Spelling suggestions: "subject:"most transcriptional regulation"" "subject:"cost transcriptional regulation""
61 |
Les protéines Staufen et leurs rôles dans la régulation posttranscriptionnelle de l’expression des gènes, la réponse aux dommages à l’ADN et le cycle cellulaireTrépanier, Véronique 03 1900 (has links)
Les différents mécanismes de régulation posttranscriptionnelle de l’expression des
gènes sont de plus en plus reconnus comme des processus essentiels dans divers phénomènes
physiologiques importants, comme la prolifération cellulaire et la réponse aux dommages à
l’ADN. Deux des protéines impliquées dans ce type de régulation sont Staufen1 (Stau1) et
Staufen2 (Stau2). Elles sont des protéines de liaison à l’ARN double brin qui contribuent au
transport de l’ARN messager (ARNm), au contrôle de la traduction, à l’épissage alternatif et
sont responsables de la dégradation de certains ARNm spécifiques. Les protéines Staufen
peuvent en effet s’associer à des ARNm bien précis, d’autant plus que, majoritairement, Stau1
et Stau2 ne se retrouvent pas en complexe avec les mêmes cibles. De nombreuses évidences
récentes montrent l’implication de divers mécanismes de régulation posttranscriptionnelle
dans la réponse aux dommages à l’ADN, plusieurs protéines de liaison à l’ARN y participant
d’ailleurs. De façon importante, cette réponse dicte un ou plusieurs destin(s) à la cellule qui
doit réagir à la suite de dommages à l’intégrité de son ADN: réparation de l’ADN, arrêt de la
prolifération cellulaire, apoptose. Nous avons donc fait l’hypothèse que l’expression de Stau1
et/ou de Stau2 pourrait être affectée en réponse à un stress génotoxique, ce qui pourrait avoir
comme conséquence de moduler l’expression et/ou la stabilité de leurs ARNm cibles. De
même, notre laboratoire a récemment observé que l’expression de Stau1 varie pendant le cycle
cellulaire, celle-ci étant plus élevée jusqu’au début de la mitose (prométaphase), puis elle
diminue alors que les cellules complètent leur division. Par conséquent, nous avons fait
l’hypothèse que Stau1 pourrait lier des ARNm de façon différentielle dans des cellules
bloquées en prométaphase et dans des cellules asynchrones.
D’un côté, en employant la camptothécine (CPT), une drogue causant des dommages à
l’ADN, pour traiter des cellules de la lignée de cancer colorectal HCT116, nous avons observé
que seule l’expression de Stau2 est réduite de façon considérable, tant au niveau de la protéine
que de l’ARNm. L’utilisation d’autres agents cytotoxiques a permis de confirmer cette
observation initiale. De plus, nous avons constaté que l’expression de Stau2 est touchée même
dans des conditions n’engendrant pas une réponse apoptotique, ce qui suggère que cette déplétion de Stau2 est possiblement importante pour la mise en place d’une réponse
appropriée aux dommages à l’ADN. D’ailleurs, la surexpression de Stau2 conjointement avec
le traitement à la CPT entraîne un retard dans l’induction de l’apoptose dans les cellules
HCT116. Nous avons aussi montré que la diminution de l’expression de Stau2 est due à une
régulation de sa transcription en réponse au stress génotoxique, ce pourquoi une région
minimale du promoteur putatif de Stau2 est nécessaire. Également, nous avons identifié que le
facteur de transcription E2F1, couramment impliqué dans la réponse aux dommages à l’ADN,
peut contrôler l’expression de Stau2. Ainsi, E2F1 permet une augmentation de l’expression de
Stau2 dans des cellules non traitées, mais cette hausse est abolie dans des cellules traitées à la
CPT, ce qui suggère que la CPT pourrait agir en inhibant l’activation transcriptionnelle de
Stau2 par E2F1. Enfin, nous avons observé que certains ARNm associés à Stau2, et codant
pour des protéines impliquées dans la réponse aux dommages à l’ADN et l’apoptose, sont
exprimés différemment dans des cellules traitées à la CPT et des cellules non traitées.
D’un autre côté, nous avons identifié les ARNm associés à Stau1 lors de la
prométaphase, alors que l’expression de Stau1 est à son niveau le plus élevé pendant le cycle
cellulaire, grâce à une étude à grande échelle de micropuces d’ADN dans des cellules
HEK293T. Nous avons par la suite confirmé l’association entre Stau1 et certains ARNm
d’intérêts, donc codant pour des protéines impliquées dans la régulation de la prolifération
cellulaire et/ou le déroulement de la mitose. Une comparaison de la liaison de ces ARNm à
Stau1 dans des cellules bloquées en prométaphase par rapport à des cellules asynchrones nous
a permis de constater une association préférentielle dans les cellules en prométaphase. Ceci
suggère une augmentation potentielle de la régulation de ces ARNm par Stau1 à ce moment du
cycle cellulaire.
Les données présentées dans cette thèse indiquent vraisemblablement que la régulation
posttranscriptionnelle de l’expression génique contrôlée par les protéines Staufen se fait en
partie grâce à la modulation de l’expression de Stau1 et de Stau2 en fonction des conditions
cellulaires. Nous envisageons alors que cette variation de l’expression des protéines Staufen
ait des conséquences sur des sous-ensembles d’ARNm auxquels elles sont liées et que de cette façon, elles jouent un rôle pour réguler des processus physiologiques essentiels comme la
réponse aux dommages à l’ADN et la progression dans le cycle cellulaire. / The various mecanisms of post-transcriptional regulation of gene expression are more
and more recognized as essential processes in diverse important physiological phenomenons,
like cell proliferation and the DNA damage response (DDR). Two of the proteins implicated
in this type of regulation are Staufen1 (Stau1) and Staufen2 (Stau2). They are double-stranded
RNA binding proteins contributing to messenger RNA (mRNA) transport, translation control,
alternative splicing and are responsible for the degradation of some specific mRNAs. The
Staufen proteins are indeed able to associate with particular mRNAs. Interestingly, Stau1 and
Stau2 predominantly form complexes with different targets. Recent evidences show the
implication of various post-transcriptional regulation mecanisms in the DDR, moreover
several RNA binding proteins are involved. Importantly, this response dictates one or several
cell fates following damage to the integrity of the cell’s DNA: DNA repair, cell proliferation
arrest, apoptosis. We hypothesized that Stau1 and/or Stau2 expression could be affected in
response to genotoxic stress, which could consequently modulate the expression and/or the
stability of their mRNA targets. Also, our laboratory has recently observed that Stau1
expression varies during the cell cycle. It is elevated up to the beginning of mitosis
(prometaphase) and it decreases as cells complete their division. We therefore hypothesized
that Stau1 could differentially bind mRNAs in cells blocked in prometaphasis and in
asynchronous cells.
On the one hand, by using camptothecin (CPT), a DNA damaging agent, to treat cells
from the colorectal cancer cell line HCT116, we observed that only the expression of Stau2 is
considerably reduced, both at the level of the protein and that of the mRNA. The use of other
cytotoxic agents allowed us to confirm this initial observation. We also noted that Stau2
expression is down-regulated even in conditions that do not induce apoptosis, suggesting that
the decrease in Stau2 expression may be required for a proper DDR. Indeed, Stau2 overexpression
together with the CPT treatment causes a delay in apoptosis induction in HCT116
cells. We also showed that Stau2 down-regulation is due to the regulation of its transcription
in response to the genotoxic stress, which necessitates a minimal region in Stau2’s putative promoter. Besides, we identified the E2F1 transcription factor, commonly implicated in the
DDR, as a regulator of Stau2 expression. E2F1 thus stimulates an increase in Stau2 expression
in non-treated cells, but this up-regulation is abolished in CPT-treated cells, which suggests
that CPT could act by inhibiting Stau2 transcriptional activation by E2F1. Finally, we
observed that some Stau2-associated mRNAs, which code for proteins implicated in the DDR
and apoptosis, are differentially expressed in CPT-treated cells compared to non-treated cells.
On the other hand, we identified Stau1-associated mRNAs during prometaphase, when
Stau1 expression is at its highest level in the cell cycle, by performing a large-scale study
using DNA microarrays in HEK293T cells. We subsequently confirmed the association
between Stau1 and some mRNAs of interest, mainly coding for proteins involved in the
regulation of cell proliferation and/or mitosis progression. A comparison of the association
between Stau1 and these mRNAs in prometaphase-blocked cells with that in asynchronous
cells allowed us to notice a preferential association in prometaphase-blocked cells. This
suggests a potential increase of the regulation of these mRNAs by Stau1 at that point of the
cell cycle.
The data presented in this thesis indicate that in all likelihood the post-transcriptional
regulation of gene expression controlled by the Staufen proteins happens in part thanks to the
modulation of Stau1 and Stau2 expression according to the cellular conditions. We then
contemplate that this fluctuation in Staufen proteins expression has consequences on mRNA
subsets with which they associate, and that this may mean they have an important role to play
in regulating essential physiological processes like DDR and cell cycle progression.
|
62 |
Characterization and search for virulence-related factors in “Classical” and “New” Brucella species / Caractérisation et recherche de facteurs liés à la virulence dans les espèces "classiques" et "nouvelles" de BrucellaSaadeh, Bashir 12 September 2013 (has links)
L'étude qu'on a entreprise a pour but d'analyser les facteurs de virulence des espèces "Classiques" et "nouvelles" de Brucella. Dans cette perspective, on a analysé les génomes des espèces récemment découvertes : Brucella inopinata BO1 et Brucella inopinata-like BO2, isolés pour la première fois de patients humains sans réservoir animal connu. On a découvert que ces deux espèces possèdent des profils de restriction uniques. De plus, BO2 possède deux chromosomes de taille identique, un profil jamais décrit pour une autre espèce de Brucella. L'analyse de la réplication intracellulaire de ces deux espèces révèle que BO2 ne se réplique pas dans les macrophages humains et murins alors que BO1 se réplique d'une façon similaire à Brucella suis 1330, ce qui confirme la potentielle implication de BO1 dans la pathogenèse chez l'homme. Sur un autre niveau d'analyse, on a été à la recherche de facteurs de virulence potentiels dans d'autres espèces de Brucella notamment Brucella microti et Brucella suis sur les niveaux génomique et post-transcriptionnel. Sur le niveau génomique, on a découvert que le système GAD (glutamate decarboxylase) confère une résistance à l'acidité à Brucella microti lors de son passage dans l'estomac. Sur le niveau post-transcriptionnel, on a isolé, séquencé et identifié les petits ARNs noncodant associés à la protéine chaperone Hfq, qui joue un rôle important dans la virulence de Brucella. / We have undertaken in this study a multidimensional analysis of the virulence factors of "Classical" and new "Brucella species". In this objective, we have analysed the genomes of newly described species Brucella inopinata BO1 and Brucella inopinata-like BO2 isolated for the first time from human patients with no known animal reservoir. We found that these two species have unique restriction profiles. In addition, BO2 has a unique chromosomal distribution with two chromosomes of the same size, never seen before in Brucella. Analysis of the intracellular replication of these strains reveals that BO2 is unable to replicate in neither human nor mouse macrophages while BO1 successfully entered and replicated as efficiently as Brucella suis 1330 confirming the potential virulence of this species for humans. On an other level of analysis, we looked for potential virulence factors in other Brucella species including Brucella microti and Brucella suis at the genomic and post-transcriptional level. At the genomic level we discovered that the glutamate decarboxylase system confers resistance to acidity to Brucella miroti during its transit in the stomach. On the post-transcriptional level, we isolated, sequenced and identified small noncoding RNAs associated to the chaperone protein Hfq, known to play a role in the virulence of Brucella.
|
63 |
Role of post-transcriptional regulation in human liverChaturvedi, Praneet 11 February 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / My thesis comprises of two individual projects which revolve around the importance of post-transcriptional regulation in liver. My first project is studying the integrated miRNA – mRNA network in NAFLD. For fulfillment of the study we conducted a genome-wide study to identify microRNAs (miRs) as well as the miR-mRNA regulatory network associated with hepatic fat and NAFLD. Hepatic fat content (HFC), miR and mRNA expression were assessed in 73 human liver samples. Liver histology of 49 samples was further characterized into normal (n=33) and NAFLD (n=16). Liver miRNome and transcriptome were significantly associated with HFC and utilized to (a) build miR-mRNA association networks in NAFLD and normal livers separately based on the potential miR-mRNA targeting and (b) conduct pathway enrichment analyses. We identified 62 miRs significantly correlated with HFC (p < 0.05 with q < 0.15), with miR-518b and miR-19b being most positively and negatively correlated with HFC, respectively (p < 0.008 for both). Integrated network analysis showed that six miRs (miRs-30b*, 612, 17*, 129-5p, 204 and 20a) controlled ~ 70% of 151 HFC-associated mRNAs (p < 0.001 with q < 0.005). Pathway analyses of these HFC-associated mRNA revealed their key effect (p<0.05) in inflammation pathways and lipid metabolism. Further, significant (p<2.47e-4, Wilcoxon test) reduction in degree of negative associations for HFC-associated miRs with HFC-associated mRNAs was observed in NAFLD as compared to normal livers, strongly suggesting highly dysfunctional miR-mRNA post-transcriptional regulatory network in NAFLD. Our study makes several novel observations which provide clues to better understand the pathogenesis and potential treatment targets of NAFLD.
My second project is based on uncovering important players of post-transcriptional regulation (RBPs) and how they are associated with age and gender during healthy liver development. For this study, we performed an association analysis focusing on the expression changes of 1344 RNA Binding proteins (RBPs) as a function of age and gender in human liver. We identify 88 and 45 RBPs to be significantly associated with age and gender respectively. Experimental verification of several of the predicted associations in the mouse model confirmed our findings. Our results suggest that a small fraction of the gender-associated RBPs (~40%) are likely to be up-regulated in males. Altogether, these observations show that several of these RBPs are important developmentally conserved regulators. Further analysis of the protein interaction network of RBPs associated with age and gender based on the centrality measures like degree, betweenness and closeness revealed that several of these RBPs might be prominent players in liver development and impart gender specific alterations in gene expression via the formation of protein complexes. Indeed, both age and gender-associated RBPs in liver were found to show significantly higher clustering coefficients and network centrality measures compared to non-associated RBPs. The compendium of RBPs and this study will help us gain insight into the role of post-transcriptional regulatory molecules in aging and gender specific expression of genes.
|
64 |
Defining the functions and mechanisms of mRNA targeting to the mitotic apparatusPatel, Dhara 07 1900 (has links)
La localisation des ARNm dans différents compartiments subcellulaires est conservée dans un large éventail d'espèces et de divers types cellulaires. Le trafic est médié par l'interaction entre les protéines de liaison à l'ARN (RBP) et l'ARNm. Les RBP reconnaissent les éléments cis-régulateurs de l'ARNm, également appelés éléments de localisation. Ceux-ci sont définis par leur séquence et/ou leurs caractéristiques structurelles résidant dans la molécule d'ARNm. La localisation des ARNm est essentielle pour la résolution subcellulaire et temporelle. De plus, les ARNm se sont avérés enrichis dans de nombreux compartiments cellulaires, notamment les mitochondries, l'appareil mitotique, et le réticulum endoplasmique. En outre, des études ont démontré que les RBP et les ARNm sont associés aux structures de l'appareil mitotique. Cependant, le rôle que joue la localisation de l'ARNm au cours de la mitose reste largement inexploré. Ma thèse de doctorat vise à comprendre comment le trafic d'ARNm est impliqué lors de la mitose.
La première partie de cette thèse porte sur l'interaction post-transcriptionnelle qui se produit entre les deux ARNm, cen et ik2. Les gènes qui se chevauchent sont une caractéristique frappante de la plupart des génomes. En fait, il a été constaté que le chevauchement des séquences génomiques module différents aspects de la régulation des gènes tels que l'empreinte génomique, la transcription, l'édition et la traduction de l'ARN. Cependant, la mesure dans laquelle cette organisation influence les événements réglementaires opérant au niveau post-transcriptionnel reste incertaine. En étudiant les gènes cen et ik2 de Drosophila melanogaster, qui sont transcrits de manière convergente avec des régions 3' non traduites qui se chevauchent, nous avons constaté que la liaison physique de ces gènes est un déterminant clé dans la co-localisation de leurs ARNm aux centrosomes cytoplasmiques. Le ciblage du transcrit ik2 dépend de la présence et de l'association physique avec l'ARNm de cen, qui est le principal moteur de la co-localisation centrosomale. En interrogeant les ensembles de données de séquençage de fractionnement, nous constatons que les ARNm codés par des gènes qui se chevauchent en 3' sont plus souvent co-localisés par rapport aux paires de transcrits aléatoires. Ce travail suggère que les interactions post-transcriptionnelles des ARNm avec des séquences complémentaires peuvent dicter leur destin de localisation dans le cytoplasme.
La deuxième partie de cette thèse consiste à étudier le rôle que jouent les RBP au cours de la mitose. Auparavant, les RBP se sont avérés être associés au fuseau et aux centrosomes. Cependant, leur rôle fonctionnel au niveau de ces structures reste à étudier. Grâce à un criblage par imagerie avec plus de 300 anticorps, nous avons identifié 30 RBP localisés dans les structures mitotiques des cellules HeLa. Ensuite, pour évaluer les rôles fonctionnels de ces RBP, nous avons utilisé l'interférence ARN (ARNi) pour évaluer si la fidélité du cycle cellulaire était compromise dans les cellules HeLa et les embryons de Drosophila melanogaster. Fait intéressant, nous avons identifié plusieurs candidats RBP pour lesquels le knockdown perturbe la mitose et la localisation de l'ARNm dans les cellules HeLa. De plus, la perte des orthologues a entraîné des défauts de développement chez l'embryon de mouche. Grâce à ce travail, nous avons démontré que les RBP sont impliquées pour assurer une mitose sans erreur.
En résumé, les travaux que j'ai menés mettent en lumière l'implication de la régulation post-transcriptionnelle au cours de la mitose. En définissant les fonctions et le mécanisme de localisation des ARNm en mitose, ce travail permettra de définir de nouvelles voies moléculaires impliquées dans la régulation de la mitose. Puisque la division cellulaire non contrôlée peut mener à des maladies tel le cancer, étudier le contrôle du cycle cellulaire sous cet angle « centré sur l'ARN » peut aider à développer de nouvelles approches thérapeutiques pour trouver des solutions aux problèmes de santé. / The localization of mRNAs to different subcellular compartments is conserved in a wide range of species and diverse cell types. Trafficking is mediated by the interaction between RNA binding proteins (RBPs) and mRNA. RBPs recognize mRNA cis regulatory motifs, otherwise known as localization elements. These are defined by their sequence and/or structural features residing within the mRNA molecule. Localization of mRNAs is essential for subcellular and temporal resolution. Furthermore, mRNAs have been found to be enriched in many cellular compartments including the mitochondria, mitotic apparatus, and endoplasmic reticulum. Moreover, studies have demonstrated that RBPs and mRNAs are associated with mitotic apparatus structures. However, the role that mRNA localization plays during mitosis remains largely unexplored. My PhD thesis aims to understand how the trafficking of mRNAs is implicated during mitosis.
The first part of this thesis encompasses the post-transcriptional interaction that occurs between the two mRNAs, cen and ik2. Overlapping genes are a striking feature of most genomes. In fact, genomic sequence overlap has been found to modulate different aspects of gene regulation such as genomic imprinting, transcription, RNA editing and translation. However, the extent to which this organization influences regulatory events operating at the post-transcriptional level remains unclear. By studying the cen and ik2 genes of Drosophila melanogaster, which are convergently transcribed with overlapping 3’untranslated regions, we found that the physical linkage of these genes is a key determinant in co-localizing their mRNAs to cytoplasmic centrosomes. Targeting of the ik2 transcript is dependent on the presence and physical association with cen mRNA, which serves as the main driver of centrosomal colocalization. By interrogating global fractionation-sequencing datasets, we find that mRNAs encoded by 3’overlapping genes are more often co-localized as compared to random transcript pairs. This work suggests that post-transcriptional interactions of mRNAs with complementary sequences can dictate their localization fate in the cytoplasm.
The second part of this thesis involves investigating the role that RBPs play during mitosis. Previously, RBPs have been found to be associated with the spindle and centrosomes. However, their functional role at these structures was yet to be investigated. Through an imaging screen with >300 antibodies, we identified 30 RBPs localized to mitotic structures in HeLa cells. Then, to assess the functional roles of these RBPs, we used RNA interference (RNAi) to assess whether cell cycle fidelity was compromised in HeLa cells and Drosophila melanogaster embryos. Interestingly, we identified several RBP candidates for which the knockdown disrupted mitosis and mRNA localization in HeLa cells. Furthermore, loss of the orthologs led to developmental defects in the fly embryo. Through this work, we demonstrated that RBPs are involved in ensuring an error-free mitosis.
In summary, the work that I have conducted sheds light on the involvement of post-transcriptional regulation during mitosis. By defining the functions and mechanism of mRNA localization in mitosis, this work will help define new molecular pathways involved in mitosis regulation. As uncontrolled cell division can lead to diseases such as cancer, studying cell cycle control from this ‘RNA-centric’ angle may help to develop new therapeutic approaches to find solutions to health problems.
|
65 |
La régulation de Staufen1 dans le cycle et la prolifération cellulairesGonzalez Quesada, Yulemi 02 1900 (has links)
Staufen1 (STAU1) est une protéine de liaison à l’ARN essentielle dans les cellules non-transformées. Dans les cellules cancéreuses, le niveau d’expression de la protéine est critique et étroitement lié à des évènements d’apoptose et des altérations dans la prolifération cellulaire. Le dsRBD2 de STAU1 lie des facteurs protéiques qui sont fondamentaux pour les fonctions de la protéine, telles que la liaison aux microtubules qui garantit sa localisation au fuseau mitotique et l’interaction avec les coactivateurs de l’E3 ubiquitine-ligase APC/C, ce qui garantit la dégradation partielle de STAU1 en mitose.
Nous avons cartographié un nouveau motif F39PxPxxLxxxxL50 (motif FPL) dans le dsRBD2 de STAU1. Ce motif est fondamental pour l’interaction de la protéine avec les co-activateurs de l’APC/C, CDC20 et CDH1, et sa dégradation subséquente. Nous avons ensuite identifié un total de 15 protéines impliquées dans le processus inflammatoire qui partagent cette séquence avec STAU1. Nous avons prouvé, par des essais de co-transfection et de dégradation, que MAP4K1, l’une des protéines qui partagent ce motif, est aussi dégradé via ce motif FPL. Cependant, le motif de MAP4K1 n’est pas la cible de l’APC/C. Des techniques de biotinylation des protéines à proximité de STAU1 nous ont permis d’identifier TRIM25, une E3 ubiquitine ligase impliquée dans la régulation immunitaire et l’inflammation, comme protéine impliquée dans la dégradation de STAU1 et de MAP4K1 via le motif FPL. Ceci suggère des rôles de STAU1 dans la régulation du processus inflammatoire, ce qui est consistent avec des études récentes qui associent STAU1 à ce processus. Nous considérons que le motif FPL pourrait être à la base de la coordination de la régulation des protéines impliquées dans l’inflammation et la régulation de la réponse immune.
Nos études sur l’effet anti-prolifératif de STAU1 lorsque surexprimé dans les cellules transformées ont identifié le domaine dsRBD2 de STAU1 comme responsable de ce phénotype. Des mutants qui miment les différents états de phosphorylation de la serine 20, située dans le domaine dsRBD2, sont à la base des changements dans la régulation de la traduction et la dégradation des ARNm liés à STAU1. Ces changements dans la régulation des ARNm par STAU1 sont associés aux altérations dans la prolifération des cellules transformées observées lors de la surexpression de STAU1. Nous avons aussi découvert que, après la transfection de STAU1, la cellule déclenche rapidement des évènements d’apoptose, et que ces évènements sont aussi dépendants de l’état de phosphorylation de la sérine 20 dans dsRBD2 de STAU1. Ces résultats suggèrent que STAU1 est un senseur qui contrôle la balance entre la survie et la prolifération cellulaire et que l’état de phosphorylation de son dsRBD2 est à la base de ce contrôle.
Nos résultats indiquent que le dsRBD2 de STAU1 est le domaine de régulation du niveau d’expression protéique et un modulateurs des rôles de la protéine comme facteur post-transcriptionnel. Nous pensons que cibler la régulation de STAU1 et ses fonctions situées dans son domaine dsRBD2, serait important dans l’étude des maladies qui impliquent des événements d’apoptose, d’inflammation et de prolifération cellulaire telles que le cancer. / Staufen1 (STAU1) is an RNA-binding protein essential in untransformed cells. In cancer cells, the level of expression of the STAU1 protein is critical and it has been closely linked to events of apoptosis and to cell proliferation impairments. STAU1's dsRBD2 binds protein factors that are fundamental for the protein's functions, such as microtubules components that ensure the protein localization to the mitotic spindle and its interaction with E3 ubiquitin-ligase APC/C coactivators, which guarantees the partial degradation of STAU1 during mitosis.
By mapping a novel F39PxPxxLxxxxL50 motif (FPL motif) in the dsRBD2 of STAU1, responsible of the interaction with the co-activators of APC/C, CDC20 and CDH1, and its subsequent degradation, we were able to identify a total of 15 proteins mostly involved in the inflammatory process that share this sequence with STAU1. We proved, by co-transfection and degradation assays that, MAP4K1, one of the proteins that shares this motif, is also degraded via this FPL motif. However, we demonstrated that this motif on MAP4K1 is not the target of APC/C. Biotinylation techniques of proteins near STAU1 allowed us to identify TRIM25, an E3 ubiquitin ligase involved in immune regulation and inflammation, as a protein involved in the degradation of STAU1 and MAP4K1 via the FPL motif. This suggests roles of STAU1 in the regulation of the inflammatory events, which is consistent with recent studies that associate STAU1 with this process. We consider that the FPL motif could be at the basis of the coordination of the regulation of proteins involved in inflammation and the regulation of the immune response.
Our studies on the anti-proliferative effect of STAU1 when overexpressed in transformed cells identified the domain dsRBD2 of STAU1 as responsible for this phenotype. Mutants
8
that mimic different phosphorylation states of serine 20, located in dsRBD2, underlie changes in the regulation of translation and degradation of STAU1-linked mRNAs. These STAU1-dependent changes in mRNA regulation are associated with the proliferation impairment of transformed cells that is observed upon overexpression of STAU1. We also discovered that, after STAU1 transfection, the cell rapidly triggers apoptotic events, and that these events are also dependent on the phosphorylation state of serine 20 in dsRBD2 of STAU1. These results suggest that STAU1 is a sensor that controls the balance between cell survival and cell proliferation and that the state of phosphorylation of its dsRBD2 is the basis of this control.
Our results indicate that the dsRBD2 of STAU1 is the regulatory domain of the level of protein expression and a modulator of the protein roles as a post-transcriptional factor. We believe that targeting the regulation of STAU1 and its functions located in its dsRBD2 domain, would be important in the study of diseases that involve apoptosis, inflammation and cell proliferation events such as cancer.
|
66 |
A novel molecular relationship between PARN and PLD that, when deregulated, contributes to the aggressive phenotype of breast cancer cell lines.Miller, Taylor Elaine 09 May 2017 (has links)
No description available.
|
67 |
Développement d’outils pour l’étude in vivo de la régulation post-transcriptionnelle chez Caenorhabditis elegans / Tools developpement for in vivo post-transcriptional regulation study in Caenorhabditis elegansZniber, Ilyass 17 December 2012 (has links)
La régulation de l’expression des gènes est fondamentale pour coordonner la synthèse, l’assemblage et la localisation des complexes macromoléculaires dans les cellules. Cette expression est régulée à divers niveaux. Elle commence dans le noyau où les facteurs de transcription se lient à des séquences spécifiques d’ADN et recrutent les ARN polymérases pour la synthèse des ARN. La régulation à ce niveau est dite transcriptionnelle. Les protéines de liaison à l’ARN s’associent avec l’ARN en cours de synthèse et opèrent divers modifications comme l’addition d’une coiffe en 5’, l’épissage, l’édition et la poly-adénylation en 3’. Les transcrits sont alors exportés vers le cytoplasme où ils vont être adressés et stockés dans des régions subcellulaires. Les ARNm s’assemblent avec des facteurs de traduction et les ribosomes pour initier la synthèse protéique de manière contrôlée. Enfin, les ARNm sont dégradés. Les régulations qui touchent chacune de ces étapes sont dites post-transcriptionnelles. Le développement récent d’outils d’analyse à l’échelle génomique ont permis une meilleure compréhension globale des programmes de régulation des gènes au niveau transcriptionnel. Cependant, l’architecture globale des systèmes qui régulent les étapes post-transcriptionnelles d’expression des gènes est encore peu connue. Un tel système de régulation post-transcriptionnelle doit être contrôlé par des centaines de protéines de liaison à l’ARN et de microARN (miARN) encodés dans les génomes eucaryotes. C’est pourquoi il est important de disposer d’outils et de plateformes adaptés à l’étude de cette régulation à l’échelle génomique. Dans cette thèse, nous nous sommes intéressés à deux programmes de la régulation post-transcriptionnelle chez Caenorhabditis elegans : l’épissage alternatif et la régulation par les miARN. Nous avons utilisés des vers rapporteurs de l’épissage alternatif exprimant la double fluorescence GFP et RFP afin d’étudier l’architecture de cette régulation et l’identification ou la validation des facteurs en trans et des éléments en cis par génétique classique en utilisant la mutagenèse aléatoire, l’automatisation du crible grâce au COPAS biosorter et le séquençage des génomes entiers. Nous avons également modifiés en profondeur le module ReFlx du cytomètre en flux adapté aux organismes de grande taille (COPAS Biosorter) afin d’éliminer les problèmes de contamination et diviser par sept le temps nécessaire au traitement dans le but de mener une étude de génétique inverse à haut débit par ARN interférence. Nous avons enfin générer des lignées fluorescentes bi-colores pour étudier la régulation dépendante de la région 3’ UTR grâce aux microARN. / The regulation of gene expression is fundamental to coordinate the synthesis, assembly and localization of macromolecular complexes in cells. This expression is regulated at various levels. It begins in the nucleus where transcription factors bind to specific DNA sequences and recruit RNA polymerases to synthesize RNA. Regulation at this level is called transcriptional. RNA binding proteins associate with RNA during synthesis and operate various modifications such as the addition of a 5' cap, splicing, editing and polyadenylation at the 3'. The transcripts are then exported to the cytoplasm where they will be sent to subcellular regions and stored. mRNA are then associated with translation factors and ribosomes to initiate protein synthesis in a controlled manner. Finally, mRNAs are degraded. Regulations that affect each of these steps are called post-transcriptional regulations. The recent tools developments for genomic scale analysis have allowed a better overall understanding of gene regulation programs at the transcriptional level. However, the overall architecture of systems that regulate post-transcriptional steps of gene expression is still misunderstood. Such a system of post-transcriptional regulation must be controlled by hundreds of RNA binding proteins and microRNA (miRNA) encoded in eukaryotic genomes. This is why it is important to have tools and platforms suited to the study of the post-transcriptional regulation on a genomic scale. During this thesis, we have focused our work on two post-transcriptional regulation programs in Caenorhabditis elegans : alternative splicing and miRNAs regulation. We used GFP and RFP double fluorescent alternative splicing reporter lines to study the architecture of this regulation and to identify trans factors and cis-elements by using forward genetics, random mutagenesis, automated screen through COPAS biosorter and whole genome sequencing. We also extensively modified the ReFlx module of the COPAS to fix carry over problems and divide by seven the time required for processing in order to conduct a High throughput reverse genetic study using RNA interference. We finally generate bi-color fluorescent lines to study 3 'UTR regulation mediated by microRNAs.
|
68 |
Rôle des régulations de la stabilité des ARN messagers dans l'adaptation d'Escherichia coli à son environnement / Role of mRNA stability regulation in Escherichia coli adaptation to environmentEsquerre, Thomas 01 July 2014 (has links)
L‘adaptation des bactéries à leur environnement résulte de régulations de l’expression génique pour optimiser leur physiologie aux conditions de culture. Le contrôle de la concentration des ARNm constitue l’une de ces régulations. Il dépend à la fois des variations de transcription et de dégradation des messagers. Si ces deux mécanismes sont bien étudiés à l’échelle moléculaire chez E. coli, leurs poids respectifs sur la régulation du niveau des transcrits à l’échelle du génome restent inconnus en raison de l’absence de données omiques relatives à la dégradation des ARNm lors de changements environnementaux. D’autre part, les paramètres déterminant la stabilité des messagers sont mal identifiés et n’ont jamais été hiérarchisés.Au cours de cette thèse, la stabilité de chacun des ARNm d’E. coli a été mesurée par la détermination du stabilome. Plus précisément, le temps de demi-vie de près de 70 % de tous les messagers a pu être déterminé de façon fiable pour quatre taux de croissance différents obtenus dans les mêmes conditions de culture à l’aide de chémostats. Pour la première fois, cette étude démontre qu’une croissance bactérienne plus rapide entraîne une augmentation globale de la dégradation des transcrits. L’intégration de ces données avec les données transcriptomiques montre que même si la transcription est le mécanisme principal de régulation du niveau des messagers, la dégradation exerce un effet inverse dans la plupart des cas. De plus, le rôle de la dégradation dans le contrôle de la concentration des ARNm s’accentue de façon significative avec l’augmentation du taux de croissance et affecte particulièrement les gènes impliqués dans le métabolisme carboné central. À partir des données de stabilité générées à différents taux de croissance, des approches de biologie intégrative ont permis d’identifier et de hiérarchiser les déterminants de la dégradation des ARNm. Ainsi, la concentration des messagers qui est le principal paramètre, mais aussi le biais de codon, la longueur de la séquence codante et la présence de certains motifs de séquence déterminent la stabilité d’un ARNm. Toutefois, si la hiérarchie des déterminants identifiés reste identique avec la variation du taux de croissance, la stabilité des ARNm de certaines catégories fonctionnelles en est dépendante. Cependant, d’autres déterminants du temps de demi-vie des messagers, en particulier à fort taux de croissance, restent encore à être identifiés. La protéine CsrA, appartenant au système Csr, est un exemple de régulateur post-transcriptionnel qui contrôle positivement ou négativement l’expression d’ARNm par divers mécanismes qui peuvent modifier leur stabilité. Toutefois, l’étendue de l’action de CsrA sur la stabilité des ARNm à l’échelle omique n’a jamais été étudiée. En comparant les stabilomes et transcriptomes d’une souche sauvage et d’une souche où l’activité de CsrA est diminuée, les effets indirects transcriptionnels de CsrA ont été mesurés et de nouveaux ARNm cibles de CsrA dont la stabilité est régulée par la protéine (en majorité stabilisés) ont été identifiés. De plus, la protéine CsrD, régulateur de la stabilité des ARN non codants CsrB/C, n’est pas impliquée dans la régulation de la stabilité des ARNm, mais agit sur la transcription de nombreux gènes indépendamment de son rôle au sein du système Csr. En conclusion, ces travaux ont permis de mieux appréhender les régulations de la stabilité des ARNm, en identifiant leurs déterminants et en caractérisant leur rôle et portée dans le contrôle de la concentration des messagers. Ils soulignent en particulier l’importance de ces régulations dans le processus d’adaptation bactérien / Bacterial adaptation to environment results from regulations of gene expression to optimize cell physiology to growth conditions. Control of mRNA concentration is one of those regulations. It depends on both variations of transcription and transcript degradation. Although these two mechanisms are well defined at the molecular level in E. coli, their respective impact on mRNA level regulation is still unknown at the genome scale because of a lack of omic data on mRNA stability during changing environment. Moreover, parameters determining messenger stability are not yet clearly identified and have never been ranked.During this PhD, the stability of each of the E. coli mRNAs was measured through stabilome determination. More precisely, the half-life of around 70 % of all messengers was reliably determined at four different growth rates obtained in the same growth conditions in chemostats. For the first time, this study demonstrated that increase of growth rate led to global increase of transcript degradation. Integration of these data with transcriptomic data showed that although transcription was the main mechanism which regulated mRNA level, messenger degradation exerted an opposite effect in most of the cases. The role of messenger degradation in the control of mRNA concentration was significantly accentuated with increasing growth rate and affected particularly genes involved in central carbon metabolism. Using mRNA stability data produced at different growth rates, integrative biology approaches allowed identification and ranking of the determinants of messenger stability. mRNA concentration which was the main parameter, but also codon bias, length of the coding sequence, sequence motifs contributed to transcript stability. However, although the hierarchy of determinants remained identical with variations of growth rate, the stability of mRNAs belonging to specific functional categories differed with the growth rate. Nevertheless, other determinants of messenger half-life, in particular at high growth rates still remain to be discovered. The CsrA protein, which belongs to the Csr system, is one example of a post-transcriptional regulator. CsrA positively or negatively controls expression of several mRNAs by mechanisms able to modify transcript stability. Nevertheless, the extent of CsrA effect on mRNA stability at the omic level has never been studied. By comparing stabilomes and transcriptomes of the wild type strain with a strain with reduced CsrA activity, the indirect transcriptional effects of CsrA were measured and new mRNAs whose stability was targeted by CsrA (mostly stabilized), were identified. Moreover, the CsrD protein, a regulator of CsrB/C small RNA stability, was not involved in mRNA stability regulation, but played a role in transcriptional regulation of many genes independently of its role in the Csr system. To conclude, this work provides a better understanding of the regulation of the mRNA stability. It identifies mRNA stability determinants and characterizes the role and extent of mRNA stability regulation in the control of messenger concentration. The study underlines the importance of this regulation in the process of bacterial adaptation
|
69 |
Implication de la protéine Staufen 2 dans les voies de réponse aux dommages à l’ADNCondé, Lionel 10 1900 (has links)
De nombreuses voies de signalisation cellulaire complexes permettent de répondre à la présence de dommages à l’ADN. Cette réponse cellulaire est indispensable afin d’éviter l’accumulation de mutations pouvant éventuellement conduire à la transformation tumorale. Ces différentes voies de réponse aux dommages à l’ADN sont hautement coordonnées et sont regroupées au sein d’un mécanisme global appelé DNA damage response (DDR). Les facteurs du DDR sont régulés à plusieurs niveaux de la cascade de l’expression des gènes. De façon notable, plusieurs protéines de liaison à l’ARN (RBP) participent à la régulation de l’expression des gènes du DDR via la régulation post- transcriptionnelle de leur ARN messager. La RBP STAU2 est connue pour lier plusieurs ARNm codant pour des protéines impliquées dans le contrôle du cycle cellulaire ainsi que dans les voies du DDR. La protéine STAU2 est elle-même régulée au niveau transcriptionnel par le facteur de transcription E2F1. De récentes observations laissent penser que la kinase centrale du DDR, CHK1, pourrait être impliquée dans la régulation de la stabilité de STAU2. Par ailleurs, les conséquences cellulaires de la diminution du niveau d’expression de STAU2 sont à ce jour très peu connues.
Ce mémoire a d’abord été entrepris dans le but de mieux comprendre l’implication de la voie de la kinase CHK1 dans la régulation de la protéine de liaison à l’ARN STAU2. CHK1 est une protéine centrale des voies du DDR ainsi que du contrôle de la progression du cycle cellulaire en l’absence de dommages à l’ADN. Nos résultats montrent que la diminution de CHK1 induit une dégradation rapide de STAU2 par les caspases d’une façon indépendante de l’apoptose. Nous avons également renforcé ce lien entre STAU2 et les mécanismes de réparation des dommages à l’ADN en identifiant plusieurs protéines des voies de réparation dans l’environnement immédiat de STAU2.
D’autre part nos travaux visent à mettre en évidence les conséquences de la déplétion de STAU2 dans plusieurs types cellulaires. STAU2 étant une RBP, sa dérégulation impacte inévitablement le devenir de plusieurs ARNm. Afin de caractériser ces différentes conséquences, nous avons dans un premier temps réalisé la déplétion totale de STAU2
dans des cellules hTert-RPE par la technique de CRISPR/Cas9. Nos résultats montrent que ces cellules accumulent anormalement des dommages à l’ADN et prolifèrent plus rapidement que des cellules normales. En outre plusieurs gènes impliqués dans la réparation des dommages à l’ADN se retrouvent diminués dans ces cellules. Dans un second temps, afin de définir si cet effet est dépendant du type cellulaire, nous avons induit la diminution de l’expression de STAU2 dans des cellules IMR90. Nous avons montré que dans ce cas, la diminution de STAU2 induit un arrêt du cycle cellulaire et une entrée des cellules en sénescence.
Ainsi, les données présentées dans ce mémoire contribuent à mieux comprendre l’implication de STAU2 dans les processus cellulaires majeurs que sont la régulation du DDR et le contrôle du cycle cellulaire. / Many complex cellular pathways are induced in response to DNA damages. This cellular response is indispensable to prevent the accumulation of mutations and to avoid malignant transformation. These different pathways are highly coordinated and are organized in a global mechanism called DNA damage response (DDR). Proteins involved in the DDR are regulated at different levels of the gene expression process. Notably, several RNA binding proteins are involved in the regulation of DDR gene expression through the post-transcriptional control of their mRNA. The RBP STAU2 is known to bind various mRNAs coding for proteins involved in the DDR or cell cycle control. STAU2 is regulated at the transcriptional levels by the major transcription factor E2F1. Recent observations suggest that CHK1 could be implicated in the control of the steady-state level of STAU2. Otherwise, the cellular consequences of STAU2 downregulation remain elusive.
The purpose of this research was first to elucidate the implication of CHK1 pathway in STAU2 regulation. CHK1 is a major protein involved in the DDR regulation as well as in the control of cell cycle progression in the absence of DNA damage. Our data show that the downregulation of CHK1 rapidly leads to a caspase-dependent degradation of STAU2 independently of apoptosis. The link between STAU2 and mechanisms of DNA repair was reinforced by our BioID2 experiment that identified several proteins of the DDR in close proximity with STAU2.
On the other hand, the aim of this study was to determine the consequences of STAU2 downregulation in different cell lines. Given that STAU2 is an RBP, its dysregulation will inevitably change the fate of several mRNA. In order to increase our understanding of theses consequences, we generated an hTert-RPE1 STAU2-KO cell line using the CRISPR/Cas9 technique. Our data show that these cells accumulate DNA damage and have an increased proliferation rate. Moreover, several genes involved in the DNA repair pathway are downregulated. We also downregulated STAU2 in IMR90 to determine if the
previous observations are cell-type specifics. In the latter case, STAU2 diminution triggers cell cycle arrest and cellular senescence.
Altogether, these results contribute to improve our knowledge of STAU2 function, especially in DNA damage response pathway and in cell cycle regulation.
|
70 |
Caractérisation systématique des motifs de régulation en cis à l’échelle transcriptomique et liens avec la localisation des ARNBenoit Bouvrette, Louis Philip 04 1900 (has links)
La localisation subcellulaire de l’ARN permet un déploiement prompt et spatialement restreint autant des activités protéiques que des ARN noncodant. Le trafic d’ARN est dirigé par des éléments de séquences (sous-séquences primaires, structures secondaires), aussi appelés motifs de régulation, présents en cis à même la molécule d’ARN. Ces motifs sont reconnus par des protéines de liaisons aux ARN qui médient l’acheminement des transcrits vers des sites précis dans la cellule. Des études récentes, chez l’embryon de Drosophile, indiquent que la majorité des ARN ont une localisation subcellulaire asymétrique, suggérant l’existence d’un « code de localisation » complexe. Cependant, ceci peut représenter un exemple exceptionnel et la question demeurait, jusqu’ici, si une prévalence comparable de localisation d’ARN est observable chez des cellules standards développées en culture. De plus, des informations facilement disponibles à propos des caractéristiques de distribution topologique d’instances de motifs à travers des transcriptomes complets étaient jusqu’à présent manquantes.
Afin d’avoir un aperçu de l’étendue et des propriétés impliquées dans la localisation des ARN, nous avons soumis des cellules de Drosophile (D17) et de l’humain (HepG2) à un fractionnement biochimique afin d’isoler les fractions nucléaire, cytosolique, membranaire et insoluble. Nous avons ensuite séquencé en profondeur l’ARN extrait et analysé par spectrométrie de masse les protéines extraites de ces fractions. Nous avons nommé cette méthode CeFra-Seq. Par des analyses bio-informatiques, j’ai ensuite cartographié l’enrichissement de divers biotypes d’ARN (p. ex. ARN messager, ARN long non codant, ARN circulaire) et protéines au sein des fractions subcellulaires. Ceci a révélé que la distribution d’un large éventail d’espèces d’ARN codants et non codants est asymétrique. Une analyse des gènes orthologues entre mouche et humain a aussi démontré de fortes similitudes, suggérant que le processus de localisation est évolutivement conservé. De plus, j’ai observé des attributs (p. ex. la taille des transcrits) distincts parmi les populations d’ARN messagers spécifiques à une fraction. Finalement, j’ai observé des corrélations et anti-corrélations spécifiques entre certains groupes d’ARN messagers et leurs protéines.
Pour permettre l’étude de la topologie de motifs et de leurs conservations, j’ai créé oRNAment, une base de données d’instances présumée de sites de liaison de protéines chez des ARN codants et non codants. À partir de données de motifs de liaison protéique par RNAcompete et par RNA Bind-n-Seq, j’ai développé un algorithme permettant l’identification rapide d’instances potentielles de ces motifs dans un transcriptome complet. J’ai pu ainsi cataloguer les instances de 453 motifs provenant de 223 protéines liant l’ARN pour 525 718 transcrits chez cinq espèces. Les résultats obtenus ont été validés en les comparant à des données publiques de eCLIP.
J’ai, par la suite, utilisé oRNAment pour analyser en détail les aspects topologiques des instances présumées de ces motifs et leurs conservations évolutives relatives. Ceci a permis de démontrer que la plupart des motifs sont distribués de façon similaire entre espèces. De plus, j’ai discerné des points communs entre les sous-groupes de protéines liant des biotypes distincts ou des régions d’ARN spécifiques. La présence de tels patrons, similaires ou non, entre espèces est susceptible de refléter l’importance de leurs fonctions. D’ailleurs, l’analyse plus détaillée du positionnement d’un motif entre régions transcriptomiques comparables chez les vertébrés suggère une conservation synténique de ceux-ci, à divers degrés, pour tous les biotypes d’ARN. La topologie régionale de certaines instances de motifs répétées apparaît aussi comme évolutivement conservée et peut être importante afin de permettre une liaison adéquate de la protéine. Finalement, les résultats compilés avec oRNAment ont permis de postuler sur un nouveau rôle potentiel pour l’ARN long non codant HELLPAR comme éponge de protéines liant l’ARN.
La caractérisation systématique d’ARN localisés et de motifs de régulation en cis présentée dans cette thèse démontre comment l’intégration d’information à l’échelle transcriptomique permet d’évaluer la prévalence de l’asymétrie, les caractéristiques distinctes et la conservation évolutive de collections d’ARN. / The subcellular localization of RNA allows a rapid and spatially restricted deployment of protein and noncoding RNA activities. The trafficking of RNA is directed by sequence elements (primary subsequences, secondary structures), also called regulatory motifs, present in cis within the RNA molecule. These motifs are recognized by RNA-binding proteins that mediate the transport of transcripts to specific sites in the cell. Recent studies in the Drosophila embryo indicate that the majority of RNAs display an asymmetric subcellular localization, suggesting the existence of a complex "localization code". However, this may represent an exceptional example and the question remained, until now, whether a comparable prevalence of RNA localization is observable in standard cells grown in culture. In addition, readily available information about the topological distribution of pattern instances across full transcriptomes has been hitherto lacking.
In order to have a broad overview of the extent and properties involved in RNA localization, we subjected Drosophila (D17) and human (HepG2) cells to biochemical fractionation to isolate the nuclear, cytosolic, membrane and insoluble fractions. We then performed deep sequencing on the extracted RNA and analyzed through mass spectrometry the proteins extracted from these fractions. We named this method CeFra-Seq. Through bioinformatics analyses, I then profiled the enrichment of various RNA biotypes (e.g. messenger RNA, long noncoding RNA, circular RNA) and proteins within the subcellular fractions. This revealed the high prevalence of asymmetric distribution of both coding and noncoding RNA species. An analysis of orthologous genes between fly and human has also shown strong similarities, suggesting that the localization process is evolutionarily conserved. In addition, I have observed distinct attributes (e.g. transcript size) among fraction-specific messenger RNA populations. Finally, I observed specific correlations and anti-correlations between defined groups of messenger RNAs and the proteins they encode. To study motifs topology and their conservation, I created oRNAment, a database of putative RNA-binding protein binding sites instances in coding and noncoding RNAs. Using data from protein binding motifs assessed by RNAcompete and by RNA Bind-n-Seq experiments, I have developed an algorithm allowing their rapid identification in a complete transcriptome. I was able to catalog the instances of 453 motifs from 223 RNA-binding proteins for 525,718 transcripts in five species. The results obtained were validated by comparing them with public data from eCLIP.
I then used oRNAment to further analyze the topological aspects of these motifs’ instances and their relative evolutionary conservation. This showed that most motifs are distributed in a similar fashion between species. In addition, I have detected commonalities between the subgroups of proteins linking preferentially distinct biotypes or specific RNA regions. The presence or absence of such pattern between species is likely a reflection of the importance of their functions. Moreover, a more precise analysis of the position of a motif among comparable transcriptomic regions in vertebrates suggests a syntenic conservation, to varying degrees, in all RNA biotypes. The regional topology of certain motifs as repeated instances also appears to be evolutionarily conserved and may be important in order to allow adequate binding of the protein. Finally, the results compiled with oRNAment allowed to postulate on a potential new role for the long noncoding RNA HELLPAR as an RNA-binding protein sponge.
The systematic characterization of RNA localization and cis regulatory motifs presented in this thesis demonstrates how the integration of information at a transcriptomic scale enables the assessment of the prevalence of asymmetry, the distinct characteristics and the evolutionary conservation of RNA clusters.
|
Page generated in 0.4224 seconds