• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 42
  • 16
  • 12
  • 12
  • 12
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

An Approach on Learning Multivariate Regression Chain Graphs from Data

Moghadasin, Babak January 2013 (has links)
The necessity of modeling is vital for the purpose of reasoning and diagnosing in complex systems, since the human mind might sometimes have a limited capacity and an inability to be objective. The chain graph (CG) class is a powerful and robust tool for modeling real-world applications. It is a type of probabilistic graphical models (PGM) and has multiple interpretations. Each of these interpretations has a distinct Markov property. This thesis deals with the multivariate regression chain graph (MVR-CG) interpretation. The main goal of this thesis is to implement and evaluate the results of the MVR-PC-algorithm proposed by Sonntag and Peña in 2012. This algorithm uses a constraint based approach used in order to learn a MVR-CG from data.In this study the MRV-PC-algorithm is implemented and tested to see whether the implementation is correct. For this purpose, it is run on several different independence models that can be perfectly represented by MVR-CGs. The learned CG and the independence model of the given probability distribution are then compared to ensure that they are in the same Markov equivalence class. Additionally, for the purpose of checking how accurate the algorithm is, in learning a MVR-CG from data, a large number of samples are passed to the algorithm. The results are analyzed based on number of nodes and average number of adjacents per node. The accuracy of the algorithm is measured by the precision and recall of independencies and dependencies.In general, the higher the number of samples given to the algorithm, the more accurate the learned MVR-CGs become. In addition, when the graph is sparse, the result becomes significantly more accurate. The number of nodes can affect the results slightly. When the number of nodes increases it can lead to better results, if the average number of adjacents is fixed. On the other hand, if the number of nodes is fixed and the average number of adjacents increases, the effect is more considerable and the accuracy of the results dramatically declines. Moreover the type of the random variables can affect the results. Given the samples with discrete variables, the recall of independencies measure would be higher and the precision of independencies measure would be lower. Conversely, given the samples with continuous variables, the recall of independencies would be less but the precision of independencies would be higher.
32

Autonomous Probabilistic Hardware for Unconventional Computing

Rafatul Faria (8771336) 29 April 2020 (has links)
In this thesis, we have proposed a new computing platform called probabilistic spin logic (PSL) based on probabilistic bits (p-bit) using low barrier nanomagnets (LBM) whose thermal barrier is of the order of a kT unlike conventional memory and spin logic devices that rely on high thermal barrier magnets (40-60 kT) to retain stability. p-bits are tunable random number generators (TRNG) analogous to the concept of binary stochastic neurons (BSN) in artificial neural network (ANN) whose output fluctuates between a +1 and -1 states with 50-50 probability at zero input bias and the stochastic output can be tuned by an applied input producing a sigmoidal characteristic response. p-bits can be interconnected by a synapse or weight matrix [J] to build p-circuits for solving a wide variety of complex unconventional problems such as inference, invertible Boolean logic, sampling and optimization. It is important to update the p-bits sequentially for proper operation where each p-bit update is informed of the states of other p-bits that it is connected to and this requires the use of sequencers in digital clocked hardware. But the unique feature of our probabilistic hardware is that they are autonomous that runs without any clocks or sequencers.<br>To ensure the necessary sequential informed update in our autonomous hardware it is important that the synapse delay is much smaller than the neuron fluctuation time.<br>We have demonstrated the notion of this autonomous hardware by SPICE simulation of different designs of low barrier nanomagnet based p-circuits for both symmetrically connected Boltzmann networks and directed acyclic Bayesian networks. It is interesting to note that for Bayesian networks a specific parent to child update order is important and requires specific design rule in the autonomous probabilistic hardware to naturally ensure the specific update order without any clocks. To address the issue of scalability of these autonomous hardware we have also proposed and benchmarked compact models for two different hardware designs against SPICE simulation and have shown that the compact models faithfully mimic the dynamics of the real hardware.<br>
33

An Experimental Evaluation of Probabilistic Deep Networks for Real-time Traffic Scene Representation using Graphical Processing Units

El-Shaer, Mennat Allah 03 September 2019 (has links)
No description available.
34

Probabilistic Graphical Models: an Application in Synchronization and Localization

Goodarzi, Meysam 16 June 2023 (has links)
Die Lokalisierung von mobilen Nutzern (MU) in sehr dichten Netzen erfordert häufig die Synchronisierung der Access Points (APs) untereinander. Erstens konzentriert sich diese Arbeit auf die Lösung des Problems der Zeitsynchronisation in 5G-Netzwerken, indem ein hybrider Bayesischer Ansatz für die Schätzung des Taktversatzes und des Versatzes verwendet wird. Wir untersuchen und demonstrieren den beträchtlichen Nutzen der Belief Propagation (BP), die auf factor graphs läuft, um eine präzise netzwerkweite Synchronisation zu erreichen. Darüber hinaus nutzen wir die Vorteile der Bayesischen Rekursiven Filterung (BRF), um den Zeitstempel-Fehler bei der paarweisen Synchronisierung zu verringern. Schließlich zeigen wir die Vorzüge der hybriden Synchronisation auf, indem wir ein großes Netzwerk in gemeinsame und lokale Synchronisationsdomänen unterteilen und so den am besten geeigneten Synchronisationsalgorithmus (BP- oder BRF-basiert) auf jede Domäne anwenden können. Zweitens schlagen wir einen Deep Neural Network (DNN)-gestützten Particle Filter-basierten (DePF)-Ansatz vor, um das gemeinsame MU-Sync&loc-Problem zu lösen. Insbesondere setzt DePF einen asymmetrischen Zeitstempel-Austauschmechanismus zwischen den MUs und den APs ein, der Informationen über den Taktversatz, die Zeitverschiebung der MUs, und die AP-MU Abstand liefert. Zur Schätzung des Ankunftswinkels des empfangenen Synchronisierungspakets nutzt DePF den multiple signal classification Algorithmus, der durch die Channel Impulse Response (CIR) der Synchronisierungspakete gespeist wird. Die CIR wird auch genutzt, um den Verbindungszustand zu bestimmen, d. h. Line-of-Sight (LoS) oder Non-LoS (NLoS). Schließlich nutzt DePF particle Gaussian mixtures, die eine hybride partikelbasierte und parametrische BRF-Fusion der vorgenannten Informationen ermöglichen und die Position und die Taktparameter der MUs gemeinsam schätzen. / Mobile User (MU) localization in ultra dense networks often requires, on one hand, the Access Points (APs) to be synchronized among each other, and, on the other hand, the MU-AP synchronization. In this work, we firstly address the former, which eventually provides a basis for the latter, i.e., for the joint MU synchronization and localization (sync&loc). In particular, firstly, this work focuses on tackling the time synchronization problem in 5G networks by adopting a hybrid Bayesian approach for clock offset and skew estimation. Specifically, we investigate and demonstrate the substantial benefit of Belief Propagation (BP) running on Factor Graphs (FGs) in achieving precise network-wide synchronization. Moreover, we take advantage of Bayesian Recursive Filtering (BRF) to mitigate the time-stamping error in pairwise synchronization. Finally, we reveal the merit of hybrid synchronization by dividing a large-scale network into common and local synchronization domains, thereby being able to apply the most suitable synchronization algorithm (BP- or BRF-based) on each domain. Secondly, we propose a Deep Neural Network (DNN)-assisted Particle Filter-based (DePF) approach to address the MU joint sync&loc problem. In particular, DePF deploys an asymmetric time-stamp exchange mechanism between the MUs and the APs, which provides information about the MUs' clock offset, skew, and AP-MU distance. In addition, to estimate the Angle of Arrival (AoA) of the received synchronization packet, DePF draws on the Multiple Signal Classification (MUSIC) algorithm that is fed by the Channel Impulse Response (CIR) experienced by the sync packets. The CIR is also leveraged on to determine the link condition, i.e. Line-of-Sight (LoS) or Non-LoS (NLoS). Finally DePF capitalizes on particle Gaussian mixtures which allow for a hybrid particle-based and parametric BRF fusion of the aforementioned pieces of information and jointly estimate the position and clock parameters of the MUs.
35

Knowledge-empowered Probabilistic Graphical Models for Physical-Cyber-Social Systems

Anantharam, Pramod 31 May 2016 (has links)
No description available.
36

Probabilistic models in noisy environments : and their application to a visual prosthesis for the blind

Archambeau, Cédric 26 September 2005 (has links)
In recent years, probabilistic models have become fundamental techniques in machine learning. They are successfully applied in various engineering problems, such as robotics, biometrics, brain-computer interfaces or artificial vision, and will gain in importance in the near future. This work deals with the difficult, but common situation where the data is, either very noisy, or scarce compared to the complexity of the process to model. We focus on latent variable models, which can be formalized as probabilistic graphical models and learned by the expectation-maximization algorithm or its variants (e.g., variational Bayes).<br> After having carefully studied a non-exhaustive list of multivariate kernel density estimators, we established that in most applications locally adaptive estimators should be preferred. Unfortunately, these methods are usually sensitive to outliers and have often too many parameters to set. Therefore, we focus on finite mixture models, which do not suffer from these drawbacks provided some structural modifications.<br> Two questions are central in this dissertation: (i) how to make mixture models robust to noise, i.e. deal efficiently with outliers, and (ii) how to exploit side-channel information, i.e. additional information intrinsic to the data. In order to tackle the first question, we extent the training algorithms of the popular Gaussian mixture models to the Student-t mixture models. the Student-t distribution can be viewed as a heavy-tailed alternative to the Gaussian distribution, the robustness being tuned by an extra parameter, the degrees of freedom. Furthermore, we introduce a new variational Bayesian algorithm for learning Bayesian Student-t mixture models. This algorithm leads to very robust density estimators and clustering. To address the second question, we introduce manifold constrained mixture models. This new technique exploits the information that the data is living on a manifold of lower dimension than the dimension of the feature space. Taking the implicit geometrical data arrangement into account results in better generalization on unseen data.<br> Finally, we show that the latent variable framework used for learning mixture models can be extended to construct probabilistic regularization networks, such as the Relevance Vector Machines. Subsequently, we make use of these methods in the context of an optic nerve visual prosthesis to restore partial vision to blind people of whom the optic nerve is still functional. Although visual sensations can be induced electrically in the blind's visual field, the coding scheme of the visual information along the visual pathways is poorly known. Therefore, we use probabilistic models to link the stimulation parameters to the features of the visual perceptions. Both black-box and grey-box models are considered. The grey-box models take advantage of the known neurophysiological information and are more instructive to medical doctors and psychologists.<br>
37

Learning and Recognizing The Hierarchical and Sequential Structure of Human Activities

Cheng, Heng-Tze 01 December 2013 (has links)
The mission of the research presented in this thesis is to give computers the power to sense and react to human activities. Without the ability to sense the surroundings and understand what humans are doing, computers will not be able to provide active, timely, appropriate, and considerate services to the humans. To accomplish this mission, the work stands on the shoulders of two giants: Machine learning and ubiquitous computing. Because of the ubiquity of sensor-enabled mobile and wearable devices, there has been an emerging opportunity to sense, learn, and infer human activities from the sensor data by leveraging state-of-the-art machine learning algorithms. While having shown promising results in human activity recognition, most existing approaches using supervised or semi-supervised learning have two fundamental problems. Firstly, most existing approaches require a large set of labeled sensor data for every target class, which requires a costly effort from human annotators. Secondly, an unseen new activity cannot be recognized if no training samples of that activity are available in the dataset. In light of these problems, a new approach in this area is proposed in our research. This thesis presents our novel approach to address the problem of human activity recognition when few or no training samples of the target activities are available. The main hypothesis is that the problem can be solved by the proposed NuActiv activity recognition framework, which consists of modeling the hierarchical and sequential structure of human activities, as well as bringing humans in the loop of model training. By injecting human knowledge about the hierarchical nature of human activities, a semantic attribute representation and a two-layer attribute-based learning approach are designed. To model the sequential structure, a probabilistic graphical model is further proposed to take into account the temporal dependency of activities and attributes. Finally, an active learning algorithm is developed to reinforce the recognition accuracy using minimal user feedback. The hypothesis and approaches presented in this thesis are validated by two case studies and real-world experiments on exercise activities and daily life activities. Experimental results show that the NuActiv framework can effectively recognize unseen new activities even without any training data, with up to 70-80% precision and recall rate. It also outperforms supervised learning with limited labeled data for the new classes. The results significantly advance the state of the art in human activity recognition, and represent a promising step towards bridging the gap between computers and humans.
38

On the Links between Probabilistic Graphical Models and Submodular Optimisation / Liens entre modèles graphiques probabilistes et optimisation sous-modulaire

Karri, Senanayak Sesh Kumar 27 September 2016 (has links)
L’entropie d’une distribution sur un ensemble de variables aléatoires discrètes est toujours bornée par l’entropie de la distribution factorisée correspondante. Cette propriété est due à la sous-modularité de l’entropie. Par ailleurs, les fonctions sous-modulaires sont une généralisation des fonctions de rang des matroïdes ; ainsi, les fonctions linéaires sur les polytopes associés peuvent être minimisées exactement par un algorithme glouton. Dans ce manuscrit, nous exploitons ces liens entre les structures des modèles graphiques et les fonctions sous-modulaires. Nous utilisons des algorithmes gloutons pour optimiser des fonctions linéaires sur des polytopes liés aux matroïdes graphiques et hypergraphiques pour apprendre la structure de modèles graphiques, tandis que nous utilisons des algorithmes d’inférence sur les graphes pour optimiser des fonctions sous-modulaires. La première contribution de cette thèse consiste à approcher par maximum de vraisemblance une distribution de probabilité par une distribution factorisable et de complexité algorithmique contrôlée. Comme cette complexité est exponentielle dans la largeur arborescente du graphe, notre but est d’apprendre un graphe décomposable avec une largeur arborescente bornée, ce qui est connu pour être NP-difficile. Nous posons ce problème comme un problème d’optimisation combinatoire et nous proposons une relaxation convexe basée sur les matroïdes graphiques et hypergraphiques. Ceci donne lieu à une solution approchée avec une bonne performance pratique. Pour la seconde contribution principale, nous utilisons le fait que l’entropie d’une distribution est toujours bornée par l’entropie de sa distribution factorisée associée, comme conséquence principale de la sous-modularité, permettant une généralisation à toutes les fonctions sous-modulaires de bornes basées sur les concepts de modèles graphiques. Un algorithme est développé pour maximiser les fonctions sous-modulaires, un autre problème NP-difficile, en maximisant ces bornes en utilisant des algorithmes d’inférence vibrationnels sur les graphes. En troisième contribution, nous proposons et analysons des algorithmes visant à minimiser des fonctions sous-modulaires pouvant s’écrire comme somme de fonctions plus simples. Nos algorithmes n’utilisent que des oracles de ces fonctions simple basés sur minimisation sous-modulaires et de variation totale de telle fonctions. / The entropy of a probability distribution on a set of discrete random variables is always bounded by the entropy of its factorisable counterpart. This is due to the submodularity of entropy on the set of discrete random variables. Submodular functions are also generalisation of matroid rank function; therefore, linear functions may be optimised on the associated polytopes exactly using a greedy algorithm. In this manuscript, we exploit these links between the structures of graphical models and submodular functions: we use greedy algorithms to optimise linear functions on the polytopes related to graphic and hypergraphic matroids for learning the structures of graphical models, while we use inference algorithms on graphs to optimise submodular functions.The first main contribution of the thesis aims at approximating a probabilistic distribution with a factorisable tractable distribution under the maximum likelihood framework. Since the tractability of exact inference is exponential in the treewidth of the decomposable graph, our goal is to learn bounded treewidth decomposable graphs, which is known to be NP-hard. We pose this as a combinatorial optimisation problem and provide convex relaxations based on graphic and hypergraphic matroids. This leads to an approximate solution with good empirical performance. In the second main contribution, we use the fact that the entropy of a probability distribution is always bounded by the entropy of its factorisable counterpart mainly as a consequence of submodularity. This property of entropy is generalised to all submodular functions and bounds based on graphical models are proposed. We refer to them as graph-based bounds. An algorithm is developped to maximise submodular functions, which is NPhard, by maximising the graph-based bound using variational inference algorithms on graphs. As third contribution, we propose and analyse algorithms aiming at minimizing submodular functions that can be written as sum of simple functions. Our algorithms only make use of submodular function minimisation and total variation oracles of simple functions.
39

Observations probabilistes dans les réseaux bayésiens / Probabilistic evidence in bayesian networks

Ben Mrad, Ali 20 June 2015 (has links)
Dans un réseau bayésien, une observation sur une variable signifie en général que cette variable est instanciée. Ceci signifie que l’observateur peut affirmer avec certitude que la variable est dans l’état signalé. Cette thèse porte sur d’autres types d’observations, souvent appelées observations incertaines, qui ne peuvent pas être représentées par la simple affectation de la variable. Cette thèse clarifie et étudie les différents concepts d’observations incertaines et propose différentes applications des observations incertaines dans les réseaux bayésiens.Nous commençons par dresser un état des lieux sur les observations incertaines dans les réseaux bayésiens dans la littérature et dans les logiciels, en termes de terminologie, de définition, de spécification et de propagation. Il en ressort que le vocabulaire n'est pas clairement établi et que les définitions proposées couvrent parfois des notions différentes.Nous identifions trois types d’observations incertaines dans les réseaux bayésiens et nous proposons la terminologie suivante : observation de vraisemblance, observation probabiliste fixe et observation probabiliste non-fixe. Nous exposons ensuite la façon dont ces observations peuvent être traitées et propagées.Enfin, nous donnons plusieurs exemples d’utilisation des observations probabilistes fixes dans les réseaux bayésiens. Le premier exemple concerne la propagation d'observations sur une sous-population, appliquée aux systèmes d'information géographique. Le second exemple concerne une organisation de plusieurs agents équipés d'un réseau bayésien local et qui doivent collaborer pour résoudre un problème. Le troisième exemple concerne la prise en compte d'observations sur des variables continues dans un RB discret. Pour cela, l'algorithme BN-IPFP-1 a été implémenté et utilisé sur des données médicales de l'hôpital Bourguiba de Sfax. / In a Bayesian network, evidence on a variable usually signifies that this variable is instantiated, meaning that the observer can affirm with certainty that the variable is in the signaled state. This thesis focuses on other types of evidence, often called uncertain evidence, which cannot be represented by the simple assignment of the variables. This thesis clarifies and studies different concepts of uncertain evidence in a Bayesian network and offers various applications of uncertain evidence in Bayesian networks.Firstly, we present a review of uncertain evidence in Bayesian networks in terms of terminology, definition, specification and propagation. It shows that the vocabulary is not clear and that some terms are used to represent different concepts.We identify three types of uncertain evidence in Bayesian networks and we propose the followingterminology: likelihood evidence, fixed probabilistic evidence and not-fixed probabilistic evidence. We define them and describe updating algorithms for the propagation of uncertain evidence. Finally, we propose several examples of the use of fixed probabilistic evidence in Bayesian networks. The first example concerns evidence on a subpopulation applied in the context of a geographical information system. The second example is an organization of agent encapsulated Bayesian networks that have to collaborate together to solve a problem. The third example concerns the transformation of evidence on continuous variables into fixed probabilistic evidence. The algorithm BN-IPFP-1 has been implemented and used on medical data from CHU Habib Bourguiba in Sfax.
40

Realization of Model-Driven Engineering for Big Data: A Baseball Analytics Use Case

Koseler, Kaan Tamer 27 April 2018 (has links)
No description available.

Page generated in 0.066 seconds