématique d'optimisation énergétique. C'est pourquoi, une nouvelle stratégie spécifique a été développée dans l'objectif de profiter au maximum de l'énergie électrique embarquée pour minimiser les émissions du véhicule. Pour l'ensemble des véhicules hybrides, la batterie est un composant clef dont le vieillissement vient modifier sa rentabilité économique et énergétique. C'est pourquoi un observateur a été conçu pour fournir une information précise de la température interne des cellules. Cette information est utilisée par une stratégie spécifique optimisant la consommation tout en préservant la batterie des températures extrêmes, nuisibles à sa longévité.
|
32 |
Optimal Control for Automotive Powertrain ApplicationsReig Bernad, Alberto 07 November 2017 (has links)
Optimal Control (OC) is essentially a mathematical extremal problem. The procedure consists on the definition of a criterion to minimize (or maximize), some constraints that must be fulfilled and boundary conditions or disturbances affecting to the system behavior. The OC theory supplies methods to derive a control trajectory that minimizes (or maximizes) that criterion.
This dissertation addresses the application of OC to automotive control problems at the powertrain level, with emphasis on the internal combustion engine. The necessary tools are an optimization method and a mathematical representation of the powertrain. Thus, the OC theory is reviewed with a quantitative analysis of the advantages and drawbacks of the three optimization methods available in literature: dynamic programming, Pontryagin minimum principle and direct methods. Implementation algorithms for these three methods are developed and described in detail. In addition to that, an experimentally validated dynamic powertrain model is developed, comprising longitudinal vehicle dynamics, electrical motor and battery models, and a mean value engine model.
OC can be utilized for three different purposes:
1. Applied control, when all boundaries can be accurately defined. The engine control is addressed with this approach assuming that a the driving cycle is known in advance, translating into a large mathematical problem. Two specific cases are studied: the management of a dual-loop EGR system, and the full control of engine actuators, namely fueling rate, SOI, EGR and VGT settings.
2. Derivation of near-optimal control rules, to be used if some disturbances are unknown. In this context, cycle-specific engine calibrations calculation, and a stochastic feedback control for power-split management in hybrid vehicles are analyzed.
3. Use of OC trajectories as a benchmark or base line to improve the system design and efficiency with an objective criterion. OC is used to optimize the heat release law of a diesel engine and to size a hybrid powertrain with a further cost analysis.
OC strategies have been applied experimentally in the works related to the internal combustion engine, showing significant improvements but non-negligible difficulties, which are analyzed and discussed. The methods developed in this dissertation are general and can be extended to other criteria if appropriate models are available. / El Control Óptimo (CO) es esencialmente un problema matemático de búsqueda de extremos, consistente en la definición de un criterio a minimizar (o maximizar), restricciones que deben satisfacerse y condiciones de contorno que afectan al sistema. La teoría de CO ofrece métodos para derivar una trayectoria de control que minimiza (o maximiza) ese criterio.
Esta Tesis trata la aplicación del CO en automoción, y especialmente en el motor de combustión interna. Las herramientas necesarias son un método de optimización y una representación matemática de la planta motriz. Para ello, se realiza un análisis cuantitativo de las ventajas e inconvenientes de los tres métodos de optimización existentes en la literatura: programación dinámica, principio mínimo de Pontryagin y métodos directos. Se desarrollan y describen los algoritmos para implementar estos métodos así como un modelo de planta motriz, validado experimentalmente, que incluye la dinámica longitudinal del vehículo, modelos para el motor eléctrico y las baterías, y un modelo de motor de combustión de valores medios.
El CO puede utilizarse para tres objetivos distintos:
1. Control aplicado, en caso de que las condiciones de contorno estén definidas. Puede aplicarse al control del motor de combustión para un ciclo de conducción dado, traduciéndose en un problema matemático de grandes dimensiones. Se estudian dos casos particulares: la gestión de un sistema de EGR de doble lazo, y el control completo del motor, en particular de las consignas de inyección, SOI, EGR y VGT.
2. Obtención de reglas de control cuasi-óptimas, aplicables en casos en los que no todas las perturbaciones se conocen. A este respecto, se analizan el cálculo de calibraciones de motor específicas para un ciclo, y la gestión energética de un vehículo híbrido mediante un control estocástico en bucle cerrado.
3. Empleo de trayectorias de CO como comparativa o referencia para tareas de diseño y mejora, ofreciendo un criterio objetivo. La ley de combustión así como el dimensionado de una planta motriz híbrida se optimizan mediante el uso de CO.
Las estrategias de CO han sido aplicadas experimentalmente en los trabajos referentes al motor de combustión, poniendo de manifiesto sus ventajas sustanciales, pero también analizando dificultades y líneas de actuación para superarlas. Los métodos desarrollados en esta Tesis Doctoral son generales y aplicables a otros criterios si se dispone de los modelos adecuados. / El Control Òptim (CO) és essencialment un problema matemàtic de cerca d'extrems, que consisteix en la definició d'un criteri a minimitzar (o maximitzar), restriccions que es deuen satisfer i condicions de contorn que afecten el sistema. La teoria de CO ofereix mètodes per a derivar una trajectòria de control que minimitza (o maximitza) aquest criteri.
Aquesta Tesi tracta l'aplicació del CO en automoció i especialment al motor de combustió interna. Les ferramentes necessàries són un mètode d'optimització i una representació matemàtica de la planta motriu. Per a això, es realitza una anàlisi quantitatiu dels avantatges i inconvenients dels tres mètodes d'optimització existents a la literatura: programació dinàmica, principi mínim de Pontryagin i mètodes directes. Es desenvolupen i descriuen els algoritmes per a implementar aquests mètodes així com un model de planta motriu, validat experimentalment, que inclou la dinàmica longitudinal del vehicle, models per al motor elèctric i les bateries, i un model de motor de combustió de valors mitjans.
El CO es pot utilitzar per a tres objectius diferents:
1. Control aplicat, en cas que les condicions de contorn estiguen definides. Es pot aplicar al control del motor de combustió per a un cicle de conducció particular, traduint-se en un problema matemàtic de grans dimensions. S'estudien dos casos particulars: la gestió d'un sistema d'EGR de doble llaç, i el control complet del motor, particularment de les consignes d'injecció, SOI, EGR i VGT.
2. Obtenció de regles de control quasi-òptimes, aplicables als casos on no totes les pertorbacions són conegudes. A aquest respecte, s'analitzen el càlcul de calibratges específics de motor per a un cicle, i la gestió energètica d'un vehicle híbrid mitjançant un control estocàstic en bucle tancat.
3. Utilització de trajectòries de CO com comparativa o referència per a tasques de disseny i millora, oferint un criteri objectiu. La llei de combustió així com el dimensionament d'una planta motriu híbrida s'optimitzen mitjançant l'ús de CO.
Les estratègies de CO han sigut aplicades experimentalment als treballs referents al motor de combustió, manifestant els seus substancials avantatges, però també analitzant dificultats i línies d'actuació per superar-les. Els mètodes desenvolupats a aquesta Tesi Doctoral són generals i aplicables a uns altres criteris si es disposen dels models adequats. / Reig Bernad, A. (2017). Optimal Control for Automotive Powertrain Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90624
|
33 |
Evitement de conflits aériens par une régulation subliminale en vitesse : modélisation & résolution via le contrôle optimal / Velocity-based aircraft conflict avoidance through optimal control model and solution approachesCellier, Loïc 29 September 2015 (has links)
À travers une approche de contrôle optimal, cette thèse de doctorat propose une étude des modèles et des techniques de résolution dans un domaine d'application propre à la gestion du trafic aérien. Motivés par la croissance des flux aériens d'une part, et les développements en théorie du contrôle optimal d'autre part, ces travaux portent sur l'analyse du problème d'évitement de conflits aériens. Cette étude permet le développement de nouvelles approches et algorithmes en vue d'aider les contrôleurs aériens dans leur tâche. Ainsi, dans le cadre du trafic aérien, afin de préserver des distances minimales de sécurité entre avions, lors de phases tactiques et de configurations des vols en-route, notre recherche se focalise sur une stratégie de régulation subliminale en vitesse (variations très réduites), pour assurer la séparation entre avions, tout en conservant leur trajectoire prédéfinie. D'une part, une méthode de résolution numérique en contrôle optimal telle que la méthode directe de tir, impliquant une discrétisation totale ou partielle du problème, transforme le problème initial en un problème en programmation non linéaire de grande taille. Ce type de méthodes peut générer des problèmes d'optimisation de grande taille numériquement di_ciles à résoudre. Suivant le nombre de variables du problème, elles peuvent s'avérer trop coûteuse en termes de temps de calculs. D'autre part, les contraintes sur les variables d'états du problème posent des di_cultés de résolution, par exemple, pour l'usage d'une méthode numérique indirecte de tir. Développant les informations caractéristiques des conflits aériens, une détection et une détermination a priori des zones de conflits permettent alors la décomposition du problème présenté de contrôle optimal en sous-problèmes plus aisés à résoudre. La résolution des sous-problèmes hors-zones peut être abordée en utilisant les conditions du principe du maximum de Pontryagin, ce qui en permet une résolution e_cace. Une combinaison de méthodes numériques directes de tir et d'application des conditions du principe du maximum de Pontryagin est proposée, et des implémentations numériques valident ce type d'approche. / The purpose of this doctoral thesis is to study models and solution techniques based on optimal control approaches to address air tra_c management problems. Motivated by the growth of air tra_c volume, and by the advances in optimal control theory, this research works focus on analysing aircraft conflict avoidance problem. This study allows development of new approaches and algorithms to help air tra_c controllers. In the framework of air tra_c management, to ensure the minimum safety distances between aircraft, in tactical phases and en-route flight configurations, this thesis focusses on a subliminal velocity regulation strategy to perform the separation, while preserving the aircraft predefined trajectories. A numerical optimal control solution approach as the direct shooting method, wherein involves a total or partial discretization of the problem, transforms the initial problem into a large scale nonlinear programming problem. This kind of methods could generate large-size optimization problems which are numerically di_cult to solve. Depending on the number of variables which involved, this approaches could be too expensive in terms of computation time. Moreover, the state-variables constraints of the problem lead to numerical di_culties, e.g., considering the indirect numerical shooting method. Tailored on aircraft conflict avoidance problems, a detection and a determination of a priori conflict zones allow the decomposition of the optimal control problem into sub-problems, easier to solve than the original one. Solving the o_-zones sub-problems can be addressed using the Pontryagin maximum principle, which allows in this case directly the solution. A combination of direct numerical shooting method and application of conditions of Pontryagin's maximum principle is proposed, and numerical experiments validate this approach.
|
34 |
Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la Résonance Magnétique Nucléaire à la physique moléculaire / Developement of new techniques of Optimal Control in Quantum Dynamics : from nuclear magnetic resonance to molecular physicsLapert, Marc 12 October 2011 (has links)
L’objectif de cette thèse est d’appliquer la théorie du contrôle optimal à la dynamique de systèmes quantiques. Le premier point consiste à introduire dans le domaine du contrôle quantique des outils de contrôle optimal initialement développés en mathématique. Cette approche a ensuite été appliquée sur différent types de systèmes quantiques décrit par une grande ou une petite dimension. La première partie du manuscrit introduit les différents outils de contrôles utilisés avec une approche adaptée à un public de physiciens. Dans la seconde partie, ces techniques sont utilisées pour contrôler la dynamique des spins en RMN et IRM. La troisième partie s’intéresse au développement de nouveaux algorithmes itératifs de contrôle optimal appliqués au contrôle par champ laser de la dynamique rotationnelle des molécules linéaires en phases gazeuse ainsi qu’au développement d’une stratégie de contrôle simple permettant de délocaliser une molécule dans un plan. La quatrième partie traite le contrôle en temps minimum d’un condensat de Bose-Einstein à deux composantes. La dernière partie permet de comparer qualitativement et quantitativement les différentes méthodes de contrôle optimal utilisées. Les seconde et troisième parties ont également bénéficier de l’implémentation expérimentale des solutions de contrôle optimal obtenues. / The goal of this thesis is to apply the optimal control theory to the dynamics of quantum systems.The first part aim at introducing the tools of optimal control in quantum control which were initially developedin mathematics. This approch has been applied on different kinds of quantum system with small and largedimensions. The first part of this manuscript introduces the optimal control tools which are used with a pointof view suited to a public of physicists. In the second part these techniques are used to control the dynamics ofspins in NMR and MRI. The third part deals with the development of new iterative algorithms applied to thecontrol by laser fields of the rotational dynamics of linear molecules in a gaz phases and the development of asimple control strategy allowing to delocalize a molecule in a plan. The fourth part treats the time-minimumcontrol of a two-component Bose Einstein condensate. The last part compares the different optimal controlmethods used qualitatively and quantitatively. The solution found in the second and third parts have been alsoapplied experimentally.
|
35 |
Contrôle optimal et calcul des variations en présence de retard sur l'état / Optimal control and calculus of variations with delay in state spaceKoné, Mamadou Ibrahima 15 March 2016 (has links)
L'objectif de cette thèse est de contribuer à l'optimisation de problèmes dynamiques en présence de retard. Le point de vue qui nous intéressera est celui de Pontryagin qui dans son ouvrage publié en 1962 a donné les conditions nécessaires d'existence de solutions pour ce type de problème. Warga dans son ouvrage publié en 1972 a fait un catalogue des solutions possible, Li et al. ont étudié le cas de contrôle périodique. Notre méthode de démonstration est directement inspirée de la démonstration de P. Michel du cas des systèmes gouvernés par des équations différentielles ordinaires. La principale difficulté pour cette approche est l'utilisation de la résolvante de l'équation différentielle fonctionnelle linéarisée de l'équation différentielle fonctionnelle d'évolution qui gouverne le système. Nous traitons aussi de condition d'Euler-Lagrange dans le cadre d'un problème de calcul variationnel avec retard. / In this thesis, we have attempted to contribute to the optimization of dynamical problems with delay in state space. We are specifically interested in the viewpoint of Pontryagin who outlined in his book published in 1962 the necessary conditions required for solving such problems. In his work published in 1972, Warga catalogued the possible solutions. Li and al. analyzed the case of periodic control. We will treat an optimal control problem governed by a Delay Functional Differential Equation. Our method is close to the one of P. Michel on dynamical system governed by Ordinary Differential Equations. The main problem ariving out in this approach is the use of the resolvent of the Delay Functional Differential Equation. We also consider with Euler-Lagrange condition in the framework of variational problems with delay.
|
36 |
Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la Résonance Magnétique Nucléaire à la physique moléculaireLapert, M. 12 October 2011 (has links) (PDF)
L'objectif de cette thèse est d'appliquer la théorie du contrôle optimal à la dynamique de systèmes quantiques. Le premier point consiste à introduire dans le domaine du contrôle quantique des outils de contrôle optimal initialement développés en mathématique. Cette approche a ensuite été appliquée sur différent types de systèmes quantiques décrit par une grande ou une petite dimension. La première partie du manuscrit introduit les différents outils de contrôles utilisés avec une approche adaptée à un public de physiciens. Dans la seconde partie, ces techniques sont utilisées pour contrôler la dynamique des spins en RMN et IRM. La troisième partie s'intéresse au développement de nouveaux algorithmes itératifs de contrôle optimal appliqués au contrôle par champ laser de la dynamique rotationnelle des molécules linéaires en phases gazeuse ainsi qu'au développement d'une stratégie de contrôle simple permettant de délocaliser une molécule dans un plan. La quatrième partie traite le contrôle en temps minimum d'un condensat de Bose-Einstein à deux composantes. La dernière partie permet de comparer qualitativement et quantitativement les différentes méthodes de contrôle optimal utilisées. Les seconde et troisième parties ont également bénéficier de l'implémentation expérimentale des solutions de contrôle optimal obtenues.
|
37 |
Bounded sets in topological groupsChis, Cristina 09 February 2010 (has links)
A boundedness structure (bornology) on a topological space is an ideal of subsets containing all singletons, that is, closed under taking subsets and unions of finitely many elements. In this paper we deal with the structure of the whole family of bounded subsets rather than the specific properties of them by means of certain functions that we define on a metrizable topological group. Our motivation is twofold: on the one hand, we obtain useful information about the structural features of certain remarkable classes of bounded systems, cofinality, local properties, etc. For example, we estimate the cofinality of these boundedness notions. In the second part of the paper, we apply duality methods in order to obtain estimations of the size of a local base for an important class of groups. This translation, which has been widely exhibited in the Pontryagin-van Kampen duality theory of locally compact abelian groups, is often very relevant and has been extended by many authors to more general classes of topological groups. In this work we follow basically the pattern and terminology given by Vilenkin in 1998.
|
38 |
A geometric study of abnormality in optimal control problems for control and mechanical control systemsBarbero Liñán, María 19 December 2008 (has links)
Durant els darrers quaranta anys la geometria diferencial ha estat una eina fonamental per entendre la teoria de control òptim. Habitualment la millor estratègia per resoldre un problema és transformar-lo en un altre problema que sigui més tractable. El Principi del Màxim de Pontryagin proporciona al problema de control òptim d’una estructura
Hamiltoniana. Les solucions del problema Hamiltonià que satisfan unes determinades propietats són candidates a ésser solucions del problema de control òptim. Aquestes corbes candidates reben el nom d’extremals. Per tant, el Principi del Màxim de Pontryagin aixeca el problema original a l’espai cotangent.
En aquesta tesi desenvolupem una demostració completa i geomètrica del Principi del Màxim de Pontryagin. Investiguem cuidadosament els punts més delicats de la demostració, que per exemple inclouen les perturbacions
del controls, l’aproximació lineal del conjunt de punts accessibles i la condició de separació.
Entre totes les solucions d’un problema de control òptim, existeixen les corbes anormals. Aquestes corbes no depenen de la funció de cost que es vol minimitzar, sinó que només depenen de la geometria del sistema de control.
En la literatura de control òptim, existeixen estudis sobre l’anormalitat, tot i que només per a sistemes lineals o afins en el controls i sobretot amb funcions de cost quadràtiques en els controls. Nosaltres descrivim un mètode geomètric nou per caracteritzar tots els diferents tipus d’extremals (no només les anormals) de problemes de control òptim genèrics. Aquest mètode s’obté com una adaptació d’un algoritme de lligadures presimplèctic. El nostre interès en les corbes anormals es degut a les corbes òptimes estrictament anormals, les quals també queden caracteritzades mitjançant l’algoritme descrit en aquesta tesi.
Com aplicació del mètode mencionat, caracteritzem les extremals d’un problema de control òptim lliure, aquell on el domini de definició no està donat. En concret, els problemes de temps mínim són problemes de control òptim lliures.
A més a més, som capaços de donar una corba extremal estrictament anormal aplicant el mètode descrit per a un sistema mecànic.
Un cop la noció d’anormalitat ha estat estudiada en general, ens concentrem en l’estudi de l’anormalitat per a sistemes de control mecànics, perquè no existeixen resultats sobre l’existència de corbes òptimes estrictament anormals per a problemes de control òptim associats a aquests sistemes. En aquesta tesi es donen resultats sobre les extremals anormals quan la funció de cost és quadràtica en els controls o si el funcional a minimitzar és el temps.
A més a més, la caracterització d’anormals en casos particulars és descrita mitjançant elements geomètrics com les formes quadràtiques vector valorades. Aquests elements geomètrics apareixen com a resultat d’aplicar el mètode descrit en aquesta tesi.
També tractem un altre enfocament de l’estudi de l’anormalitat de sistemes de control mecànics, que consisteix a aprofitar l’equivalència que existeix entre els sistemes de control noholònoms i els sistemes de control cinemàtics.
Provem l’equivalència entre els problemes de control òptim associats a ambdós sistemes de control i això permet establir relacions entre les corbes extremals del problema nonholònom i del cinemàtic. Aquestes relacions permeten donar un example d’una corba òptima estrictament anormal en un problema de temps mínim per a sistemes de control mecànics.
Finalment, i deixant de banda per un moment l’anormalitat, donem una formulació geomètrica dels problemes de control òptim no autònoms mitjançant la formulació unificada de Skinner-Rusk. La formulació descrita en aquesta tesis és fins i tot aplicable a sistemes de control implícits que apareixen en un gran nombre de problemes de control òptim dins de l’àmbit de l’enginyeria, com per exemple els sistemes Lagrangians controlats i els sistemes descriptors. / Durante los últimos cuarenta años la geometría diferencial ha sido una herramienta para entender la teoría de control óptimo. Habitualmente la mejor estrategia para resolver un problema es transformarlo en otro problema que sea más tratable. El Principio del Máximo de Pontryagin dota al problema de control óptimo de una estructura Hamiltoniana.
Las soluciones del problema Hamiltoniano que satisfagan determinadas propiedades son candidatas a ser soluciones del problema de control óptimo. Estas curvas candidatas se llaman extremales. Por lo tanto, el Principio del Máximo de Pontryagin levanta el problema original al espacio cotangente.
En esta tesis doctoral, desarrollamos una demostración completa y geométrica del Principio del Máximo de Pontryagin. Investigamos minuciosamente los puntos delicados de la demostración, como son las perturbaciones de los controles, la aproximación lineal del conjunto de puntos alcanzables y la condición de separación.
Entre todas las soluciones de un problema de control óptimo, existen las curvas anormales. Estas curvas no dependen de la función de coste que se quiere minimizar, sino que sólo dependen de la geometría del sistema de control. En la literatura de control óptimo existen estudios sobre la anormalidad, aunque sólo para sistemas lineales o afines en los controles y fundamentalmente con funciones de costes cuadráticas en los controles. Nosotros presentamos un método geométrico nuevo para caracterizar todos los distintos tipos de extremales (no sólo las anormales) de problemas de control óptimo genéricos. Este método es resultado de adaptar un algoritmo de ligaduras presimpléctico. Nuestro interés en las extremales anormales es debido a las curvas óptimas estrictamente anormales, las cuales también pueden ser caracterizadas mediante el algoritmo descrito en esta tesis.
Como aplicación del método mencionado en el párrafo anterior, caracterizamos las extremales de un problema de control óptimo libre, aquél donde el dominio de definición de las curvas no está dado. En particular, los problemas de tiempo óptimo son problemas de control óptimo libre. Además, somos capaces de dar un ejemplo de una curva extremal estrictamente anormal aplicando el método descrito.
Una vez la noción de anormalidad en general ha sido estudiada, nos centramos en el estudio de la anormalidad para sistemas de control mecánicos, ya que no existen resultados sobre la existencia de curvas óptimales estrictamente anormales para problemas de control óptimo asociados a estos sistemas. En esta tesis, se dan resultados sobre las extremales anormales cuando la función de coste es cuadrática en los controles o el funcional a minimizar es el tiempo. Además, la caracterización de las anormales en casos particulares es descrita por medio de elementos geométricos como las formas cuadráticas vector valoradas. Dichos elementos geométricos aparecen como consecuencia del método descrito para caracterizar las extremales.
También se considera otro enfoque para el estudio de la anormalidad de sistemas de control mecánicos, que consiste en aprovechar la equivalencia que existe entre sistemas de control noholónomos y sistemas de control cinemáticos. Se prueba la equivalencia entre problemas de control óptimo asociados a ambos sistemas de control, lo que permite establecer relaciones entre las extremales del problema noholónomo y las extremales del problema cinemático. Estas relaciones permiten dar un ejemplo de una curva optimal estrictamente anormal en un problema de tiempo óptimo para sistemas de control mecánicos.
Por último, olvidándonos por un momento de la anormalidad, se describe una formulación geométrica de los problemas de control óptimo no autónomos aprovechando la formulación unificada de Skinner-Rusk. Esta formulación es incluso válida para sistemas de control implícitos que aparecen en numerosos problemas de control óptimo de ámbito ingenieril, como por ejemplo, los sistemas Lagrangianos controlados y los sistemas descriptores. / For the last forty years, differential geometry has provided a means of understanding optimal control theory. Usually the best strategy to solve a difficult problem is to transform it into a different problem that can be dealt with more easily. Pontryagin's Maximum Principle provides the optimal control problem with a Hamiltonian structure. The solutions to the Hamiltonian problem, satisfying particular conditions, are candidates to be solutions to the optimal control problem. These candidates are called extremals. Thus, Pontryagin's Maximum Principle lifts the original problem to the cotangent bundle.
In this thesis, we develop a complete geometric proof of Pontryagin's Maximum Principle. We investigate carefully the crucial points in the proof such as the perturbations of the controls, the linear approximation of the reachable set and the separation condition.
Among all the solutions to an optimal control problem, there exist the abnormal curves. These do not depend on the cost function we want to minimize, but only on the geometry of the control system. Some work has been done in the study of abnormality, although only for control-linear and control-affine systems with mainly control-quadratic cost functions. Here we present a novel geometric method to characterize all the different kinds of extremals (not only the abnormal ones) in general optimal control problems. This method is an adaptation of the presymplectic constraint algorithm. Our interest in the abnormal curves is with the strict abnormal minimizers. These last minimizers can be characterized by the geometric algorithm presented in this thesis.
As an application of the above-mentioned method, we characterize the extremals for the free optimal control problems that include, in particular, the time-optimal control problem. Moreover, an example of an strict abnormal extremal for a control-affine system is found using the geometric method.
Furthermore, we focus on the description of abnormality for optimal control problems for mechanical control systems, because no results about the existence of strict abnormal minimizers are known for these problems. Results about the abnormal extremals are given when the cost function is control-quadratic or the time must be minimized. In this dissertation, the abnormality is characterized in particular cases through geometric constructions such as vectorvalued quadratic forms that appear as a result of applying the previous geometric procedure.
The optimal control problems for mechanical control systems are also tackled taking advantage of the equivalence between nonholonomic control systems and kinematic control systems. In this thesis, it is found an equivalence between time-optimal control problems for both control systems. The results allow us to give an example of a local strict abnormal minimizer in a time-optimal control problem for a mechanical control system.
Finally, setting aside the abnormality, the non-autonomous optimal control problem is described geometrically using the Skinner-Rusk unified formalism. This approach is valid for implicit control systems that arise in optimal control problems for the controlled Lagrangian systems and for descriptor systems. Both systems are common in engineering problems.
|
39 |
Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la Résonance Magnétique Nucléaire à la physique moléculaireLapert, Marc 12 October 2011 (has links) (PDF)
L'objectif de cette thèse est d'appliquer la théorie du contrôle optimal à la dynamique de systèmes quantiques. Le premier point consiste à introduire dans le domaine du contrôle quantique des outils de contrôle optimal initialement développés en mathématique. Cette approche a ensuite été appliquée sur différent types de systèmes quantiques décrit par une grande ou une petite dimension. La première partie du manuscrit introduit les différents outils de contrôles utilisés avec une approche adaptée à un public de physiciens. Dans la seconde partie, ces techniques sont utilisées pour contrôler la dynamique des spins en RMN et IRM. La troisième partie s'intéresse au développement de nouveaux algorithmes itératifs de contrôle optimal appliqués au contrôle par champ laser de la dynamique rotationnelle des molécules linéaires en phases gazeuse ainsi qu'au développement d'une stratégie de contrôle simple permettant de délocaliser une molécule dans un plan. La quatrième partie traite le contrôle en temps minimum d'un condensat de Bose-Einstein à deux composantes. La dernière partie permet de comparer qualitativement et quantitativement les différentes méthodes de contrôle optimal utilisées. Les seconde et troisième parties ont également bénéficier de l'implémentation expérimentale des solutions de contrôle optimal obtenues.
|
40 |
Outils de commande avancés pour les applications automobilesNguyen, Tran Anh Tu 02 December 2013 (has links) (PDF)
Cette thèse est consacrée au développement de techniques de commande avancées pour des classes de systèmes non linéaires en général et pour des applications automobiles en particulier.Pour répondre au besoin du contrôle moteur, la première partie propose des nouveaux résultats théoriques sur la technique de commande non linéaire à base de modèles de type Takagi-Sugeno soumis à la saturation de la commande. La saturation de la commande est traitée en utilisant sa représentation polytopique ou une stratégie anti-windup.La deuxième partie porte sur la commande du système d'air d'un moteur turbocompressé à allumage commandé. Deux approches originales sont proposées. Dans la première, l'outil théorique concernant les modèles Takagi-Sugeno à commutation développé dans la première partie est directement appliqué. La seconde approche est basée sur une commande linéarisante robuste. L'originalité de ces approches multivariables consiste dans sa simplicité de mise en œuvre et son efficacité par rapport à celles qui existent dans la littérature.La dernière partie vise à développer des stratégies pour la gestion énergétique des systèmes électriques d'un véhicule obtenues en se basant sur le Principe du Minimum de Pontryagin. À cet effet, deux approches sont considérées : l'approche hors ligne d'optimisation utilisant les informations du futur concernant les conditions de roulage et l'approche en ligne qui est adaptée de la précédente. Ensuite, ces deux approches sont implémentées et évaluées dans un simulateur avancé.
|
Page generated in 0.0499 seconds