• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 22
  • 16
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Multifunktionale Filter für die Metallschmelzefiltration - ein Beitrag zu Zero Defekt Materials: Abschlussbericht DFG Sonderforschungsbereich SFB 920

Aneziris, Christos G. 06 February 2024 (has links)
Die Sicherheit von Straßen-, Schienenfahrzeugen sowie von Flugzeugen erfordert hochbelastbare Bauteile aus Stahl, Eisen, Aluminium und Magnesium. Während des Herstellungsprozesses können Verunreinigungen in der Metallschmelze auftreten, die zu Defekten in Form von Einschlüssen führen. Die Reduzierung oder Entfernung dieser Einschlüsse ist schwierig oder manchmal sogar unmöglich. Der Sonderforschungsbereich 920 „Multifunktionale Filter für die Metallschmelzefiltration – ein Beitrag zu Zero Defect Materials“ konzentrierte sich auf die Erforschung einer neuen Generation von Metallqualitäten – auch beim Recycling – durch Schmelzefiltration mit überlegenen mechanischen Eigenschaften für höchstbeanspruchbare Komponenten in Sicherheits- und Leichtbaukonstruktionen. Der SFB 920 wurde von 2011 bis 2023 an der Technischen Universität Bergakademie Freiberg von der Deutschen Forschungsgemeinschaft (DFG) gefördert (Projektnummer 169148856 – SFB 920) und nach 12 Jahren intensiver Forschungsarbeit erfolgreich beendet. Der Abschlussbericht des SFB 920 fasst die wichtigsten Publikationen und ausgewählte Ergebnisse zusammen.:1 Zusammenfassung / Summary 1 2 Die 50 wichtigsten veröffentlichten Ergebnisse 2 2.1 Publikationen mit wissenschaftlichen Qualitätssicherung 2 2.2 Weitere Publikationen und öffentlich gemachte Ergebnisse 4 3 Übersicht der Teilprojekte 5 4 Wissenschaftliche Entwicklung des Sonderforschungsbereichs 7 4.1 Einleitung, Vision und Thesen 7 4.2 Ausgewählte Ergebnisse 8 4.2.1 „Stahlschmelze-Filtration“ 8 4.2.2 „Aluminiumschmelze-Filtration“ 16 4.2.3 „Magnesiumschmelzefiltration“ 17 4.2.4 Beiträge der Simulation 18 4.2.5 Harz- und pechfreies Bindemittel für umweltfreundliche, reaktive Filter 20 4.2.6 Generatives Hybrid-Flammspritzverfahren 20 4.2.7 Transferprojekte 21 4.2.8 Zusammenfassende Bemerkungen 22 4.2.9 Management der Forschungsdaten 24 4.2.10 Literatur 24 4.3 Wissenschaftliche Veranstaltungen und Wissenschaftskommunikation 26 4.4 Nationale und internationale Kooperationen 28 5 Schwerpunktbildung und internationale Sichtbarkeit 31 / The safety of road and railway vehicles as well as aircrafts requires highly stressable components made of steel, iron, aluminum and magnesium. During the production process, contaminations can occur in the metal melt, which lead to defects in the form of inclusions. Reducing or removing these inclusions is difficult or sometimes impossible. The Collaborative Research Center 920 “Multi-functional filters for metal melt filtration – a contribution towards zero defect materials” focussed on research into a new generation of metal qualities - also during recycling - via melt filtration with superior mechanical properties for use in high-demand construction materials and light-weight structures. The CRC 920 was funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) from 2011 to 2023 at the Technische Universität Bergakademie Freiberg (Project-ID 169148856 – SFB 920) and was successfully completed after 12 years of intensive research work. The final report of the CRC 920 presents the most important publications and selected results.:1 Zusammenfassung / Summary 1 2 Die 50 wichtigsten veröffentlichten Ergebnisse 2 2.1 Publikationen mit wissenschaftlichen Qualitätssicherung 2 2.2 Weitere Publikationen und öffentlich gemachte Ergebnisse 4 3 Übersicht der Teilprojekte 5 4 Wissenschaftliche Entwicklung des Sonderforschungsbereichs 7 4.1 Einleitung, Vision und Thesen 7 4.2 Ausgewählte Ergebnisse 8 4.2.1 „Stahlschmelze-Filtration“ 8 4.2.2 „Aluminiumschmelze-Filtration“ 16 4.2.3 „Magnesiumschmelzefiltration“ 17 4.2.4 Beiträge der Simulation 18 4.2.5 Harz- und pechfreies Bindemittel für umweltfreundliche, reaktive Filter 20 4.2.6 Generatives Hybrid-Flammspritzverfahren 20 4.2.7 Transferprojekte 21 4.2.8 Zusammenfassende Bemerkungen 22 4.2.9 Management der Forschungsdaten 24 4.2.10 Literatur 24 4.3 Wissenschaftliche Veranstaltungen und Wissenschaftskommunikation 26 4.4 Nationale und internationale Kooperationen 28 5 Schwerpunktbildung und internationale Sichtbarkeit 31
52

Microstructural characterisation of novel nitride nanostructures using electron microscopy

Severs, John January 2014 (has links)
Novel semiconductor nanostructures possess a range of notable properties that have the potential to be harnessed in the next generation of optical devices. Electron microscopy is uniquely suited to characterising the complex microstructure, the results of which may be related to the growth conditions and optical properties. This thesis investigates three such novel materials: (1) GaN/InGaN core/shell nanowires, (2) n-GaN/InGaN/p-GaN core/multi-shell microrods and (3) Zn<sub>3</sub>N<sub>2</sub> nanoparticles, all of which were grown at Sharp Laboratories of Europe. GaN nanowires were grown by a Ni-catalysed VLS process and were characterised by various techniques before and after InGaN shells were deposited by MOCVD. The majority of the core wires were found to have the expected wurtzite structure and completely defect free – reflected in the strong strain-free photoluminescence peak –with a- and m- axis orientations identified with shadow imaging. A small component, <5%, were found to have the cubic zinc-blende phase and a high density of planar faults running the length of the wires. The deposited shells were highly polycrystalline, partially attributed to a layer of silicon at the core shell interface identified through FIB lift-out of cross section samples, and accordingly the PL was very broad likely due to recombination at defects and grain boundaries. A high throughput method of identifying the core size indirectly via the catalyst particle EDX signal is described which may be used to link the shell microstructure to core size in further studies. An n-GaN/InGaN/p-GaN shell structure was deposited by MOCVD on the side walls of microrods etched from c-axis GaN film on sapphire, which offers the possibility of achieving non-polar junctions without the issues due to non-uniformity found in nanowires. Threading dislocations within the core related to the initial growth on sapphire were shown to be confined to this region, therefore avoiding any harmful effect on the junction microstructure. The shell defect density showed a surprising relationship to core size with the smaller diameter rods having a high density of unusual 'flag' defects in the junction region whereas the larger diameter sample shells appeared largely defect free, suggesting the geometry of the etched core has an impact on the strain in the shell layers. The structure of unusual 'flag' defects in the m-plane junctions was characterised via diffraction contrast TEM, weak beam and atomic resolution ADF STEM and were shown to consist of a basal plane stacking faults meeting a perfect or partial dislocation loop on a pyramidal plane, the latter likely gliding in to resolve residual strain due to the fault formed during growth. Zn<sub>3</sub>N<sub>2</sub> has the required bandgap energy to be utilised as a phosphor with the additional advantage over conventional materials of its constituent elements not being toxic or scarce. The first successful synthesis of Zn<sub>3</sub>N<sub>2</sub> nanoparticles appropriate to this application was confirmed via SAD, EDX and HRTEM, with software developed to fit experimental polycrystalline diffraction patterns to simulated components suggesting a maximum Zn<sub>3</sub>N<sub>2</sub> composition of ~30%. There was an apparent decrease in crystallinity with decreasing particle size evidenced in radial distribution function studies with the smallest particles appearing completely amorphous in 80kV HRTEM images. A rapid change in the particles under the electron beam was observed, characterised by growth of large grains of Zn<sub>3</sub>N<sub>2</sub> and ZnO which increased with increasing acceleration voltage suggesting knock-on effects driving the change. PL data was consistent with the bandgap of Zn<sub>3</sub>N<sub>2</sub> blue shifted from 1.1eV to around 1.8eV, confirming the potential of the material for application as a phosphor.
53

Optimální plnění drážky s ohledem na použitou izolaci motoru a pracovního zatížení / Optimal fill factor of slot with respect of used insulation of motor and duty

Samek, Josef January 2016 (has links)
Only in English.
54

CHAIN-LENGTH PROPERTIES OF CONJUGATED SYSTEMS: STRUCTURE, CONFORMATION, AND REDOX CHEMISTRY

Saadia T Chaudhry (8407140) 22 April 2021 (has links)
The development of solution-processable semiconducting polymers has brought mankind’s long-sought dream of plastic electronics to fruition. Their potential in the manufacturing of lightweight, flexible yet robust, and biocompatible electronics has spurred their use in organic transistors, photovoltaics, electrochromic devices, batteries, and sensors for wearable electronics. Yet, despite the successful engineering of semiconducting polymers, we do not fully understand their molecular behavior and how it influences their doping (oxidation/reduction) properties. This is especially true for donor-acceptor (D-A) p-systems which have proven to be very efficient at tuning the electronic properties of organic semiconductors. Historically, chain-length dependent studies have been essential in uncovering the relationship between the molecular structure and polymer properties. Discussed here is the systematic investigation of a complete D-A molecular series composed of monodispersed and well-defined conjugated molecules ranging from oligomer (n=3-21) to polymer scale lengths. Structure-property relationships are established between the molecular structure, chain conformation, and redox-active opto-electronic properties for the molecular series in solution. This research reveals a rod-to-coil transition at the 15 unit chain length, or 4500 Da, in solution. The redox-active optical and electronic properties are investigated as a function of increasing chain-length, giving insight into the nature of charge carriers in a D-A conjugated system. This research aids in understanding the solution behavior of conjugated organic materials. <br>
55

Durch Lumineszenz nachgewiesene magnetische Resonanz: Aufbau eines Spektrometers und Messungen an den Laserkristallen Al2O3:Cr und Al2O3:Ti / Magnetic resonance detected via luminescence: construction of a spectrometer and measurements of the laser crystals Al2O3:Cr and Al2O3:Ti

Ruza, Egils 15 September 2000 (has links)
Im Rahmen dieser Arbeit wurde eine Meßanordnung zum Nachweis der Elektronen-Spin-Resonanz durch Beobachtung der Lumineszenz aufgebaut. Diese Methode ist unter dem Namen Optisch Detektierte Magnetische Resonanz (ODMR) bekannt. Sie erlaubt es, die Lumineszenzeigenschaften mit der aus der Spin-Resonanz gewonnenen atomistischen Strukturinformation zu verknüpfen. Mit der ODMR-Anlage wurden Untersuchungen an zwei unterschiedlich dotierten Korund-Kristallen, Rubin (Al2O3:Cr) und Saphir (Al2O3:Ti), durchgeführt. Anhand der Literaturdaten für Rubin wurde die neu aufgebaute Anlage getestet und geeicht. Die Messungen an Saphir dienten zur Klärung der bisher kontrovers diskutierten Struktur von blau emittierenden Lumineszenzzentren. Bei einer UV-Anregung entsteht im Saphir neben der schon bekannteninfraroten Ti3+-Emission eine breite blau-grüne Emission, die aus zwei überlappenden Teilbanden besteht. Die eine hat das Maximum bei ca. 410 nm ("blaue Bande") und die andere bei 480 nm ("grüne Bande"). Die Anregung beider Lumineszenzbanden findet bei 250 nm und 270 nm bzw. 270 nm statt. Um diese blau-grüne Lumineszenz zu erklären, sind unterschiedliche Modelle vorgeschlagen worden. So wurde die Lumineszenz F+-Zentren (ein Elektron in einer Sauerstoffleerstelle) oder Ti-Zentren zugeordnet. Im Falle der Ti-Zentren wurden alternativ Kristallfeldübergänge von Ti3+-Ionen und Charge-Transfer-Übergänge von Ti4+-Ionen mit der Lumineszenz in Verbindung gebracht. Die im Rahmen dieser Arbeit durchgeführten ODMR-Messungenergaben als Ursache der blau-grünen Lumineszenz zwei einander ähnliche Triplett-Systeme T1 und T2. Diese konnten durch folgende ESR-Parameter beschrieben werden: T1: gx,y,z=2.00, 1.96, 1.94 (g-Tensor), D=0.306 cm-1 (axialer Anteil der Kristallfeldaufspaltung), E=0.034 cm-1 (orthorhombischer Anteil der Kristallfeldaufspaltung); T2: gx,y,z=1.99, 1.99, 1.99, D=0.342 cm-1, E=0.054 cm-1. Das Zentrum T1 konnte der blauen und T2 der grünen Lumineszenz-Teilbande zugeordnet werden. Da die Lumineszenz-Zentren angeregte Tripletts sind, können Dublett-Systeme wie die F+-Zentren oder Ti3+-Ionenausgeschlossen werden. Dagegen sind die Beobachtungen verträglich mit dem Ti4+-O2--Charge-Transfer-Modell (mit Ti3+-O- im angeregten Zustand). Beide Lumineszenzbanden stammen demzufolge aus der Rekombination des Elektron-Loch-Paares im Ti3+-O--Zentrum des Typs T1 oder T2, das durch den Charge-Transfer-Übergang eines Elektrons vom Sauerstoff zum Ti4+ entsteht. Elektron und Loch koppeln zu einem Triplett-System. Das Loch ist bei beiden Zentren an einem dem Titanion benachbarten Sauerstoffion lokalisiert. Dies wird daraus geschlossen, daß die z-Achse der ESR-Tensoren ungefähr parallel zur Richtung der Al-O-Bindungen im ungestörten Kristallgitter liegt. Für beide Zentren ist das Verhältnis aus axialem undorthorhombischem Kristallfeldparameter |D/E| ungefähr gleich. Dies läßt auf eine ähnliche Struktur der Umgebung schließen, was das Bild unterstützt, daß beide Zentren fast identisch aufgebaut sind. Der axiale Kristallfeldanteil (Parameter D) von T2 ist etwas größer als der von T1. Dies kann durch einen kleineren Abstand von Elektron und Loch, d. h. von Ti3+ und O- erklärt werden, da die Kopplung zwischen den Spins dann stärker sein wird. In ungestörtem Al2O3 weisen drei der sechs einem Al-Ion benachbarten Sauerstoffionen einen kleineren Abstand auf als die anderen drei Ionen. Die drei Sauerstoffionen mit gleichem Abstand bilden jeweils Dreiecke, wobei das mit dem kleineren Abstand eine größere Seitenlänge aufweist. Es besteht nun die Möglichkeit, daß die beiden Zentren T1 und T2 sich lediglich darin unterscheiden, daß das Loch einmal auf einem Ion des kleinen und einmal auf einem des großen Dreiecks eingefangen ist. Wegen der Größe von D wäre T1 dann dem kleinen und T2 dem großen Dreieck zuzuordnen. Auch die beobachteten Hauptachsenrichtungen der ESR-Tensoren sind mit dieser Zuordnung verträglich. Im angeregten Zustand befindet sich das Elektron auf dem Titanion imgleichen Zustand wie das in dem Grundzustand des Ti3+-Ions. Der große Unterschied zwischen den in der ESR des Grundzustands gemessenen g-Werten (gparallel=1.067, gperp<0.1, Kask et al., 1964) und dem hier gewonnenen fast isotropen g-Faktor (g=2) kann durch die sogenannte Auslöschung des Bahndrehimpulses erklärt werden, die bei niedrigsymmetrischem System wie Ti3+-O- auftritt.
56

Optimalizace návrhu energetické renovace školských budov / Optimisation of energy renovation of school buildings

Mocová, Pavla January 2018 (has links)
The dissertation thesis is focused on a methodology of optimal design energy renovation of school buildings. The thesis is focused on the analysis of selected school buildings during the last 100 years of construction in the first phase. At this phase, are found some important information, especially in terms of the energy performance of the building envelope and results of this parts. Last but not least, CO2 emissions were detected. In the next part of this work, one selected school is assessed in terms of the quality of the environment, due to the evaluation of microbial microclimate on building structures, CO2 concentration and daylight. CO2 concentration and classroom daylight is addressed both for the original and for the new state. Another point of this thesis is the appreciation of the size of the classrooms in the schools both in terms of typological principles and in terms of the average size of classrooms. The daylight assessment is performed on these selected sizes, which is a part of the "PaMo I" design tool. In the next phase of the dissertation was created the design tool "PaMo I". This tool solves the evaluation of the renovation of school buildings from the point of view of the thermal engineering in connection with the influence of the daylight illumination on the classrooms of the school buildings by the thickness of the insulation system and the replacement of the windows. Part of the design tool is also the financial quantification of the investment, the payback period and the impact on the environment of the individual variants. The choice of variant options has been used when making a design tool user decision. The result of this work is a design tool which will help in deciding and finding the optimal alternative to the energy renovation of a school building in connection with daylighting inside classrooms.
57

ELECTRONIC AND OPTICAL PROPERTIES OF FIRST-ROW TRANSITION METALS IN 4H-SIC FOR PHOTOCONDUCTIVE SWITCHING

Timothy Sean Wolfe (11203593) 29 July 2021 (has links)
<div>Photoconductive Semiconductor Switches (PCSS) are metal-semiconductor-metal devices used to switch an electrical signal through photoconduction. Rapidly switched PCSS under high bias voltages have shown remarkable potential for high power electronic and electromagnetic wave generation, but are dependent on precise optoelectronic material parameters such as defect ionization energy and optical absorption. These properties can be measured but are difficult to attribute definitively to specific defects and materials without the aid of high-accuracy, predictive modeling and simulation. This work combines well-established methods for first principles electronic structure calculations such as Density Functional Theory (DFT) with novel modern approaches such as Local Moment Counter Charge (LMCC) boundary conditions to adequately describe charge states and Maximally Localized Wannier Functions (MLWF) to render the summation of optical excitation paths as computationally tractable. This approach is demonstrated to overcome previous barriers to obtaining reliable qualitative or quantitative results, such as DFT band gap narrowing and the prohibitive computational cost of coupled electron-phonon processes. This work contributes electronic structure calculations of 4H-SiC doped with first-row transition metals (V through Ni) that are consistent with prior published work where applicable and add new possibilities for prospective semi-insulating metal-semiconductor systems where investigating new dopant possibilities. The results indicate a spectrum of highly localized, mid-gap, spin-dependent defect energy levels which suggest a wider range of potential amphoteric dopants suitable for producing semi-insulating material. Additionally, this work contributes MLWF-based calculations of phonon-resolved optical properties in 3C and 4H-SiC, indirect gap semiconductors, which accurately produce the expected onset of optical absorption informed by experiment. These results were further expanded upon with small V-doped cells of 4H-SiC, which while not fully converged in terms of cell size still provided a qualitative point of comparison to the ground state results for determining the true optical excitation energy required for substantial photoconductivity. The subsequent speculative analysis suggests the importance of anisotropic absorption and alternative metal defects for optimizing high current optoelectronic devices such as PCSS.</div>
58

THE EFFECT OF MOLECULAR DESIGN ON SPIN DENSITY LOCALIZATION AND RADICAL-INITIATED DEGRADATION OF CONJUGATED RADICAL CATIONS

Kaelon Athena Jenkins (16613448) 19 July 2023 (has links)
<p> Radical species are essential in modern chemistry. In addition to fundamental chemistry, their unique chemical bonding and distinct physicochemical features serve critical functions in materials science in the form of organic electronics. Due to their high reactivity, radicals of the main group element are often transient. In recent years, remarkably stable radicals are often stabilized by π-delocalization, sterically demanding side groups, carbenes, and weakly coordinating anions. The impacts of modifications such as electron-donating, electron-withdrawing, and end-capping on the spin density distribution and thermodynamic and kinetic stability of archetypal radical-driven processes such as dimerization are not well understood. This dissertation aims to track the perturbation of spin density from EDG and EWG modifications, provide mechanistic insight into the radical-initiated reactions of conjugated radical cations, and establish correlations between molecular design and thermochemical properties and their resulting kinetic stability by computationally evaluating these characteristics against experimental data. The disclosed connections give useful new recommendations for the rational design of thermodynamically and kinetically stable novel materials.</p>
59

Rheology of suspension of fibers: Microscopic interaction to macroscopic rheology

Md Monsurul Islam Khan (6911054) 21 July 2023 (has links)
<p>Fibre suspensions in the fluid medium are common in industry, biology, and the environment. Industrial examples of concentrated suspensions include fresh concrete, uncured solid rocket fuel, and biomass slurries; natural examples include silt transfer in rivers and red blood cells in the blood.  These suspensions often include a Newtonian fluid as their suspending medium; still, these suspensions exhibit a plethora of non-Newtonian properties, such as yield stresses, rate-dependent rheology, and normal stresses, to name a few. Other than volume fraction, the type of fiber material, the presence of fluid-fiber or fiber-fiber interactions such as hydrodynamic, Brownian, colloidal, frictional, chemical, and/or electrostatic determine the rheological behavior of suspension. The average inter-fiber gaps between the neighboring fibers decrease significantly as the suspension volume fraction move towards a concentrated regime. As a result, in this regime, inter-fiber interactions become dominant.  Moreover, the surface asperities are present on the fiber surface even in the case of so-called smooth fibers, as fibers in real suspensions are not perfectly smooth. Hence, contact forces arising from the direct touching of the fibers become one of the essential factors in determining the rheology of suspensions.</p> <p>We first describe the causes of yield stress, shear thinning, and normal stress differences in fibre suspensions. We model the fibers as inextensible continuous flexible slender bodies with the Euler-Bernoulli beam equation governing their dynamics suspended in an incompressible Newtonian fluid. The fiber dynamics and fluid flow coupling is achieved using the immersed boundary method (IBM). In addition, the fiber surface roughness lead to inter-fiber contacts resulting in normal and tangential forces between the fibers, which follow Coulomb’s law of<br> friction. The surface roughness is modeled as hemispherical protrusions on the fiber surfaces. In addition to the comparison of the computational model to the experimental results, we demonstrate that attractive interactions lead to yield stress and shear thinning rheology.</p> <p>Furthermore, we investigate the effects of fiber aspect ratio, roughness, flexibility, and volume fraction on the rheology of concentrated suspensions. We find that the suspension viscosity increases with increasing the volume fraction, roughness, fiber rigidity, and aspect ratio. The increase in relative viscosity is the macroscopic manifestation of a similar increase  in the microscopic contact contribution with these parameters. In addition, we observe positive and negative first and second normal stress differences, respectively, in agreement with previous experiments. Lastly, we propose a modified Maron-Pierce law to quantify the the jamming volume fraction with varying fiber aspect ratio and roughness. Additionally, we provide a constitutive model to calculate the viscosity at various volume fractions, aspect ratios, and shear rates.</p>
60

LIGHT AND CHEMISTRY AT THE INTERFACE OF THEORY AND EXPERIMENT

James Ulcickas (8713962) 17 April 2020 (has links)
Optics are a powerful probe of chemical structure that can often be linked to theoretical predictions, providing robustness as a measurement tool. Not only do optical interactions like second harmonic generation (SHG), single and two-photon excited fluorescence (TPEF), and infrared absorption provide chemical specificity at the molecular and macromolecular scale, but the ability to image enables mapping heterogeneous behavior across complex systems such as biological tissue. This thesis will discuss nonlinear and linear optics, leveraging theoretical predictions to provide frameworks for interpreting analytical measurement. In turn, the causal mechanistic understanding provided by these frameworks will enable structurally specific quantitative tools with a special emphasis on application in biological imaging. The thesis will begin with an introduction to 2nd order nonlinear optics and the polarization analysis thereof, covering both the Jones framework for polarization analysis and the design of experiment. Novel experimental architectures aimed at reducing 1/f noise in polarization analysis will be discussed, leveraging both rapid modulation in time through electro-optic modulators (Chapter 2), as well as fixed-optic spatial modulation approaches (Chapter 3). In addition, challenges in polarization-dependent imaging within turbid systems will be addressed with the discussion of a theoretical framework to model SHG occurring from unpolarized light (Chapter 4). The application of this framework to thick tissue imaging for analysis of collagen local structure can provide a method for characterizing changes in tissue morphology associated with some common cancers (Chapter 5). In addition to discussion of nonlinear optical phenomena, a novel mechanism for electric dipole allowed fluorescence-detected circular dichroism will be introduced (Chapter 6). Tackling challenges associated with label-free chemically specific imaging, the construction of a novel infrared hyperspectral microscope for chemical classification in complex mixtures will be presented (Chapter 7). The thesis will conclude with a discussion of the inherent disadvantages in taking the traditional paradigm of modeling and measuring chemistry separately and provide the multi-agent consensus equilibrium (MACE) framework as an alternative to the classic meet-in-the-middle approach (Chapter 8). Spanning topics from pure theoretical descriptions of light-matter interaction to full experimental work, this thesis aims to unify these two fronts. <br>

Page generated in 0.1335 seconds