Spelling suggestions: "subject:"dose"" "subject:"pose""
291 |
Compact Representations and Multi-cue Integration for RoboticsSöderberg, Robert January 2005 (has links)
This thesis presents methods useful in a bin picking application, such as detection and representation of local features, pose estimation and multi-cue integration. The scene tensor is a representation of multiple line or edge segments and was first introduced by Nordberg in [30]. A method for estimating scene tensors from gray-scale images is presented. The method is based on orientation tensors, where the scene tensor can be estimated by correlations of the elements in the orientation tensor with a number of 1D filters. Mechanisms for analyzing the scene tensor are described and an algorithm for detecting interest points and estimating feature parameters is presented. It is shown that the algorithm works on a wide spectrum of images with good result. Representations that are invariant with respect to a set of transformations are useful in many applications, such as pose estimation, tracking and wide baseline stereo. The scene tensor itself is not invariant and three different methods for implementing an invariant representation based on the scene tensor is presented. One is based on a non-linear transformation of the scene tensor and is invariant to perspective transformations. Two versions of a tensor doublet is presented, which is based on a geometry of two interest points and is invariant to translation, rotation and scaling. The tensor doublet is used in a framework for view centered pose estimation of 3D objects. It is shown that the pose estimation algorithm has good performance even though the object is occluded and has a different scale compared to the training situation. An industrial implementation of a bin picking application have to cope with several different types of objects. All pose estimation algorithms use some kind of model and there is yet no model that can cope with all kinds of situations and objects. This thesis presents a method for integrating cues from several pose estimation algorithms for increasing the system stability. It is also shown that the same framework can also be used for increasing the accuracy of the system by using cues from several views of the object. An extensive test with several different objects, lighting conditions and backgrounds shows that multi-cue integration makes the system more robust and increases the accuracy. Finally, a system for bin picking is presented, built from the previous parts of this thesis. An eye in hand setup is used with a standard industrial robot arm. It is shown that the system works for real bin-picking situations with a positioning error below 1 mm and an orientation error below 1o degree for most of the different situations. / <p>Report code: LiU-TEK-LIC-2005:15.</p>
|
292 |
Monocular 3D Human Pose Estimation / Monokulär 3D-människans hållningsuppskattningRey, Robert January 2023 (has links)
The focus of this work is the task of 3D human pose estimation, more specifically by making use of key points located in single monocular images in order to estimate the location of human body joints in a 3D space. It was done in association with Tracab, a company based in Stockholm, who specialises in advanced sports tracking and analytics solutions. Tracab’s core product is their optical tracking system for football, which involves installing multiple highspeed cameras around the sports venue. One of the main benefits of this work will be to reduce the number of cameras required to create the 3D skeletons of the players, hence reducing production costs as well as making the whole process of creating the 3D skeletons much simpler in the future. The main problem we are tackling consists in going from a set of 2D joint locations and lifting them to a 3D space, which would add an information of depth to the joint locations. One problem with this task is the limited availability of in-thewild datasets with corresponding 3D ground truth labels. We hope to tackle this issue by making use of the restricted Human3.6m dataset along with the Tracab dataset in order to achieve adequate results. Since the Tracab dataset is very large, i.e millions of unique poses and skeletons, we have focused our experiments on a single football game. Although extensive research has been done in the field by using architectures such as convolutional neural networks, transformers, spatial-temporal architectures and more, we are tackling this issue by making use of a simple feedforward neural network developed by Martinez et al, this is mainly possible due to the abundance of data available at Tracab. / Fokus för detta arbete är att estimera 3D kroppspositioner, genom att använda detekterade punkter på människokroppen i enskilda monokulära bilder för att uppskatta 3D positionen av dessa ledpunkter. Detta arbete genomfördes i samarbete med Tracab, ett företag baserat i Stockholm, som specialiserar sig på avancerade lösningar för följning och analys inom idrott. Tracabs huvudprodukt är deras optiska följningssystem, som innebär att flera synkroniserade höghastighetskameror installeras runt arenan. En av de främsta fördelarna med detta arbete kommer att vara att minska antalet kameror som krävs för att skapa 3D-skelett av spelarna, vilket minskar produktionskostnaderna och förenklar hela processen för att skapa 3D-skelett i framtiden. Huvudproblemet vi angriper är att gå från en uppsättning 2D-ledpunkter och lyfta dem till 3D-utrymme. Ett problem är den begränsade tillgången till datamängder med 3D ground truth från realistiska miljöer. Vi angriper detta problem genom att använda den begränsade Human3.6m-datasetet tillsammans med Tracab-datasetet för att uppnå tillräckliga resultat. Eftersom Tracab-datamängden är mycket stor, med miljontals unika poser och skelett, .har vi begränsat våra experiment till en fotbollsmatch. Omfattande forskning har gjorts inom området med användning av arkitekturer som konvolutionella neurala nätverk, transformerare, rumsligttemporala arkitekturer med mera. Här använder vi ett enkelt framåtriktat neuralt nätverk utvecklat av Martinez et al, vilket är möjligt tack vare den stora mängden data som är tillgänglig hos Tracab.
|
293 |
Spherically-actuated platform manipulator with passive prismatic jointsNyzen, Ronald A. January 2002 (has links)
No description available.
|
294 |
An Examination of Teacher Bias in Special Education Referrals Based Upon Student Race and GenderBolden, Adonis J. 05 August 2009 (has links)
No description available.
|
295 |
Разработка приложения оценки позы человека для контроля правильности выполнения фитнес-упражнений : магистерская диссертация / Development of an application for human pose estimation to monitor the correctness of performing fitness exercisesЧермных, Д. М., Chermnykh, D. M. January 2023 (has links)
В области компьютерного зрения оценка позы человека приобретает все большее значение. Это одна из самых привлекательных областей исследований, и она вызывает большой интерес благодаря своей полезности и гибкости в самых разных областях, включая здравоохранение, игры, дополненную реальность, виртуальные тренировки и спорт. На ряду с этим люди все чаще начинают заниматься спортом. А в спорте травмы неизбежны. В данной статье предлагается приложение для оценки выполнения фитнес-упражнений, которое контролирует правильность техники и дает обратную связь по ее исправлению, что помогает уменьшить травматизм при занятиях. Предварительно обученная модель MediaPipe использовалась для оценки поз, по результатам которой вычисляются углы между конкретными суставами. / In the field of computer vision, human pose estimation is becoming increasingly important. This is one of the most attractive areas of research, and it is of great interest due to its usefulness and flexibility in a wide variety of fields, including healthcare, games, augmented reality, virtual training, and sports. Along with this, people are increasingly starting to do sports. And in sports, injuries are inevitable. This article offers an application for evaluating the performance of fitness exercises, which monitors the correctness of the technique and gives feedback on its correction, which helps to reduce injuries during classes. A pre-trained MediaPipe model was used to evaluate poses, based on the results of which the angles between specific joints are calculated.
|
296 |
Continuous Balance Evaluation by Image Analysis of Live Video : Fall Prevention Through Pose Estimation / Kontinuerlig Balansutvärdering Genom Bildanalys av Video i Realtid : Fallprevention Genom KroppshållningsestimationRuneskog, Henrik January 2021 (has links)
The deep learning technique Human Pose Estimation (or Human Keypoint Detection) is a promising field in tracking a person and identifying its posture. As posture and balance are two closely related concepts, the use of human pose estimation could be applied to fall prevention. By deriving the location of a persons Center of Mass and thereafter its Center of Pressure, one can evaluate the balance of a person without the use of force plates or sensors and solely using cameras. In this study, a human pose estimation model together with a predefined human weight distribution model were used to extract the location of a persons Center of Pressure in real time. The proposed method utilized two different methods of acquiring depth information from the frames - stereoscopy through two RGB-cameras and with the use of one RGB-depth camera. The estimated location of the Center of Pressure were compared to the location of the same parameter extracted while using the force plate Wii Balance Board. As the proposed method were to operate in real-time and without the use of computational processor enhancement, the choice of human pose estimation model were aimed to maximize software input/output speed. Thus, three models were used - one smaller and faster model called Lightweight Pose Network, one larger and accurate model called High-Resolution Network and one model placing itself somewhere in between the two other models, namely Pose Residual Network. The proposed method showed promising results for a real-time method of acquiring balance parameters. Although the largest source of error were the acquisition of depth information from the cameras. The results also showed that using a smaller and faster human pose estimation model proved to be sufficient in relation to the larger more accurate models in real-time usage and without the use of computational processor enhancement. / Djupinlärningstekniken Kroppshållningsestimation är ett lovande medel gällande att följa en person och identifiera dess kroppshållning. Eftersom kroppshållning och balans är två närliggande koncept, kan användning av kroppshållningsestimation appliceras till fallprevention. Genom att härleda läget för en persons tyngdpunkt och därefter läget för dess tryckcentrum, kan utvärdering en persons balans genomföras utan att använda kraftplattor eller sensorer och att enbart använda kameror. I denna studie har en kroppshållningsestimationmodell tillsammans med en fördefinierad kroppsviktfördelning använts för att extrahera läget för en persons tryckcentrum i realtid. Den föreslagna metoden använder två olika metoder för att utvinna djupseende av bilderna från kameror - stereoskopi genom användning av två RGB-kameror eller genom användning av en RGB-djupseende kamera. Det estimerade läget av tryckcentrat jämfördes med läget av samma parameter utvunnet genom användning av tryckplattan Wii Balance Board. Eftersom den föreslagna metoden var ämnad att fungera i realtid och utan hjälp av en GPU, blev valet av kroppshållningsestimationsmodellen inriktat på att maximera mjukvaruhastighet. Därför användes tre olika modeller - en mindre och snabbare modell vid namn Lightweight Pose Network, en större och mer träffsäker modell vid namn High-Resolution Network och en model som placerar sig någonstans mitt emellan de två andra modellerna gällande snabbhet och träffsäkerhet vid namn Pose Resolution Network. Den föreslagna metoden visade lovande resultat för utvinning av balansparametrar i realtid, fastän den största felfaktorn visade sig vara djupseendetekniken. Resultaten visade att användning av en mindre och snabbare kroppshållningsestimationsmodellen påvisar att hålla måttet i jämförelse med större och mer träffsäkra modeller vid användning i realtid och utan användning av externa dataprocessorer.
|
297 |
Noggrannhet inom projicerad förstärkt verklighet / Accuracy within projected augmented realityRizal, Richie, Bouyaji, Raffi January 2022 (has links)
Interaktiv projicerad förstärkt verklighet är ett delområde inom projicerad förstärktverklighet, där interaktiviteten handlar om att projicera virtuelldata på en entitet somär rörlig. Denna projektion kan åstadkommas genom att använda en kalibrerad projektor-djupkamerasystem som detekterar entitet med hjälp av datorseende. Dettainteraktiva system har varierande antal tillämpningsområden, dock framkommer enkritisk problemformulering, vilket är noggrannheten för dessa system. Noggrannheten i detta fall är hur korrekt projektionen sker på den specifika entiteten, noggrannheten är därför en viktig aspekt för att validera ifall vissa tillämpningar är möjliga implementera. Lösningen för detta problem är att implementera interaktiv projicerad förstärkt verklighet och utföra prototyptester med det implementerade systemet och sedan vidare analysera noggrannheten med testdata. Prototypen kalibrerasmed befintliga verktyg från tidigare studier, detekterar med hjälp av positionsuppskattning och kan sedan projicera punkter på specifika kroppsdelar som även följerpersonen vid rörelse. Resultatet som framkom blev en prototyp som testades för noggrannheten. Testernasker med hjälp av datorseende för att extrahera mätdata såsom projicerade punktenoch förväntade punkten. Från analysen av testdata framkom det att projektionensnoggrannhet är lämplig för tillämpningar som inte kräver exceptionell noggrannhet,såsom nöje, konst, spel och med mera. Ytterligare forskning krävs för användningsområden som kräver exceptionell noggrannhet som tillämpningar inom sjukvård ochkirurgi. / Interactive projected augmented reality is a subfield within projected augmented reality, where the interactivity is about projecting virtual data onto an entity that canpotentially be in movement. This projection can be accomplished by using a calibrated projector-depth camera system that detects entities using computer vision.This interactive system has a varying number of application areas; however, a criticalproblem emerges, which is the accuracy of these systems. The accuracy in this caseis how correctly the projection takes place on the specific entity, the accuracy istherefore an important aspect to validate if certain applications are possible to implement correctly. The solution for this problem is by implementing interactive projectedaugmented reality and perform prototype tests with the implemented system andthen further analyzing the accuracy with test data. The prototype is calibrated withexisting tools from previous studies, detects using pose detection, which can thenproject points on specific body parts that also follows the person during movement.The result that got developed was a prototype that was tested for accuracy. The testsare done using computer vision to extract measurement data such as the projectedpoint and the expected point. The result from the analysis of the test data showedthat the accuracy of the projection is suitable for applications that do not requireexceptional accuracy, such as entertainment, art, games and so on. Further research is required for applications that require exceptional accuracy such ashealthcare and surgical applications.
|
298 |
Pose Estimation and Structure Analysis of Image SequencesHedborg, Johan January 2009 (has links)
Autonomous navigation for ground vehicles has many challenges. Autonomous systems must be able to self-localise, avoid obstacles and determine navigable surfaces. This thesis studies several aspects of autonomous navigation with a particular emphasis on vision, motivated by it being a primary component for navigation in many high-level biological organisms. The key problem of self-localisation or pose estimation can be solved through analysis of the changes in appearance of rigid objects observed from different view points. We therefore describe a system for structure and motion estimation for real-time navigation and obstacle avoidance. With the explicit assumption of a calibrated camera, we have studied several schemes for increasing accuracy and speed of the estimation.The basis of most structure and motion pose estimation algorithms is a good point tracker. However point tracking is computationally expensive and can occupy a large portion of the CPU resources. In thisthesis we show how a point tracker can be implemented efficiently on the graphics processor, which results in faster tracking of points and the CPU being available to carry out additional processing tasks.In addition we propose a novel view interpolation approach, that can be used effectively for pose estimation given previously seen views. In this way, a vehicle will be able to estimate its location by interpolating previously seen data.Navigation and obstacle avoidance may be carried out efficiently using structure and motion, but only whitin a limited range from the camera. In order to increase this effective range, additional information needs to be incorporated, more specifically the location of objects in the image. For this, we propose a real-time object recognition method, which uses P-channel matching, which may be used for improving navigation accuracy at distances where structure estimation is unreliable. / Diplecs
|
299 |
Assessment of a Low Cost IR Laser Local Tracking Solution for Robotic OperationsDu, Minzhen 14 May 2021 (has links)
This thesis aimed to assess the feasibility of using an off-the-shelf virtual reality tracking system as a low cost precision pose estimation solution for robotic operations in both indoor and outdoor environments. Such a tracking solution has the potential of assisting critical operations related to planetary exploration missions, parcel handling/delivery, and wildfire detection/early warning systems. The boom of virtual reality experiences has accelerated the development of various low-cost, precision indoor tracking technologies. For the purpose of this thesis we choose to adapt the SteamVR Lighthouse system developed by Valve, which uses photo-diodes on the trackers to detect the rotating IR laser sheets emitted from the anchored base stations, also known as lighthouses. Some previous researches had been completed using the first generation of lighthouses, which has a few limitations on communication from lighthouses to the tracker. A NASA research has cited poor tracking performance under sunlight. We choose to use the second generation lighthouses which has improved the method of communication from lighthouses to the tracker, and we performed various experiments to assess their performance outdoors, including under sunlight. The studies of this thesis have two stages, the first stage focused on a controlled, indoor environment, having an Unmanned Aerial Vehicle (UAS) perform repeatable flight patterns and simultaneously tracked by the Lighthouse and a reference indoor tracking system, which showed that the tracking precision of the lighthouse is comparable to the industrial standard indoor tracking solution. The second stage of the study focused on outdoor experiments with the tracking system, comparing UAS flights between day and night conditions as well as positioning accuracy assessments with a CNC machine under indoor and outdoor conditions. The results showed matching performance between day and night while still comparable to industrial standard indoor tracking solution down to centimeter precision, and matching simulated CNC trajectory down to millimeter precision. There is also some room for improvement in regards to the experimental method and equipment used, as well as improvements on the tracking system itself needed prior to adaptation in real-world applications. / Master of Science / This thesis aimed to assess the feasibility of using an off-the-shelf virtual reality tracking system as a low cost precision pose estimation solution for robotic operations in both indoor and outdoor environments. Such a tracking solution has the potential of assisting critical operations related to planetary exploration missions, parcel handling/delivery, and wildfire detection/early warning systems. The boom of virtual reality experiences has accelerated the development of various low-cost, precision indoor tracking technologies. For the purpose of this thesis we choose to adapt the SteamVR Lighthouse system developed by Valve, which uses photo-diodes on the trackers to detect the rotating IR laser sheets emitted from the anchored base stations, also known as lighthouses. Some previous researches had been completed using the first generation of lighthouses, which has a few limitations on communication from lighthouses to the tracker. A NASA research has cited poor tracking performance under sunlight. We choose to use the second generation lighthouses which has improved the method of communication from lighthouses to the tracker, and we performed various experiments to assess their performance outdoors, including under sunlight. The studies of this thesis have two stages, the first stage focused on a controlled, indoor environment, having an Unmanned Aerial Vehicle (UAS) perform repeatable flight patterns and simultaneously tracked by the Lighthouse and a reference indoor tracking system, which showed that the tracking precision of the lighthouse is comparable to the industrial standard indoor tracking solution. The second stage of the study focused on outdoor experiments with the tracking system, comparing UAS flights between day and night conditions as well as positioning accuracy assessments with a CNC machine under indoor and outdoor conditions. The results showed matching performance between day and night while still comparable to industrial standard indoor tracking solution down to centimeter precision, and matching simulated CNC trajectory down to millimeter precision. There is also some room for improvement in regards to the experimental method and equipment used, as well as improvements on the tracking system itself needed prior to adaptation in real-world applications.
|
300 |
SEGUIMIENTO DE PERSONAS APLICANDO RESTRICCIONES CINEMÁTICAS BASADAS EN MODELOS DE CUERPOS RÍGIDOS ARTICULADOSMartínez Bertí, Enrique 01 September 2017 (has links)
The present thesis deals with the study of vision techniques for the detection of human pose based on the analysis of a single image, as well as the tracking of these poses along a sequence of images.
It is proposed to model the human pose by four kinematic chains that model the four articulated extremities. These kinematic chains and head remain attached to the body. The four kinematic chains are composed by three keypoints. Therefore, the model initially has a total of $14$ parts.
In this thesis it is proposed to modify the technique called Deformable Parts Model (DPM), adding the depth channel. Initially, the DPM model was defined over three RGB channel images. While in this thesis it is proposed to work on images of four RGBD channels, so the proposed extension is called 4D-DPM. The experiments performed with 4D-DPM demonstrate an improvement in the accuracy of pose detection with respect to the initial DPM model, at the cost of increasing its computational cost when treating an additional channel.
On the other hand, it is defined to reduce the previous computational cost by simplifying the model that defines the human pose. The idea is to reduce the number of variables to be detected with the 4D-DPM model, so that the suppressed variables can be calculated from the detected variables using inverse kinematics models based on dual quaternions.
In addition, it is proposed to use a particle filter models to continue improving the accuracy of detection of human poses along a sequence of images.
Considering the problem of detection and monitoring of human body pose along a video sequence, this thesis proposes the use of the following method.
1. Camara calibration. RGBD image processing. Subtraction of the image background with the MSER method.
2. 4D-DPM: method used to detect the keypoints (variables of the pose model) within an image.
3. Particle filters: this type of filter is designed to track the keypoints over time and correct the data obtained by the sensor.
4. Inverse kinematic modeling: the control of kinematic chains is performed with the help of dual cuaternions in order to obtain the complete pose model of the human body.
The overall contribution of this thesis is the proposal of the previous method that, combining the previous methods, is able to improve the accuracy in the detection and the follow up of the human body pose in a video sequence, also reducing its computational cost .
This is possible due to the combination of the 4D-DPM method with the use of inverse kinematics techniques. The original DPM method should detect $14$ point of interest on an RGB image to estimate the human pose. However, the proposed method, where a point of interest for each limb is removed, must detect $10$ point of interest on an RGBD image. Subsequently, the eliminated $4$ point of interest are calculated by using inverse kinematics methods from the calculated $10$ point of interest.
To solve the problem of inverse kinematics a dual quaternions methods is proposed for each of the $4$ kinematic chains that model the extremities of the skeleton of the human body.
The particle filter is applied over the time sequence of the 10 points of interest of the posture model detected through the 4D-DPM method. To design these particle filters it is proposed to add the following restrictions to weight the particles generated:
1. Restrictions on joint limits.
2. Softness restrictions.
3. Collision detection.
4. Projection of poly-spheres / La presente tesis trata sobre el estudio de técnicas de visión para la detección de la postura del esqueleto del cuerpo humano basada en el análisis de una sola imagen, además del seguimiento de estas posturas a lo largo de una secuencia de imágenes.
Se propone modelar la postura del esqueleto cuerpo humano mediante cuatro cadenas cinemáticas que modelan las cuatro extremidades articuladas. Estas cadenas cinemáticas y la cabeza permanecen unidas al cuerpo. Las cuatro cadenas cinemáticas se componen de tres puntos de interés. Por lo tanto, el modelo inicialmente dispone de un total de 14 puntos de interés.
En esta tesis se propone modificar la técnica denominada Deformable Parts Model (DPM), añadiendo el canal de profundidad denominado ``Depth''. Inicialmente el modelo DPM se definió sobre imágenes de tres canales RGB. Mientras que en esta tesis se propone trabajar sobre imágenes de cuatro canales RGBD, por ello a la ampliación propuesta se le denomina 4D-DPM.
Por otra parte, se propone reducir el coste computacional anterior simplificando el modelo que define la postura del cuerpo humano. La idea es reducir el número de variables a detectar con el modelo 4D-DPM, de tal manera que las variables suprimidas se puedan calcular a partir de las variables detectadas, utilizando modelos de cinemática inversa basados en cuaterniones duales. Los experimentos realizados demuestran que la combinación de estas dos técnicas permite, reduciendo el coste computacional del método original DPM, mejorar la precisión de la detección de postura debido a la información extra del canal de profundidad.
Adicionalmente, se propone utilizar modelos de filtros de partículas para continuar mejorando la precisión de la detección de las posturas humanas a lo largo de una secuencia de imágenes.
Atendiendo al problema de detección y seguimiento de las postura del esqueleto del cuerpo humano a lo largo de una secuencia de vídeo, esta tesis propone el uso del siguiente método.
1. Calibración de cámaras. Procesamiento de imágenes RGBD. Sustracción del fondo de la imagen con el método MSER.
2. 4D-DPM: método utilizado para detectar los puntos de interés (variables del modelo de postura) dentro de una imagen.
3. Filtros de partículas: se diseña este tipo de filtros para realizar el seguimiento de los puntos de interés a lo largo del tiempo y corregir los datos obtenidos por el sensor.
4. Modelado cinemático inverso: se realiza el control de cadenas cinemáticas con la ayuda de cuaterniones duales con el fin de obtener el modelo completo de la postura del esqueleto del cuerpo humano.
La contribución global de esta tesis es la propuesta del método anterior que, combinando los métodos anteriores, es capaz de mejorar la precisión en la detección y el seguimiento de la postura del esqueleto del cuerpo humano en una secuencia de vídeo, reduciendo además su coste computacional.
El método original DPM debe detectar 14 puntos de interés sobre una imagen RGB para estimar la postura de un cuerpo humano. Sin embargo, el método propuesto debe detectar 10 puntos de interés sobre una imagen RGBD. Posteriormente, los 4 puntos de interés eliminados se calculan mediante la utilización de métodos de cinemática inversa a partir de los 10 puntos de interés calculados.
Para resolver el problema de la cinemática inversa se propone utilizar cuaterniones duales para cada una de las 4 cadenas cinemáticas que modelan las extremidades del esqueleto del cuerpo humano.
El filtro de partículas se aplica sobre la secuencia temporal de los 10 puntos de interés del modelo de postura detectados a través del método 4D-DPM. Para diseñar estos filtros de partículas se propone añadir las siguientes restricciones, explicadas en la memoria, para ponderar las partículas generadas:
1. Restricciones en los límites de articulaciones.
2. Restricciones de suavidad.
3. Detección de colisiones.
4. Proyección de las poli-esferas. / La present tesi tracta sobre l'estudi de tècniques de visió per a la detecció de la postura de l'esquelet del cos humà basada en l'anàlisi d'una sola imatge, a més del seguiment d'estes postures al llarg d'una seqüència d'imatges.
Es proposa modelar la postura de l'esquelet del cos humà per mitjà de quatre cadenes cinemàtiques que modelen les quatre extremitats articulades. Estes cadenes cinemàtiques i el cap romanen unides al cos. Les quatre cadenes cinemàtiques es componen de tres punts d'interés. Per tant, el model inicialment disposa d'un total de $14$ punts d'interés.
En esta tesi es proposa modificar la tècnica denominada Deformable Parts Model (DPM) , afegint el canal de profunditat denominat ``Depth''. Inicialment el model DPM es va definir sobre imatges de tres canals RGB. Mentres que en esta tesi es proposa treballar sobre imatges de quatre canals RGBD, per això a l'ampliació proposada se la denomina 4D-DPM.
D'altra banda, es proposa reduir el cost computacional anterior simplificant el model que definix la postura del cos humà. La idea és reduir el nombre de variables a detectar amb el model 4D-DPM, de tal manera que les variables suprimides es puguen calcular a partir de les variables detectades, utilitzant models de cinemàtica inversa basats en quaternions duals. Els experiments realitzats demostren que la combinació d'estes dos tècniques permet, reduint el cost computacional del mètode original DPM, millorar la precisió de la detecció de la postura degut a la informació extra del canal de profunditat.
Addicionalment, es proposa utilitzar models de filtres de partícules per a continuar millorant la precisió de la detecció de les postures humanes al llarg d'una seqüència d'imatges.
Atenent al problema de detecció i seguiment de les postura de l'esquelet del cos humà al llarg d'una seqüència de vídeo, esta tesi proposa l'ús del següent mètode.
1. Calibratge de càmeres. Processament d'imatges RGBD. Sostracció del fons de la imatge amb el mètode MSER.
2. 4D-DPM: mètode utilitzat per a detectar els punts d'interés (variables del model de postura) dins d'una imatge.
3. Filtres de partícules: es dissenya este tipus de filtres per a realitzar el seguiment dels punts d'interés al llarg del temps i corregir les dades obtingudes pel sensor.
4. Modelatge cinemàtic invers: es realitza el control de cadenes cinemàtiques amb l'ajuda de quaternions duals a fi d'obtindre el model complet de l'esquelet del cos humà.
La contribució global d'esta tesi és la proposta del mètode anterior que, combinant els mètodes anteriors, és capaç de millorar la precisió en la detecció i el seguiment de la postura de l'esquelet del cos humà en una seqüència de vídeo, reduint a més el seu cost computacional.
Açò és possible a causa de la combinació del mètode 4D-DPM amb la utilització de tècniques de cinemàtica inversa. El mètode original DPM ha de detectar 14 punts d'interés sobre una imatge RGB per a estimar la postura d'un cos humà. No obstant això, el mètode proposat ha de detectar 10 punts d'interés sobre una imatge RGBD. Posteriorment, els 4 punts d'interés eliminats es calculen per mitjà de la utilització de mètodes de cinemàtica inversa a partir dels 10 punts d'interés calculats.
Per a resoldre el problema de la cinemàtica inversa es proposa utilitzar quaternions duals per a cada una de les 4 cadenes cinemàtiques que modelen les extremitats de l'esquelet del cos humà.
El filtre de partícules s'aplica sobre la seqüència temporal dels 10 punts d'interés del model de postura detectats a través del mètode 4D-DPM. Per a dissenyar estos filtres de partícules es proposa afegir les següents restriccions per a ponderar les partícules generades:
1. Restriccions en els límits d'articulacions.
2. Restriccions de suavitat.
3. Detecció de col·lisions.
4. Projecció de les poli-esferes. / Martínez Bertí, E. (2017). SEGUIMIENTO DE PERSONAS APLICANDO RESTRICCIONES CINEMÁTICAS BASADAS EN MODELOS DE CUERPOS RÍGIDOS ARTICULADOS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86159
|
Page generated in 0.056 seconds