• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 53
  • 16
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Investigations on the Possible Role of Aromatic β-Glucoside Metabolism in Self-Defense in Enterobacteriaceae

Sonowal, Robert January 2013 (has links) (PDF)
Bacteria are ubiquitous in all ecosystems and are often challenged by multiple stresses such as extreme temperatures, high salt concentrations, nutrient limitation, pH variations, radiation, predation and the presence of antibiotics/toxins. The most challenging among them is predation pressure which is one of the major causes of their mortality in different niches. Bacteria have evolved different adaptive measures to counter predation. Some of them include change in shape, size, motility, and unpalatable aggregate formation. Aromatic β-glucosides such as salicin, produced by plants as secondary metabolites, play a significant role in protecting them from herbivores. Members of the family Enterobaceriaceae primarily present in soil, e.g. Erwinia chrysanthemi (a phytopathogen) and Klebsiella aerogenes, can utilize the aromatic β-glucosides salicin and arbutin (likely to be present in soil derived from decomposing plant materials) as a carbon source unlike their fellow members such as Escherichia coli, Shigella sonnei, and Salmonella present in the gut environment. Bacteria can obtain energy by metabolizing β-glucosides in the form of glucose. Whether they can also use these molecules as defense tools in a manner similar to plants is an intriguing possibility. In such an event, Bgl+ bacteria could derive a dual advantage in terms of energy generation and protection from predation. The current study was initiated to investigate a possible link between β-glucoside metabolism and self-defense in Enterobacteriaceae. Different members of Enterobacteriaceae comprising of both laboratory strains and natural isolates were considered as prey. Predators included were laboratory strains and soil isolates of bacteriovorous nematodes of the Rhabditidae family, the amoeba Dictyostelium discoidium and a bacteriovorous Streptomyces sp. The predator-prey interaction was analyzed by performing viability and behavioral assays in the context of β-glucoside metabolism Results presented in Chapter 2 show that active catabolism of aromatic β¬glucosides like salicin, arbutin and esculin by Bgl+ bacteria decreases the viability of their predators. The aglycone products released during β-glucosides metabolism, e.g. saligenin in the case of salicin, are the causative agents of the mortality of the predators. The lethality is reversible up to a specific threshold of exposure. Saligenin acts as a chemo-attractant that lures and kills Caenorhabditis elegans N2. In the case of nematodes that succumb, bacteria can derive nutrition from the dead predators indicating a conversion of prey to predator. Experiments with mutant strains of Caenorhabditis elegans suggest that the dopaminergic receptor dop-1 is involved in mediating saligenin toxicity. Studies mentioned in Chapter 3 revolve around the relevance of the predator-prey interaction discussed in Chapter 2 in the natural environment. Members of Enterobacteriaceae and their predator amoebae (cellular slime molds) and nematodes were isolated from soil. They show coexistence in most of the soil samples analyzed. All the predators isolated from soil and other natural isolates of Caenorhabditis succumb to saligenin as their laboratory counterparts with higher sensitivity in some of the strains. Soil nematodes belonging to genera Oscheius and Mesorhabditis avoid saligenin unlike the members of Caenorhabditis genus which are attracted towards saligenin. This indicates that the soil nematodes are often exposed to saligenin or saligenin-like compounds, resulting in the evolution of a genetic machinery to avoid these toxic compounds. Studies with quasi-natural environments like soil and fruit indicate that β-glucoside metabolism have similar effects on predator prey interaction in these environments, reinforcing the relevance of these observations to the natural ecology of the organisms. The studies reported in Chapter 2 and 3 shed light on a novel defense strategy of otherwise non-pathogenic members of Enterobacteriaceae which comes with a dual advantage. These results have also brought into focus issues such as the benefit derived by bacterial populations that are genetically heterogeneous, consisting of both Bgl+ and Bgl-strains. The broad implications and future directions of the work are discussed in Chapter 4. Work presented in Appendix deals with the investigation of the pattern of cellobiose utilization in Shigella sonnei. As mentioned in Chapter 1, it is known that members of Enterobacteriaceae exhibit diversity in their pattern of β-glucoside utilization. Wild type strains of both E. coli and Shigella sonnei are unable to utilize Arbutin, Salicin and Cellobiose. While E. coli can acquire cellobiose utilizing ability directly from the wild type state (Arb-Sal-Cel-), Shigella sonnei strains, though closely related to E. coli, have to undergo a series of mutations in a specific sequence to become capable of utilizing these sugars. Characterization of a few Shigella sonnei Cel+ mutants showed a different mode of activation of the chb operon (known to be involved in cellobiose utilization in E. coli). Considering the ecological significance of the ability to hydrolyze aromatic β-glucosides, a detailed understanding of the metabolic capability of different strains and the molecular mechanism involved becomes significant.
42

Prey unpredictability and unfavourable host trees influence the spatial distribution of the polyphagous predator Thanasimus formicarius (L.), Coleoptera :Cleridae

Warzée, Nathalie 04 March 2005 (has links)
Polyphagy is a very common trait among insects. In this study, we focus on a generalist bark-beetle predator, Thanasimus formicarius (L.) (Coleoptera, Cleridae), which feeds on many scolytids in spruce, pine and broad-leaf stands. It is known to respond to the pheromones of many scolytids, among which the most harmful spruce bark beetle in Europe, Ips typographus (L.). The adults attack scolytid adults and oviposit on attacked trees where their larvae feed upon immature stages of the prey. <p>However, a bottom-up process limits Thanasimus formicarius’ impact on spruce bark beetles, because in most cases the bark of spruce is too thin for sheltering pupal niches and mature larvae have to leave the trees. On pine however, pupation is quite successful and reproductive success is high. <p><p>The present work estimates the advantages (complementary prey during gaps among the phenology of pine bark beetles or due to the population fluctuations of most scolytids) and constraints (landing on unsuitable host trees for the predator’s reproduction) for T. formicarius to have a wide range of prey. <p><p>Passive barrier-trappings showed that the presence and abundance of scolytid species vary strongly from year to year. So, polyphagy in T. formicarius appears as a response to fluctuating prey supplies. <p><p>This way of foraging may lead T. formicarius towards stands not always favourable for its development (for example, spruces). <p>At the tree level, funnels and pitfall-traps caught high numbers of third-instar T. formicarius larvae walking on the bark surface of standing spruces infested by Ips typographus (respectively 365 and 70 L3s). After feeding into the whole infested part of the trunk, these larvae are obliged to migrate outside of the galleries to favourable pupation site (e.g. the base of the trees where the bark is thicker), or even to leave the trees and search for an acceptable pupation substrate in the litter. <p><p>At the landscape level, different trapping experiments showed a correlation between catches of T. formicarius and the proportion of pines around each trap. Consequently, in a metapopulation landscape pattern, pines would act as “sources” of predators, whilst spruces are “sinks”. Indeed, Thanasimus formicarius are trapped in higher numbers in mixed stands comprising pines. This observation is also corroborated in a four-year trapping experiment in the North-East of France, following the storms of December 1999. The predator/prey ratios (T. formicarius/I. typographus) were higher in stands comprising pines than in stands without pines. The first step of a method to estimate Ips typographus infestation trends thanks to the predator/prey ratios was also developed. <p> / Doctorat en sciences, Spécialisation biologie animale / info:eu-repo/semantics/nonPublished
43

Increasing Introductory Biology Students' Modeling Mastery Through Visualizing Population Growth Models

Wasson, Samantha Rae 27 July 2021 (has links)
In introductory biology, college students are taught to predict how populations will grow and change over time by using population growth models. These models are commonly represented as mathematical equations. However, students consistently struggle when math and biology concepts intersect in the classroom, and these struggles lead to suboptimal understanding of how mathematical population models are designed and used. Education literature suggests that students may struggle with population modeling because of math anxiety, the high cognitive load of the task, and the lack of scaffolding for abstract concepts. In our study, we sought to improve student mastery modeling exponential growth, logistic growth, and Lotka-Volterra predator-prey interactions through using pictorial diagrams in modeling pedagogy. We predicted that these diagrams would reduce the amount of triggered math anxiety, lower the cognitive load of the task through reducing element interactivity, and allow for a more scaffolding for abstract symbols through a pictorial representation bridge. To test the effectiveness of population diagrams, we created two versions of a population modeling lesson plan: one version taught using diagrams then equations, while the other taught using purely equations. We also designed practice and assessment questions that tested calculation and model-building ability. We assessed math anxiety, scientific reasoning ability, and math ability at the beginning of the semester and state anxiety, effort of tasks, and difficulty of tasks during each lesson. Over 200 students from a non-major biology course were randomly assigned to each group, and all were given a pre-assessment, four lessons, a practice test, and a unit test on population modeling. Our findings show that while the addition of pictorial models to the traditional pedagogy did not have a significant effect on exponential and logistic growth model mastery, students that were exposed to predator-prey diagrams were more able to create a new model for a three-level predator-prey interaction than students that were only given traditional pedagogy. In addition, students who were exposed to predator-prey interaction diagrams before they derived equations reported a lower cognitive load than students who were only exposed to equations. Although diagrams were not a more helpful calculation tool for students than traditional equations, using population diagrams before to equation derivation may help improve student mastery of growth model creation.
44

Topology and stability of complex foodwebs / Topologie und Stabilität komplexer Nahrungsnetze

Riede, Jens O. 17 February 2012 (has links)
No description available.
45

Effects of behavioural flexibility and habitat complexity on predator-prey interactions in fish communities

Eklöv, Peter January 1995 (has links)
<p>Diss. (sammanfattning) Umeå : Umeå universitet, 1995, härtill 6 uppsatser.</p> / digitalisering@umu
46

Behavioural ecology of foraging and predator avoidance trade-offs in Lake Sturgeon (Acipenser fulvescens)

2014 April 1900 (has links)
I investigated Lake Sturgeon (Acipenser fulvescens) foraging and anti-predator behaviour. My goals were to understand: (1) The role of environmental change on foraging and anti-predator behaviour trade-offs. (2) The relative cost/benefit trade-off between escape behaviour and cover-seeking behaviour. (3) How development of several independent morphological traits affects anti-predator behaviours. I used simulated river mesocosms to study Lake Sturgeon behavioural ecology under controlled conditions. I found: (1) Foraging intensity was significantly higher during the night than the day as well as in turbid environments versus clear environments, indicating that decreased turbidity alone, may in part drive anti-predator behaviour and constrain foraging activity. (2) In high-risk clear-water environments, Lake Sturgeon responded to danger by evoking an escape response and seeking cover in rocky microhabitats. However, in low-risk turbid environments, Lake Sturgeon responded to danger by seeking cover in rocky microhabitats, but not fleeing to a significant degree. Cover-seeking behaviour may therefore be a relatively low-cost/high-benefit anti-predator strategy. (3) Strong evidence for trait co-dependence between escape responses and body size, where larger fish were able to elicit stronger escape responses. I also found that cover-seeking behaviour exhibited a complex multi-tiered relationship, representing a mixture of trait compensation and trait co-specialization that is dependent on specific combinations of morphological traits. These findings are important because they help us understand: (1) The degree to which anti-predator behaviour can be influenced by changing environmental conditions. (2) The relative cost/benefit trade-off between two common anti-predator behaviours. (3) How behaviour and morphology interact in species with a complex anti-predator phenotype.
47

L’éléphant de mer austral, bio-échantillonneur de la distribution des ressources marines / Southern elephant seal, samplers of marine resources distribution

Le Bras, Yves 29 March 2017 (has links)
Du fait de l’isolement géographique de l’océan austral et des conditions météorologiques qui y règnent, la collecte de données océanographiques par les moyens conventionnels est particulièrement couteuse dans cette région du globe. Pour pallier à ces difficultés, l’utilisation d’enregistreurs électroniques embarqués sur des prédateurs marins, et notamment sur les éléphants de mer austraux, s’est révélée être une approche intéressante. Les femelles éléphants de mer s’alimentent en grande partie de petits poissons méso-pélagiques bioluminescents, les myctophidés. Leur forte abondance et leur comportement de migration nycthémérale confèrent à ces organismes un rôle écologique de première importance dans l’océan austral. Cependant, la distribution spatiale des proies de l’éléphant de mer, et les processus physiques et biologiques qui influent sur la dynamique de cette distribution sont encore mal connus. Cette thèse se propose d’enquêter sur ces sujets à partir des données à haute fréquence d’échantillonnage collectées par des femelles éléphants de mer. L’analyse du comportement de plongée des femelles éléphants de mer, en relation avec les variations du taux de rencontre de proie dont les données d’accélération permettent d'avoir une estimation, est au cœur des différents travaux développés dans cette thèse. Les résultats obtenus suggèrent notamment, (1) une diminution de l’abondance des proies avec la profondeur ainsi qu’une homogénéisation de leur distribution, (2) une distribution en couches de cette ressource, (3) l’intervention de contraintes verticales délimitant l’étendue verticale de ces couches et ainsi capable de moduler leur densité, (4) au sein des couches, une dispersion relativement importante des proies en comparaison de la portée des capacités de perception du prédateur, et enfin (5) un rôle significatif des tourbillons méso-échelle et de leur bordure sur la structuration de la distribution des ressources alimentaires de l’éléphant de mer durant l’été austral. / Because of the remoteness and harsh meteorological conditions of the southern ocean, data sampling is more costly in this area. Use of electronic devices attached to marine predators (Bio-logging), such as southern elephant seals, has emerged as an interesting approach to cope with this problem. Female southern elephant seals primarily feed on small bioluminescent meso-pelagic fishes called myctophids. Because of their large abundance and of their diel vertical migration behaviour, these organisms have a major ecological importance in the southern ocean. However, the spatial distribution of the elephant seals prey, as well as the bio-physical processes affecting the dynamics of this distribution, are still poorly known. This thesis intends to investigate this issue using high sampling frequency bio-logging data collected by female southern elephant seals. This work is based on the analysis of elephant seals diving behaviour in relation to changes in the occurrence of prey encounter events detected from acceleration data. Our results suggest that (1) prey abundance decreases with depth and that their distribution tend to standardize, (2) prey are distributed into layers, (3) vertical constraints could modulate the prey density by acting on the vertical spread of these layers, (4) prey items are well dispersed in comparison to the perception range of elephant seals, and finally (5) that meso-scale eddies, notably their edges, play a structuring role in the prey distribution during the austral summer.
48

Uso de recursos e padrão de co-ocorrência com insetos predadores em comunidades sub-tropicais de girinos /

Provete, Diogo Borges. January 2010 (has links)
Orientador: Itamar Alves Martins / Banca: Luis Cesar Schiesari / Banca: Lilian Casatti / Resumo: Girinos são um importante componente de ecossistemas de água doce e, ao longo dos últimos trinta anos, vêm sendo utilizados como modelos para testar hipóteses em ecologia de comunidades. O conjunto de informações disponível atualmente sugere que a presença de predadores influencia a abundância e o uso de hábitat por girinos e, conseqüentemente, a estrutura da comunidade. O objetivo deste estudo foi determinar o uso de recursos e investigar a influência de predadores na distribuição espacial de espécies e na estrutura de comunidades de girinos. As principais questões deste estudo foram: 1) qual o papel dos fatores abióticos na estruturação de comunidades de girinos?; 2) qual o grau de sobreposição de nicho entre as espécies nos três principais eixos de recursos: tempo (ocorrência sazonal), alimento e espaço (hábitat)?; 3) os girinos apresentam um padrão de distribuição não-aleatório em relação aos predadores? As amostragens tiveram freqüência mensal com coletas simultâneas de girinos e insetos predadores. Na caracterização dos corpos d'água foram utilizados dez descritores ambientais. Para determinar as guildas de espécies com relação ao uso de hábitat e ocorrência mensal foi implementada, respectivamente, uma análise de agrupamento e de ordenação por escalonamentro multidimensional não métrico. Para investigar a associação entre a abundância de girinos e os gradientes ambientais foi usada uma análise de correspondência canônica. A partilha de recursos entre girinos foi analisada utilizando-se uma análise de sobreposição de nicho em conjunto com um modelo nulo, considerando como eixos de recursos a ocorrência mensal, ocorrência nas poças e os itens alimentares. A análise da co-ocorrência pareada de girinos e predadores foi efetuada utilizando-se... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Tadpoles are an important component of freshwater ecossystems and in the last thirty years has been used as model organisms to test hypothesis in community ecology. The data currently available suggest that the presence of predators influences the abundance and habitat use by tadpoles and, consequently the community structure. The aims of this study were to establish how tadpoles divide resources and to investigate the influence of predators on species distribution and on community structure of tadpoles. The main questions were: 1) What is the role of abiotic factors in the community structure?; 2) What is the extent of niche overlap among species, considering the three main resource axes: time (seasonal occurrence), diet items and space (macrohabitat)?; 3) Tadpoles exhibit a non-random distribution pattern in relation to predaceous insects? We conducted monthly samplings to collect tadpoles and predaceous insects. We also used 10 environmental descriptors to characterize the water bodies. To recognize species guilds in relation to habitat use and monthly occurrence, we employed respectively a cluster analysis and a n-MDS, respectively. To investigate the association between species abundance and environmental gradients we used a canonical correspondence analysis. The resource partitioning among tadpoles was analyzed using a null model, considering as recource axes monthly occurrence, pond occupancy and diet items. The pair-wise co-occurrence analysis between tadpoles and predaceous insects was carried out using a null model. Our main findings demonstrate that forest canopy cover and pond hydroperiod were the main factors influencing species abundance along water bodies sampled. There was a species sorting along these two environmental gradients, with species restricted to both ends of these continuums. There was a high overlap in seasonal occurence... (Complete abstract click electronic access below) / Mestre
49

Monitoramento de indicadores-chave do turismo sustentável em unidades de conservação: um estudo de caso no Parque Estadual do Jalapão - Tocantins / Monitoring of key indicators of sustainable tourism in protected áreas: the Parque Estadual do Jalapão/Tocantins - a case study

DUTRA, VERUSKA C. 11 November 2016 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2016-11-11T13:30:20Z No. of bitstreams: 0 / Made available in DSpace on 2016-11-11T13:30:20Z (GMT). No. of bitstreams: 0 / Desde que foi reconhecida a importância de se planejar um turismo sustentável, tem-se buscado ferramentas adequadas para monitorá-lo nas destinações turísticas, tornando esse um dos principais desafios da academia científica de estudos do turismo na atualidade. Diante desse contexto, o desafio apresenta-se ainda maior, quando tratamos de turismo em unidades de conservação, tendo em vista que envolve um ambiente altamente sensível e comunidades em seu entorno que podem ter, no desenvolvimento dessa atividade, sua principal renda econômica. Assim, o que se propõe neste estudo é analisar a aplicabilidade e a eficiência metodológica do monitoramento que visa ao auxílio na construção da sustentabilidade do turismo, em unidades de conservação, através de um estudo de caso no Parque Estadual do Jalapão, localizado no Estado do Tocantins, Brasil. Prioriza-se a investigação de indicadores locais abordados a partir da definição estipulada pela Organização Mundial do Turismo. Os resultados alcançados demonstraram que os indicadores estudados são instrumentos a serem considerados no processo de avaliação e quantificação do turismo em um destino com semelhantes configurações ambientais, o que viabiliza a compreensão e o fortalecimento da noção de sustentabilidade. Este estudo caracteriza-se pela sua vertente interdisciplinar e teve como norteador o método dedutivo. / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
50

Effects of Catastrophic Seagrass Loss and Predation Risk on the Ecological Structure and Resilience of a Model Seagrass Ecosystem

Nowicki, Robert J. 07 November 2016 (has links)
As climate change continues, climactic extremes are predicted to become more frequent and intense, in some cases resulting in dramatic changes to ecosystems. The effects of climate change on ecosystems will be mediated, in part, by biotic interactions in those ecosystems. However, there is still considerable uncertainty about where and how such biotic interactions will be important in the context of ecosystem disturbance and climactic extremes. Here, I review the role of consumers in seagrass ecosystems and investigate the ecological impacts of an extreme climactic event (marine heat wave) and subsequent widespread seagrass die-off in Shark Bay, Western Australia. Specifically, I compare seagrass cover, shark catch rates, and encounter rates of air breathing fauna in multiple habitat types before and after the seagrass die-off to describe post-disturbance dynamics of the seagrass community, shifts in consumer abundances, and changes in risk-sensitive habitat use patterns by a variety of mesoconsumers at risk of predation from tiger sharks (Galeocerdo cuvier). Finally, I conducted a 16 month field experiment to assess whether xi loss of top predators, and predicted shifts in dugong foraging, could destabilize remaining seagrass. I found that the previously dominant temperate seagrass Amphibolis antarctica is stable, but not increasing. Conversely, an early-successional tropical seagrass, Halodule uninervis, is expanding. Following the die-off, the densities of several consumer species (cormorants, green turtles, sea snakes, and dugongs) declined, while others (Indo-Pacific bottlenose dolphins, loggerhead sea turtles, tiger sharks) remained stable. Stable tiger shark abundances following the seagrass die-off suggest that the seascape of fear remains intact in this system. However, several consumers (dolphins, cormorants) began to use dangerous but profitable seagrass banks more often following seagrass decline, suggesting a relaxation of anti-predator behavior. Experimental results suggest that a loss of tiger sharks would result in a behaviorally mediated trophic cascade (BMTC) in degraded seagrass beds, further destabilizing them and potentially resulting in a phase shift. My work shows that climactic extremes can have strong but variable impacts on ecosystems mediated in part by species identity, and that maintenance of top predator populations may by important to ecological resilience in the face of climate change.

Page generated in 0.2011 seconds