Spelling suggestions: "subject:"1protein - protein interaction"" "subject:"2protein - protein interaction""
251 |
Etude de l'intéraction entre le facteur d'échange pour Arf, la protéine GBF1, et la lipase ATGL / Study of interaction between an Arf G exchange factor, GBF1, and the lipase ATGLNjoh ellong, Emy 10 February 2011 (has links)
Les petites protéines G Arf ont besoin d'un facteur d'échange nucléotidique (GEF) afin de passer de leur forme inactive liée au GDP à leur forme active liée au GTP. GBF1 est la GEF pour Arf1 qui assure, notamment, le recrutement du complexe manteau COPI impliqué dans le transport entre le Golgi précoce et le réticulum endoplasmique. Il a été récemment montré que GBF1 est impliqué dans la livraison de l'Adipose TriGlycéride Lipase (ATGL) sur les corps lipidiques (LDs). ATGL est une enzyme qui catalyse l'hydrolyse des triglycérides en diglycérides. Les travaux présentés dans cette thèse ont eu pour objectif d'étudier et de caractériser l'interaction entre GBF1 et la lipase ATGL. Par des expériences de co-immunoprécipitation dans les cellules de mammifère, les domaines des deux protéines impliquées dans l'interaction ont été identifiés. Par des expériences de pulldown utilisant les protéines exprimées chez E. coli, j'ai montré que ces interactions sont directes. Afin d'approfondir l'étude de l'interaction entre GBF1 et ATGL, j'ai construit des outils permettant l'étude biochimique de GBF1 en purifiant plusieurs de ses domaines. J'ai tout d'abord cherché à mettre au point un test d'activité pour GBF1 afin de tester l'influence de protéines partenaires, dont ATGL, sur son activité. Malgré la purification de différents fragments de GBF1 contenant le domaine Sec7, aucun n'a présenté une activité avec Arf1Δ17 en solution. Le domaine N-terminal de la protéine, avec et sans une mutation empêchant une interaction intramoléculaire, ainsi que les domaines HDS1 et HDS2 de GBF1 ont également été purifiés / Small G proteins Arf require assistance from a Guanine nucleotide exchange factor (GEF) in order to switch between GDP- and GTP-bound forms. GBF1 is the Arf1 GEF that mediates COPI coat complex recruitment to early secretory pathway membranes. COPI is a protein that coats vesicles transporting proteins from the cis side of the Golgi complex back to the rough endoplasmic reticulum. GBF1 was recently shown to mediate delivery of Adipose TriGlyceride Lipase (ATGL) to the surface of lipid droplets (LDs). ATGL is an enzyme catalyzing the initial step in triglyceride hydrolysis in LDs. Thus, the aim of this work was to study interactions between GBF1 and ATGL. By co-immunoprecipitation experiments in mammalian cells, the domains of two proteins involved in the interaction have been identified. By pulldown assays using proteins expressed in bacteria, I showed that these interactions are direct. To further study of the GBF1-ATGL interaction, I developed tools for the biochemical study of GBF1, by purifying several of its domains. I first tried to develop a kinetic essay for GBF1 to test the influence of interacting partners, including ATGL, on its activity. Despite the purification of various GBF1 fragments containing the Sec7 domain, none have activity with Arf1Δ17 in solution. The N-terminal domain of the protein, with and without a mutation disrupting an intramolecular interaction, and the HDS1 and HDS2 domains of GBF1 were also purified.
|
252 |
Étude numérique de la formation du complexe protéique formé du canal potassique humain Kv4.2 et de sa sous-unité bêta DPP6.2Morin, Michaël 10 1900 (has links)
No description available.
|
253 |
A análise do interactoma de SCI1 (Stigma/Style Cell Cycle Inhibitor 1) revela possíveis mecanismos de controle da proliferação celular / The analysis of the interactome of SCI1 (Stigma/Style Cell Cycle Inhibitor 1) reveals possible mechanisms controlling cell proliferationStrini, Edward José 05 May 2014 (has links)
A biologia da reprodução de plantas é um campo de grande interesse, já que a maioria dos alimentos consumidos pelo homem é composta de partes reprodutivas das plantas (frutos e sementes). O pistilo é o órgão reprodutivo feminino, composto de estigma, estilete e ovário. Devido à importância central do pistilo no sucesso da reprodução de plantas, faz-se necessário um melhor conhecimento dos genes e processos que regulam seu desenvolvimento e funcionamento. Estudos comparativos da expressão gênica nos órgãos vegetativos e reprodutivos de Nicotiana tabacum revelaram genes de expressão preferencial nos órgãos reprodutivos, entre eles alguns codificando proteínas de função ainda desconhecida. Um destes genes foi caracterizado e denominado SCI1 (Stigma/style Cell-cycle Inhibitor 1), por apresentar um papel importante no desenvolvimento do estigma/estilete, atuando como um inibidor de ciclo celular tecido-específico (DePaoli et al., 2011). O presente trabalho teve como objetivo estudar os mecanismos moleculares pelos quais NtSCI1 regula o ciclo celular, investigando seus parceiros de interação. Em um ensaio de pull-down, utilizando-se extrato proteico nuclear de estigmas/estiletes de N. tabacum, vários putativos reguladores de ciclo celular foram identificados, sendo a interação entre NtSCI1 e NtCDKG;2 confirmada por BiFC e localizada no nucléolo. Uma biblioteca de cDNAs de estigmas/estiletes de N. tabacum, no sistema de duplo-híbrido de levedura, foi construída com sucesso. O screening desta biblioteca, utilizando BD-NtSCI1 como \"isca\", permitiu a identificação de vários parceiros de interação com NtSCI1, entre eles: uma helicase de RNA DEAD-BOX, a proteína 14-3-3D2, dois fatores de transcrição (HOMEOBOX-22 e STOREKEEPER), um fator de splicing portador do domínio SWAP, uma quinase de adenosina e uma transposase. As interações entre NtSCI1 e os três primeiros parceiros citados já foram confirmadas por BiFC (observadas no núcleo e nucléolo) e a interação entre NtSCI1 e Nt14-3-3D2 foi confirmada também por co-imunoprecipitação. O envolvimento de NtSCI1 com a regulação do ciclo celular foi corroborado pela interação entre NtSCI1 e a proteína NtCICLINA-L1 (subunidade regulatória de CDKG;2), confirmada por duplo-híbrido e por BiFC, no nucléolo. A interação entre NtSCI1 e NtCICLINA-RELATED também foi confirmada por BiFC. Para entender a dinâmica de NtSCI1 no nucléolo, foi estudada a localização subcelular da proteína de fusão NtSCI1-GFP durante as fases do ciclo celular. NtSCI1-GFP foi observada no nucléolo de células BY-2 em interfase e prófase, desaparecendo na metáfase e anáfase e reaparecendo no nucléolo no final da telófase, mostrando que a presença de NtSCI1 na célula é controlada pelo ciclo celular. A construção de uma primeira versão do interactoma de NtSCI1 mostrou seu envolvimento direto e indireto com proteínas relacionadas ao metabolismo de RNAs, controle da transcrição e regulação do ciclo celular. Estes resultados sugerem que NtSCI1 possa atuar no controle do ciclo celular de forma não canônica, por meio de múltiplos processos paralelos que interconectam aspectos da regulação da transcrição e o processamento de RNAs com o controle do ciclo celular. / The biology of plant reproduction is a field of great interest, since most of the food consumed by humans is composed of reproductive parts of plants (fruits and seeds). The pistil is the female reproductive organ, composed of stigma, style and ovary. Due to the central importance of the pistil in the success of plant reproduction, a better knowledge of the genes and processes that regulate pistil development and function is necessary. Comparative studies of gene expression in vegetative and reproductive organs of Nicotiana tabacum have revealed genes preferentially expressed in the reproductive organs, among them some encoding proteins of unknown function. One of these genes was characterized and denominated SCI1 (Stigma/style Cell-cycle Inhibitor 1), since it has an important role in stigma/style development, acting as a tissue-specific cell-cycle inhibitor (DePaoli et al., 2011). The objective of the present work was to study the molecular mechanisms through which NtSCI1 regulates the cell cycle investigating its interaction partners. In a pull-down assay, using nuclear protein extracts from N. tabacum stigmas/styles, several putative cell cycle regulators were identified. Among them, the interaction between NtSCI1 and NtCDKG;2 was confirmed by BiFC and localized in the nucleolus. A N. tabacum stigma/style cDNA library in the yeast two-hybrid system was successfully constructed. The screening of this library, using BD-NtSCI1 as bait, allowed the identification of several NtSCI1 interaction partners, among them: a DEAD-BOX RNA helicase; the 14-3-3D2 protein; two transcription factors (HOMEOBOX-22 and STOREKEEPER); a splicing factor containing a SWAP domain; an adenosine kinase; and a transposase. The interactions between NtSCI1 and the first three mentioned partners have already been confirmed by BiFC (observed in the nucleus and nucleolus) and the interaction between NtSCI1 and Nt14-3-3D2 was also wconfirmed by co-immunoprecipitation. The NtSCI1 involvement in cell cycle regulation was corroborated by the interaction between NtSCI1 and the NtCYCLIN-L1 (a regulatory subunit of CDKG;2), which was confirmed by two-hybrid and BiFC in the nucleolus. The interaction between NtSCI1 and NtCYCLIN-RELATED was also confirmed by BiFC. To understand the dynamics of NtSCI1 in the nucleolus, the subcellular localization of the fusion protein NtSCI1-GFP was studied during the different cell cycle phases. NtSCI1-GFP was observed in the nucleolus of BY-2 cells at interphase and prophase, disappearing at metaphase and anaphase and reappearing in the nucleolus at the end of telophase, showing that NtSCI1 presence in the cell is controlled by the cell cycle. The construction of the first version of NtSCI1 interactome showed its direct and indirect involvement with proteins related to RNA metabolism, transcription control and cell cycle regulation. These results suggest that NtSCI1 may act in cell cycle control in a non-canonical way, through multiple parallel processes interconnecting aspects of transcription regulation, RNA processing and cell cycle control.
|
254 |
Identificação de interações proteína-proteína entre NS5 do vírus da febre amarela e proteínas celulares.Madrid, Maria Carolina Ferrari Sarkis 04 December 2007 (has links)
Made available in DSpace on 2016-01-26T12:51:20Z (GMT). No. of bitstreams: 1
mariacarolinaferrerisarkismadrid_dissert.pdf: 2834086 bytes, checksum: 6c83e7649397cb555812544b997d81d3 (MD5)
Previous issue date: 2007-12-04 / Yellow fever is an infectious disease caused by the yellow fever virus (YFV), a Flavivirus transmitted to humans by Aedes aegypti mosquitoes. Despite the existence of the yellow fever vaccine, the disease is endemic in South America and Africa, causing public health problems such as dispersed outbreaks, epidemics with variable impact and the risk of re-emergency of the urban cycle due to the occurrence of sylvatic disease. Aim. The knowledge of the components of YFV replication complex is still incipient but it is known that there are interactions among viral RNA, viral proteins and host proteins and, due to evidences of the existence of protein-protein interactions related to the NS5 protein of other Flavivirus, the target of our study was YFV NS5 protein. Once protein-protein interactions present basic importance for the activation, the regulation and the control of diverse biologic functions related to these interactions, the identification and the characterization of them are essential for a better comprehension of the pathogenesis and for the rational design of drugs for YFV. Material and Method. The YFV NS5 gene was divided in its two domains, which were independently cloned in a GAL4 DNA-BD plasmid, generating the methyltransferase (MT) and RNA polymerase (RNApol) baits. A two-hybrid system screening in Saccharomyces cerevisiae AH109 strain was performed utilizing RNApol bait and cDNA library of Hela cells, which was cloned in a GAL4 AD plasmid. MT bait showed to be toxic for the yeast. Results. All 204 obtained transformants were tested for activation of reporter genes HIS3, ADE2 and lacZ from AH109 and only 35 samples indicated positivity to, at least, two of the reporter genes assessed. Thirty three distinct cellular protein partners of the RNApol NS5 were identified after the sequencing of the clones and the comparison of its sequences with GenBank. Proteins Snf5, p54NRB, HMG20B, U1A, eIF3S6IP, GIPC PDZ and MIF were chosen for next experiments. A plasmid linkage with these proteins was performed to exclude the possibility of false-positive clones and to confirm the protein-protein interactions identified in the initial screening. RNApol regions responsible for the Snf5 and eIF3S6IP interactions were mapped and a region of approximately 80 aminoacids was identified as the minimum domain requested for the interactions, called fragment A. Conclusion. The prominence of this YFV fragment as a determinant of protein interactions became more evident when its sequence was compared to the sequences of other Flavivirus, signalizing a homology from aminoacid 20 to 80, demonstrating that this fragment is a conserved region. Moreover, the production of a similarity model of RNA polymerase domain of YFV NS5 protein, using the known DENV NS5 protein structure, showed that the region of interaction is exposed and potentially capable of forming interactions. / A febre amarela é uma doença infecciosa causada pelo vírus da febre amarela (yellow fever virus YFV), um Flavivirus transmitido ao homem pela picada do mosquito Aedes aegypti. Mesmo com a existência de uma vacina anti-amarílica, a enfermidade conserva-se endêmica na América do Sul e na África, gerando problemas de saúde pública que incluem surtos isolados, epidemias de impactos variáveis e, principalmente, o risco da possível re-emergência da sua forma urbana a partir da ocorrência de surtos silvestres. Objetivo. Embora sejam mínimas as informações sobre os componentes do complexo de replicação do YFV, sabe-se que nele estão envolvidas interações entre o RNA viral, proteínas virais e proteínas do hospedeiro e, devido às evidências de interações proteína-proteína relacionadas à proteína NS5 de outros Flavivirus, o alvo principal do nosso trabalho foi NS5 do YFV. Como interações protéicas são de fundamental importância para ativação, regulação e controle de diversas funções biológicas a elas relacionadas fica evidente a relevância da identificação e caracterização das interações participantes desse processo para uma melhor compreensão da patogênese e para o desenho racional de drogas contra a febre amarela. Material e Método. O gene NS5 de YFV foi dividido em seus dois domínios, os quais foram clonados independentemente no plasmídeo com DNA-BD de GAL4, gerando as iscas metiltransferase e RNA polimerase. Em seguida, foi realizado um screening em sistema duplo-híbrido com a isca RNApol contra biblioteca de cDNA de células Hela clonada em vetor com AD de GAL4, uma vez que MT mostrou-se tóxica para a levedura hospedeira do experimento Saccharomyces cerevisiae, linhagem AH109. Resultados. Os 204 transformantes obtidos foram testados quanto à capacidade de ativação dos genes repórteres HIS3, ADE2 e lacZ de AH109 quando, então, apenas 35 amostras mostraram-se positivas para pelo menos dois dos repórteres testados. Após o seqüenciamento nucleotídico desses clones e comparação das seqüências com o GenBank, os resultados indicaram seqüências nucleotídicas codificadoras para 33 proteínas celulares diferentes como parceiras interativas de RNApol NS5, dentre as quais foram eleitas as proteínas Snf5, p54NRB, HMG20B, U1A, eIF3S6IP, GIPC PDZ e MIF para o prosseguimento dos experimentos. Para excluir a possibilidade de pertencerem a uma classe de clones falso-positivos e confirmar as interações proteína-proteína identificadas na triagem inicial, foi efetuado o plasmid linkage. Após tal confirmação, foram mapeadas as regiões em RNApol responsáveis pelas interações com Snf5 e eIF3S6IP, tendo sido descoberta uma mesma região de aproximadamente 80 resíduos aminoácidos como o domínio mínimo requerido para tais interações, a qual foi denominada fragmento A. Conclusões. A relevância do fragmento A de YFV como determinante das interações protéicas tornou-se mais evidente quando sua seqüência foi comparada à de outros Flavivirus, mostrando a presença de uma homologia principalmente entre os aminoácidos 20 a 80, demonstrando que esse fragmento se comporta como uma região conservada entre os Flavivirus considerados. Além disso, a geração de um modelo de similaridade do domínio RNA polimerase da proteína NS5 de YFV, a partir de NS5 de DENV, demonstrou que a região de interação está exposta ao solvente, sendo, portanto, potencialmente capaz de formar interações.
|
255 |
Análise do perfil de expressão de serina/treonina fosfatases e prospecção da função biológica para algumas dessas enzimas em Dictyostelium discoideum / Analysis of serine/threonine phosphatases expression profile and biological function prospection for some of these enzymes in Dictyostelium discoideumMartins, Layla Farage 13 December 2010 (has links)
A fosforilação reversível de proteínas em resíduos de serina e treonina, catalisada por quinases e fosfatases desempenha papel chave na regulação do crescimento e na diferenciação celular em eucariotos. As serina/treonina proteínas fosfatases (PSTPs) são atualmente divididas em três famílias denominadas PPP (PhosphoProtein Phosphatase), PPM (Phosphoprotein Phosphatase Magnesium-dependent) e FCP/SCP (RNA polymerase II CTD phosphatase), sendo que os membros da família PPP são, frequentemente, holoenzimas compostas de uma subunidade catalítica associada a uma ou mais subunidades reguladoras, as quais definem a função, localização e especificidade ao substrato da fosfatase. Neste trabalho, analisamos, através de RT-qPCR, o perfil de expressão dos genes codificadores de subunidades catalíticas de PPPs de Dictyostelium discoideum (PP1c, PP2Ac, PP4c, PP4c-like, PP6c e PP5c) e de 16 potenciais parceiros moleculares de algumas destas subunidades catalíticas, tais como DdI-2 e DdI-3, sabidamente inibidores da PP1c. Em resposta ao estresse térmico de células da fase de crescimento, detectamos o aumento dos níveis de transcritos de PP4c e PP6c e também de DdI-2, DdI-3 e DDB_G0292194, esta última, uma proteína de função desconhecida que interage com a PP1c em ensaios de duplo-híbrido em leveduras. Por outro lado, durante o estresse hiper-osmótico observamos a diminuição dos níveis de transcritos de quase todos os genes analisados com exceção de DdI-2 e DDB_G0292194. O nível de expressão de DdPP1c, DdI-2, DdI-3 e DDB_G0292194 também foi analisado em resposta ao estresse oxidativo e apenas o DDB_G0292194 foi induzido nesta condição. Os genes de PP1c, PP4, PP5c e PP6c são expressos durante todo o ciclo de vida de D. discoideum, mas a expressão de alguns dos genes analisados aumenta em uma fase definida do ciclo de desenvolvimento como é o caso de DDB_G0292194 que tem níveis de transcritos aumentados na fase de agregação. Este gene codifica uma proteína hipotética de 559 aminoácidos, que apresenta um domínio FHA (ForkHead-Associated) em sua região aminoterminal, além de uma sequência similar ao motivo consenso de ligação à PP1c. Ensaios no sistema de duplo-híbrido em leveduras confirmaram que a interação entre DDB_G0292194 e DdPP1c independe do domínio FHA. Verificamos, também, que o mutante nocaute de DDB_G0292194 apresenta uma morfologia alterada em condições padrões de cultivo, tanto na fase de crescimento como durante o desenvolvimento, além de uma maior sensibilidade ao estresse oxidativo causado pelo peróxido de hidrogênio quando comparado à linhagem selvagem. Em conjunto, nossos resultados evidenciam a importância das PPPs na resposta a diferentes tipos de estresse e para o crescimento e desenvolvimento de D. discoideum. / Reversible phosphorylation of proteins on serine and threonine residues, catalyzed by kinases and phosphatases plays a key role in growth and cell differentiation regulation in eukaryotes. Protein serine/threonine phosphatases (PSTPs) are currently divided into three families named PPP (Phosphoprotein Phosphatase), PPM (Phosphoprotein Phosphatase Magnesium-dependent) and FCP/SCP (RNA polymerase II CTD phosphatase). The PPP family members are often holoenzymes composed of a catalytic subunit associated with one or more regulatory subunits, which define function, localization and substrate specificity of the phosphatase. In this work, we have examined, by RT-qPCR, the expression profile of genes encoding PPP catalytic subunits of Dictyostelium discoideum (PP1c, PP2Ac, PP4c, PP4c-like, PP6c and PP5c) and 16 potential molecular partners for some of these catalytic subunits, such as DdI-2 and DdI-3, both known as PP1c inhibitors. In response to heat stress of growth phase cells, we detected increased levels of transcripts of PP4c and PP6c as well as of DdI-2, DdI-3, and DDB_G0292194, the latter a protein of unknown function that interacts with PP1c in yeast two-hybrid assays. Moreover, during the hyperosmotic stress we observed decreased transcript levels of nearly all genes examined except DdI-2 and DDB_G0292194. The expression level of DdPP1c, DdI-2, DdI-3 and DDB_G0292194 was also analyzed in response to oxidative stress and only DDB_G0292194 was induced in this condition. PP1c, PP4c, PP5c and PP6c genes are expressed throughout growth and development of D. discoideum while transcript levels of some the analysed genes were increased at a defined stage of the developmental cycle as in the case of DDB_G0292194, which increased during aggregation. This gene encodes a hypothetical protein of 559 amino acids bearing a FHA (ForkHead-Associated) domain in its aminoterminal region and a sequence matching the PP1c binding consensus motif. Yeast two-hybrid assays confirmed that DDB_G0292194 and DdPP1c interaction does not depend on FHA domain. We also found that DDB_G0292194 knockout mutant exibits an altered morphology on standard growth and developmental conditions and shows an increased sensitivity to oxidative stress induced by hydrogen peroxide in comparison to the wild type strain. Taken together, our results highlight the importance of PPPs in the response to different types of stress and for growth and development of D. discoideum.
|
256 |
Functional study of oil assembly pathway in oil palm (Elaeis guineensis Jacq.) fruits / Etude de l’assemblage des acides gras en huile chez le palmier à huile (Elaeis guineensis Jacq.)Yuan, Yijun 21 December 2016 (has links)
Le palmier à huile est la première culture oléagineuse, avec environ 40% de la production mondiale, et son fruit accumule deux huiles de composition très différente dans le mésocarpe et l’amande. Chez les plantes, les acides gras sont assemblés en huile dans le réticulum endoplasmique, ceci par la voie dite de Kennedy à laquelle s’ajoutent des mécanismes d’édition impliquant le métabolisme de la phosphatidylcholine. Nous avons utilisé les outils de la lipidomique pour analyser la variabilité au sein de différentes populations de palmier ainsi que pour caractériser l’accumulation d’huile durant le développement du mésocarpe et de l’amande. Puis, nous avons entrepris de tester, dans le système du double hybride de levure, les interactions entre toutes les enzymes de la voie de Kennedy et celles responsables des mécanismes d’édition, et mis en évidence 241 interactions, dont 132 sont fortes, 73 moyennes et 36 faibles. Ces résultats suggèrent que ces enzymes pourraient s’assembler en complexes supra-moléculaires susceptibles de former des métabolons. Certaines isoformes d’une même enzyme ont des profils d’interaction distincts, ce qui ouvre des perspectives pour de futures recherches. De plus, nous avons caractérisé, par expression fonctionnelle dans un mutant de levure dépourvu de TAG, une acyltransférase présumée (EgWSD1-like) ainsi que les trois formes majeures de diacylglycérol acyltransférases du mésocarpe. EgWSD1-like ne restaure que l’activité de synthèse d’esters de cire dans le mutant, tandis que les trois DGAT complémentent toutes la déficience en TAG du mutant, avec d’apparentes spécificités distinctes vis-à-vis des acides gras. / Oil palm is the highest oil-yielding crop-plant, accounting for approximately 40% of the total world vegetable oil production. The fruit accumulates oil, made of triacylglycerol (TAG) molecules, in both mesocarp and kernel with totally different fatty acid profiles. Fatty acids are assembled into oil through Kennedy pathway in the endoplasmic reticulum, which is complicated by editing processes involving phosphatidylcholine metabolism. To investigate oil assembly in oil palm, we use lipidomics as a tool to analyze different populations of palm to search for TAG structural diversity, and to further characterize changes in lipid content and composition in mesocarp and kernel during fruit ripening. We used yeast two-hybrid system (split ubiquitin) to test protein-protein interactions for almost all the enzymes (32) involved in oil assembly pathway, and we demonstrated 241 interactions, including 132 strong interactions, 73 medium interactions and 36 weak interactions. Our results suggest that all enzymes might assemble into one or several complexes that may form metabolons. In addition, different isoforms of enzymes showed distinct interaction profiles, providing hints for future studies. Moreover, we also characterized the in vivo function of a putative acyltransferase (designated EgWSD1-like) possibly involved in oil assembly and the three major diacylglycerol acyltransferase (DGAT) isoforms of palm mesocarp in the mutant yeast H1246, which is devoid of neutral lipid synthesis. EgWSD1-like only shows wax ester synthase activity in yeast, while three EgDGATs all can restore TAG biosynthesis in yeast with different substrate specificities.
|
257 |
Algorithmic Approaches For Protein-Protein Docking And quarternary Structure InferenceMitra, Pralay 07 1900 (has links)
Molecular interaction among proteins drives the cellular processes through the formation of complexes that perform the requisite biochemical function. While some of the complexes are obligate (i.e., they fold together while complexation) others are non-obligate, and are formed through macromolecular recognition. Macromolecular recognition in proteins is highly specific, yet it can be both permanent and non permanent in nature. Hallmarks of permanent recognition complexes include large surface of interaction, stabilization by hydrophobic interaction and other noncovalent forces. Several amino acids which contribute critically to the free energy of binding at these interfaces are called as “hot spot” residues. The non permanent recognition complexes, on the other hand, usually show small interface of interaction, with limited stabilization from non covalent forces. For both the permanent and non permanent complexes, the specificity of molecular interaction is governed by the geometric compatibility of the interaction surface, and the noncovalent forces that anchor them. A great deal of studies has already been performed in understanding the basis of protein macromolecular recognition.1; 2 Based on these studies efforts have been made to develop protein-protein docking algorithms that can predict the geometric orientation of the interacting molecules from their individual unbound states. Despite advances in docking methodologies, several significant difficulties remain.1 Therefore, in this thesis, we start with literature review to understand the individual merits and demerits of the existing approaches (Chapter 1),3 and then, we attempt to address some of the problems by developing methods to infer protein quaternary structure from the crystalline state, and improve structural and chemical understanding of protein-protein interactions through biological complex prediction.
The understanding of the interaction geometry is the first step in a protein-protein interaction study. Yet, no consistent method exists to assess the geometric compatibility of the interacting interface because of its highly rugged nature. This suggested that new sensitive measures and methods are needed to tackle the problem. We, therefore, developed two new and conceptually different measures using the Delaunay tessellation and interface slice selection to compute the surface complementarity and atom packing at the protein-protein interface (Chapter 2).4 We called these Normalized Surface Complementarity (NSc) and Normalized Interface Packing (NIP). We rigorously benchmarked the measures on the non redundant protein complexes available in the Protein Data Bank (PDB) and found that they efficiently segregate the biological protein-protein contacts from the non biological ones, especially those derived from X-ray crystallography. Sensitive surface packing/complementarity recognition algorithms are usually computationally expensive and thus limited in application to high-throughput screening. Therefore, special emphasis was given to make our measure compute-efficient as well. Our final evaluation showed that NSc, and NIP have very strong correlation among themselves, and with the interface area normalized values available from the Surface Complementarity program (CCP4 Suite: <http://smb.slac.stanford.edu/facilities/software/ccp4/html/sc.html>); but at a fraction of the computing cost.
After building the geometry based surface complementarity and packing assessment methods to assess the rugged protein surface, we advanced our goal to determine the stabilities of the geometrically compatible interfaces formed. For doing so, we needed to survey the quaternary structure of proteins with various affinities. The emphasis on affinity arose due to its strong relationship with the permanent and non permanent life-time of the complex. We, therefore, set up data mining studies on two databases named PQS (Protein Quaternary structure database: http://pqs.ebi.ac.uk) and PISA (Protein Interfaces, Surfaces and Assemblies: www.ebi.ac.uk/pdbe/prot_int/pistart.html) that offered downloads on quaternary structure data on protein complexes derived from X-ray crystallographic methods. To our surprise, we found that above mentioned databases provided the valid quaternary structure mostly for moderate to strong affinity complexes. The limitation could be ascertained by browsing annotations from another curated database of protein quaternary structure (PiQSi:5 supfam.mrc-lmb.cam.ac.uk/elevy/piqsi/piqsi_home.cgi) and literature surveys. This necessitated that we at first develop a more robust method to infer quaternary structures of all affinity available from the PDB. We, therefore, developed a new scheme focused on covering all affinity category complexes, especially the weak/very weak ones, and heteromeric quaternary structures (Chapter 3).6 Our scheme combined the naïve Bayes classifier and point-group symmetry under a Boolean framework to detect all categories of protein quaternary structures in crystal lattice. We tested it on a standard benchmark consisting of 112 recognition heteromeric complexes, and obtained a correct recall in 95% cases, which are significantly better than 53% achieved by the PISA,7 a state-of-art quaternary structure detection method hosted at the European Bioinformatics Institute, Hinxton, UK. A few cases that failed correct detection through our scheme, offered interesting insights into the intriguing nature of protein contacts in the lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes, where biological protein contacts tend to be sacrificed for the energetically optimal ones that favor the formation/stabilization of the crystal lattice. We expect our method to be used widely by all researchers interested in protein quaternary structure and interaction.
Having developed a method that allows us to sample all categories of quaternary structures in PDB, we set our goal in addressing the next problem that of accurately determining stabilities of the geometrically compatible protein surfaces involved in interaction. Reformulating the question in terms of protein-protein docking, we sought to ask how we could reliably infer the stabilities of any arbitrary interface that is formed when two protein molecules are brought sterically closer. In a real protein docking exercise this question is asked innumerable times during energy-based screening of thousands of decoys geometrically sampled (through rotation+translation) from the unbound subunits. The current docking methods face problems in two counts: (i), the number of interfaces from decoys to evaluate energies is rather large (64320 for a 9º rotation and translation for a dimeric complex), and (ii) the energy based screening is not quite efficient such that the decoys with native-like quaternary structure are rarely selected at high ranks. We addressed both the problems with interesting results.
Intricate decoy filtering approaches have been developed, which are either applied during the search stage or the sampling stage, or both. For filtering, usually statistical information, such as 3D conservation information of the interfacial residues, or similar facts is used; more expensive approaches screen for orientation, shape complementarity and electrostatics. We developed an interface area based decoy filter for the sampling stage, exploiting an assumption that native-like decoys must have the largest, or close to the largest, interface (Chapter 4).8 Implementation of this assumption and standard benchmarking showed that in 91% of the cases, we could recover native-like decoys of bound and unbound binary docking-targets of both strong and weak affinity. This allowed us to propose that “native-like decoys must have the largest, or close to the largest, interface” can be used as a rule to exclude non native decoys efficiently during docking sampling. This rule can dramatically clip the needle-in-a-haystack problem faced in a docking study by reducing >95% of the decoy set available from sampling search. We incorporated the rule as a central part of our protein docking strategy.
While addressing the question of energy based screening to rank the native-like decoys at high rank during docking, we came across a large volume of work already published. The mainstay of most of the energy based screenings that avoid statistical potential, involve some form of the Coulomb’s potential, Lennard Jones potential and solvation energy. Different flavors of the energy functions are used with diverse preferences and weights for individual terms. Interestingly, in all cases the energy functions were of the unnormalized form. Individual energy terms were simply added to arrive at a final score that was to be used for ranking. Proteins being large molecules, offer limited scope of applying semi-empirical or quantum mechanical methods for large scale evaluation of energy. We, therefore, developed a de novo empirical scoring function in the normalized form. As already stated, we found NSc and NIP to be highly discriminatory for segregating biological and non biological interface. We, therefore, incorporated them as parameters for our scoring function. Our data mining study revealed that there is a reasonable correlation of -0.73 between normalized solvation energy and normalized nonbonding energy (Coulombs + van der Waals) at the interface. Using the information, we extended our scoring function by combining the geometric measures and the normalized interaction energies. Tests on 30 unbound binary protein-protein complexes showed that in 16 cases we could identify at least one decoy in top three ranks with ≤10 Å backbone root-mean-square-deviation (RMSD) from true binding geometry. The scoring results were compared with other state-of-art methods, which returned inferior results. The salient feature of our scoring function was exclusion of any experiment guided restraints, evolutionary information, statistical propensities or modified interaction energy equations, commonly used by others. Tests on 118 less difficult bound binary protein-protein complexes with ≤35% sequence redundancy at the interface gave first rank in 77% cases, where the native like decoy was chosen among 1 in 10,000 and had ≤5 Å backbone RMSD from true geometry. The details about the scoring function, results and comparison with the other methods are extensively discussed in Chapter 5.9 The method has been implemented and made available for public use as a web server - PROBE (http://pallab.serc.iisc.ernet.in/probe). The development and use of PROBE has been elaborated in Chapter 7.10
On course of this work, we generated huge amounts of data, which is useful information that could be used by others, especially “protein dockers”. We, therefore, developed dockYard (http://pallab.serc.iisc.ernet.in/dockYard) - a repository for protein-protein docking decoys (Chapter 6).11 dockYard offers four categories of docking decoys derived from: Bound (native dimer co-crystallized), Unbound (individual subunits as well as the target are crystallized), Variants (match the previous two categories in at least one subunit with 100% sequence identity), and Interlogs (match the previous categories in at least one subunit with ≥90% or ≥50% sequence identity). There is facility for full or selective download based on search parameters. The portal also serves as a repository to modelers who may want to share their decoy sets with the community.
In conclusion, although we made several contributions in development of algorithms for improved protein-protein docking and quaternary structure inference, a lot of challenges remain (Chapter 8). The principal challenge arises by considering proteins as flexible bodies, whose conformational states may change on quaternary structure formation. In addition, solvent plays a major role in the free energy of binding, but its exact contribution is not straightforward to estimate. Undoubtedly, the cost of computation is one of the limiting factors apart from good energy functions to evaluate the docking decoys. Therefore, the next generation of algorithms must focus on improved docking studies that realistically incorporate flexibility and solvent environment in all their evaluations.
|
258 |
Der Einfluss der Glutamatdehydrogenasen auf die Verknüpfung des Kohlenstoff- und Stickstoffstoffwechsels in Bacillus subtilis / The impact of the glutamate dehydrogenases on the link between carbon and nitrogen metabolism in Bacillus subtilisGunka, Katrin 26 January 2011 (has links)
No description available.
|
259 |
Kartierung von umhüllungsrelevanten Aminosäureresten auf dem Hepatitis B Virus Kapsid / Mapping of amino acid residues on the hepatitis B virus capsid involved in its envelopmentPonsel, Dirk 05 November 2003 (has links)
No description available.
|
260 |
PAC-Lernen zur Insolvenzvorhersage und Hotspot-Identifikation / PAC-Learning for insolvency-prediction and hotspot-identificationBrodag, Thomas 28 May 2008 (has links)
No description available.
|
Page generated in 0.1662 seconds