• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 18
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 50
  • 50
  • 50
  • 17
  • 13
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Role of prolyl isomerase PIN1 on tumorigenesis of nasopharyngeal carcinoma. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Xu, Meng. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 112-129). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
22

A atividade antiplaquetária do extrato rico em polifenois das folhas de Syzygium cumini é potencialmente mediada pela inibição da proteína dissulfeto isomerase / The antiplatelet activity of the Polyphenols from the leaves of Syzygium cumini is Potentially mediated by protein inhibition Disulfide isomerase

Silva, Samira Abdalla da 07 April 2017 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-05-22T16:51:30Z No. of bitstreams: 1 SamiraAbdala.pdf: 3051742 bytes, checksum: 816c5c802400bcf5a75deb6a99de0617 (MD5) / Made available in DSpace on 2017-05-22T16:51:30Z (GMT). No. of bitstreams: 1 SamiraAbdala.pdf: 3051742 bytes, checksum: 816c5c802400bcf5a75deb6a99de0617 (MD5) Previous issue date: 2017-04-07 / Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Platelets, the blood cells involved in maintaining hemostasis, play a key role in the development of acute ischemic coronary, cerebrovascular events and are critically involved in the thrombosis process. In response to vascular injury, changes in blood flow or chemical stimuli, platelets trigger three functional mechanisms: adhesion, activation and aggregation. After platelet capture, a rapid stabilization of adhesion is required for thrombus formation to occur. Platelet activation results from conformational changes dependent of the protein disulfide isomerase (PDI), so that it has recently been proposed as a molecular target in platelet antiaggregant activity. The use of plant species rich in phenolic compounds as a source of bioactive substances is a promising strategy for the development of new therapeutic alternatives for thromboembolic diseases. Previously, we have shown that Syzygium cumini (L.) Skeels leaf contains multiple polyphenols, which support its use for antiplatelet purposes. Therefore, this study sought to evaluate the effects of polyphenol-rich extract (PESc) from S. cumini leaf on platelet activation and aggregation, as well as on PDI reductase activity. Platelet-rich plasma from healthy volunteers (n=5) was incubated with PESc (10-1000 μg/mL), for 25 min, before activation with ADP, thrombin or PMA. To analyze PESc effect on integrin αIIbβ3 activation, flow citometry protocols were conducted in washed platelets pre-treated with PESc (10-1000μg/mL) and activated with thrombin before tagging with PAC–1 antibody. Finally, PESc (0.1-100 μg/mL) effects on PDI reductase activity were assessed in absence or presence of polyphenolic standards gallic acid, myricetin and quercetin. PESc dose-dependently inhibited platelet aggregation despite the agonist used, even though lower agonist concentration potentiated PESc inhibitory effects to a maximal 77% inhibition at 2.5 μM ADP. Similarly, PESc dose-dependently reduced the proportion of activated αIIbβ3 molecules per platelet up to one third of control at 1000 μg/mL. These effects correlated with the strong inhibitory action of PESc on PDI activity, an effect synergically augmented in presence of standards. Therefore, our data show that PESc reduces platelet aggregation and activation, probably through PDI inhibition, strengthening its prominent antiplatelet activity. / As plaquetas, células sanguíneas envolvidas na manutenção da hemostase, exercem uma função essencial no desenvolvimento de eventos isquêmicos agudos coronarianos, cerebrovasculares e estão criticamente envolvidas no processo de formação da trombose. Em resposta à lesão vascular, às alterações no fluxo sanguíneo ou a estímulos químicos, as plaquetas desencadeiam três mecanismos funcionais: adesão, ativação e agregação. Após a captura da plaqueta, uma rápida estabilização da adesão é necessária para que ocorra a formação do trombo. A ativação plaquetária resulta de alterações conformacionais dependentes da proteína dissulfeto isomerase (PDI), de tal modo, que recentemente foi proposto o seu uso como alvo molecular na atividade antiagregante plaquetária. O uso de espécies vegetais ricas em compostos fenólicos como fonte de substâncias bioativas apresenta-se como uma estratégia promissora para o desenvolvimento de novas alternativas terapêuticas das doenças tromboembólicas. Anteriormente, temos mostrado que as folhas de Syzygium cumini (L.) Skeels contém múltiplos polifenóis, que apoiam a sua utilização para fins antiplaquetários. Portanto, este estudo procurou avaliar os efeitos do extrato rico em polifenóis (ERP) da folha de S. cumini sobre a ativação e agregação plaquetária, bem como, sobre a atividade redutase da PDI. Para tanto, plasma rico em plaquetas de voluntários saudáveis foi incubado com ERP (10 - 1000μg/mL), durante 25 min, antes da ativação com ADP, trombina ou PMA. Para analisar o efeito de ERP sobre a ativação da integrina αIIbβ3, os protocolos de citometria de fluxo foram conduzidos em plaquetas lavadas pré-tratadas com ERP (10 -1000 μg/mL) e ativadas com trombina antes da marcação com anticorpo PAC-1. Finalmente, os efeitos de ERP (0,1-100 μg/mL) na atividade redutase da PDI foram avaliados na ausência ou presença de padrões polifenólicos de ácido gálico, miricetina e quercetina. ERP inibiu a agregação plaquetária dependente da dose apesar do agonista utilizado, embora uma menor concentração de agonistas potencializasse os efeitos inibitórios de ERP até uma inibição máxima de 77% a 2,5 μM de ADP. De modo semelhante, o ERP reduziu a dose proporcionalmente a proporção de moléculas de αIIbβ3 ativadas por plaquetas até um terço do controle a 1000μg/mL. Estes efeitos correlacionaram-se com a forte ação inibitória de ERP na atividade da PDI, um efeito sinergicamente aumentado na presença de padrões. Portanto, nossos dados mostram que o ERP reduz a agregação e ativação plaquetária, provavelmente através da inibição da PDI, fortalecendo sua proeminente atividade antiplaquetária.
23

Investigação da atividade anti-agregante plaquetária in vitro de peptídeos inibidores da dissulfeto isomerase protéica - etapa 2 / INVESTIGATION OF IN VITRO PLAQUETARY ANTI-AGGREGATING ACTIVITY OF PEOPLE INHIBITORS OF ISOMERASE DISEASE PROTEIN-STAGE 2

Sousa, Hiran Reis 06 December 2016 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-14T18:35:57Z No. of bitstreams: 1 HiranReisSousa.pdf: 2489901 bytes, checksum: 8a82807f0600af87559439a496bd0d2a (MD5) / Made available in DSpace on 2017-06-14T18:35:57Z (GMT). No. of bitstreams: 1 HiranReisSousa.pdf: 2489901 bytes, checksum: 8a82807f0600af87559439a496bd0d2a (MD5) Previous issue date: 2016-12-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) / Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) / Recent researches have emphasized the importance of redox mechanisms for platelet function modulation. The platelet surface contains a large variety of integrin receptors and other molecules presenting functional thiol groups in their structures, which are potential targets for redox regulation. Among these various thiol-containing proteins, integrin αIIbβ3 stands out for being the convergence path of platelet activation induced by various agonists. Activation of αIIbβ3 integrin is catalyzed by protein disulfide isomerase (PDI) through an essential conformational change leading to the exposure of fibrinogen-binding site. Thus, PDI has been shown to be an important target for the development of antiplatelet drugs. In recent years, many studies have described substances from plan (DE A. PAES et al., 2011), as well as synthetics that are capable of inhibiting PDI. In a previous study of our research group has shown that the synthetic peptide CxxC, which contains the redox motif of PDI in its original sequence CGHC, inhibited reductase activity of this enzyme, effect not observed with AxxA peptide, whose cysteines were replaced with alanine and Scr peptide, which contains the same aminoacids from CxxC peptide, but under random sequence. It has been also demonstrated that CxxC peptide was the only to reduce by 30% ADP-induced aggregation (5μM) in platelet rich plasma, an effect apparently mediated by the association of CxxC and PDI at platelet surface. Thus, in this work, we further assessed the effects of CxxC and its control peptides on platelet aggregation. Washed human platelets were incubated with CxxC peptide at concentrations of 3, 6 and 10 μM, resulting in a dose-dependent inhibition of maximum aggregation activated by thrombin (0.02 U/mL) at 25, 60 and 74%, respectively with IC50 of 6.13 ± 1.09 μM. The presence of control peptides did not produce any inhibitory effect. CxxC peptide also reduced the activation of αIIbβ3 integrin at platelet surface, but did not affect the expression of the markers CD 62-P and CD 63. Control peptides did not alter the expression of these markers. Analysis by mass spectrometry of the interaction of recombinant human PDI with the peptide showed that only CxxC peptide associated with the redox Cys400 of a’ motif of PDI, which has been considered essential for platelet aggregation. Together, these results demonstrate that CxxC peptide reduces platelet aggregation by association with PDI and can be further used as a model for the development of new antithrombotic drugs. / Investigações recentes têm enfatizado a importância de mecanismos redox na modulação da função plaquetária. A superfície da plaqueta contém grande variedade de integrinas e outras moléculas receptoras que possuem tióis funcionais em sua estrutura, os quais são alvos potenciais de regulação redox. Dentre estas várias proteínas tiólicas, a integrina αIIbβ3 destaca-se por ser a via de convergência da ativação plaquetária induzida por diversos agonistas. A ativação da integrina αIIbβ3 é catalisada pela proteína dissulfeto isomerase (PDI), essencial à mudança de conformação que leva à exposição do sitio de ligação ao fibrinogênio. Sendo assim, a PDI tem se mostrado como um alvo importante para o desenvolvimento de fármacos reguladores da agregação plaquetária. Nos últimos anos, diversos estudos têm descrito substâncias de origem vegetal, animal e sintéticas que são capazes de inibir a PDI. Em trabalho do nosso grupo de pesquisa (DE A. PAES et al., 2011), demonstrou que o peptídeo sintético CxxC, o qual contém o motivo redox da PDI na sua sequência original CGHC, inibiu a atividade redutase desta enzima; efeito não observado com os peptídeos AxxA, que possui as cisteínas substituídas por alanina e Scr, peptídeo controle contendo os mesmos aminoácidos do peptídeo CxxC, porém com sequência aleatória sem formação de ditiol. Demonstrou-se, também, que apenas o peptídeo CxxC reduziu em 30% a agregação induzida por ADP (5M) em plasma rico em plaquetas, efeito aparentemente mediado pela associação do CxxC com a PDI na superfície plaquetária. Sendo assim, neste trabalho continuamos a avaliação dos efeitos do peptídeo CxxC e seus controles sobre a agregação plaquetária. Para tanto, incubamos lavado de plaquetas humanas com o peptídeo CxxC nas concentrações de 3, 6 e 10 μM, resultando em inibição concentração-dependente da agregação ativada por trombina (0,02 U/mL) em 25, 60 e 74 %, respectivamente, com IC50 de 6,13 ± 1,09 μM. A presença dos peptídeos controle não produziu quaisquer efeitos inibitórios. O peptídeo CxxC reduziu a ativação da integrina αIIbβ3 na superfície da plaqueta, porém não impactou a expressão dos antígenos CD 62-P e CD 63. Os peptídeos controle não alteraram a expressão desses marcadores. A análise por espectrometria de massas da interação da PDI recombinante humana com os peptídeos, mostrou que apenas o peptídeo CxxC associa-se com a Cys400 do motivo redox a’ da hPDI, o qual tem sido considerado fundamental para a agregação plaquetária. Em conjunto, estes resultados demonstram que o peptídeo CxxC reduz a agregação plaquetária via associação com a PDI, podendo ser empregado como modelo para o desenvolvimento de fármacos novos antitrombogênicos.
24

La protéine disulfide isomérase et l'ischémie cérébrale une voie de neuroprotection ? /

Descamps, Elodie Vamecq, Joseph. January 2009 (has links)
Reproduction de : Thèse de doctorat : Neurosciences : Lille 2 : 2009. / Résumé en français et en anglais. Titre provenant de l'écran-titre. Bibliogr. f. 120-133.
25

Oxygen is required to retain Ero1[alpha] on the MAM

Gilady, Susanna Yael. January 2009 (has links)
Thesis (M.Sc.)--University of Alberta, 2009. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science, Department of Cell Biology. Title from pdf file main screen (viewed on October 24, 2009). Includes bibliographical references.
26

The role of the secretory pathway and cell surface proteolysis in the regulation of the aggressiveness of breast cancer cells

Wise, Randi January 1900 (has links)
Doctor of Philosophy / Biochemistry and Molecular Biophysics Interdepartmental Program / Anna Zolkiewska / Cancer cells exploit key signaling pathways in order to survive, proliferate, and metastasize. Understanding the intricacies of the aberrant signaling in cancer may provide new insight into how to therapeutically target tumor cells. The goal of my research was to explore the role of two modulators of transmembrane signaling, the secretory pathway and cell surface proteolysis, in the aggressiveness of breast cancer cells. To study the role of the secretory pathway, I focused on the family of endoplasmic reticulum (ER) chaperones. I found that several ER chaperones were upregulated in breast cancer cells grown under anchorage-independent conditions as mammospheres versus those grown under adherent conditions. Furthermore, certain members of the protein disulfide isomerase (PDI) family were consistently upregulated in two different cell lines at both the mRNA and protein levels. Knocking down these PDIs decreased the ability of the cells to form mammospheres. I demonstrated that the requirement for PDI chaperones in mammosphere growth is likely due to an increased flux of extracellular matrix (ECM) components through the ER. Next, I examined the role of cell surface proteolysis in modulating the aggressiveness of breast cancer cells. Cell-surface metalloproteases release soluble growth factors from cells and activate the corresponding growth factor receptors. I determined that specific metalloproteases (ADAM9 or ADAM12), modulate the activation of Epidermal Growth Factor Receptor (EGFR). I demonstrated that EGFR activation enhances the CD44⁺/CD24⁻ cell surface marker profile, which is a measure of cancer cell aggressiveness. I found that the MEK/ERK pathway, which is a downstream effector of EGFR activation, modulates the CD44⁺/CD24⁻ phenotype. When DUSP4, a negative regulator of the MEK/ERK pathway, is lost, activation of EGFR by metalloproteases no longer plays a significant role in cancer cell aggressiveness. This indicates that the ligand dependent activation of the EGFR/MEK/ERK pathway is a critical step in DUSP4-positive aggressive breast cancer. Finally, I examined the importance of metalloproteases in the regulation of Programmed-death ligand 1 (PD-L1), a transmembrane protein expressed by some cancer cells that plays a major role in suppressing the immune system. I demonstrated that cell-surface metalloproteases have the ability to cleave PD-L1 and release its receptor-binding domain to the extracellular environment. Collectively, these data indicate that (a) ER chaperones support anchorage-independent cell growth, (b) metalloproteases are important in regulation of an aggressive phenotype through the EGFR/MEK/ERK pathway, and (c) metalloproteases cleave PD-L1, a key component of immunosuppression in cancer.
27

Oxidação da proteína dissulfeto isomerase por peroxinitrito: cinética, produtos e implicações biológicas / Oxidation of the protein disulfide isomerase by peroxynitrite: kinetics, products and biological implication

Álbert Souza Peixoto 27 October 2017 (has links)
Proteína dissulfeto isomerase (PDI) é uma ditiol-dissulfeto óxido redutase ubíqua que é responsável por uma série de funções celulares, inclusive na sinalização celular e nas respostas a eventos que causam dano celular. Entretanto, a PDI pode se tornar disfuncional através das modificações pós-traducionais, incluindo as promovidas por oxidantes biológicos. Estes oxidantes são provavelmente os responsáveis pelas modificações oxidativas pós-traducionais da PDI que foram detectadas em várias condições associadas ao estresse oxidativo, levando à disfunção da proteína. Devido a falta de estudos cinéticos com a PDI nativa e a falta de caracterização dos produtos dessas reações, investigamos se a diminuição da fluorescência da PDI nativa pode ser empregada para estudos da cinética de oxidação com peróxido de hidrogênio. Posteriormente, investigamos a cinética e os produtos da reação entre PDI e peroxinitrito. Nossos experimentos mostraram que a oxidação por excesso de peróxido de hidrogênio levava a uma diminuição da fluorescência de forma dependente do tempo e da concentração do oxidante, permitindo a determinação da constante de velocidade de segunda ordem (k = (17,3±1,3) M-1 s-1, pH 7,4, 25 ºC). Relevantemente, mostramos que o processo era totalmente revertido por DDT, mostrando que o peróxido de hidrogênio oxida quase que exclusivamente os grupos ditióis da PDI (Cys53 e Cys56 e Cys397 e Cys400). Utilizando a mesma abordagem para estudar a oxidação da PDI por peroxinitrito, notamos que o decréscimo da fluorescência intrínseca da PDI nativa e a velocidade só era proporcional à concentrações sub-estequiométricas ou estequiométricas do oxidante em relação aos tióis reativos da PDI. Somente nessas condições o processo se mostrava reversível por DDT, indicando que os ditióis da PDI eram o alvo preferencial do peroxinitrito mas que a oxidação de outros resíduos também ocorria. A reação dos tióis reativos da PDI com peroxinitrito foi considerada relativamente rápida (6,9 ± 0,6 × 104 M-1 s-1, pH 7,4, 25 °C), e os resíduos de Cys reativos dos domínios a e a\' aparentam reagir com constantes de velocidade similares. Experimentos de proteólise limitada, simulações cinética e análises de MS e MS/MS confirmaram que o peroxinitrito oxida preferencialmente os tióis redox ativos da PDI para os ácidos sulfênicos correspondentes, que, subsequentemente, reagem com os tióis vizinhos, produzindo dissulfetos (Cys53- Cys56 e Cys397- Cys400). Entretanto, uma fração de peroxinitrito decai para radicais levando à hidroxilação e nitração de outros resíduos próximos ao sítio redox ativo (Trp52 Trp396 e Tyr393). Assim, investigamos também a oxidação da PDI por excesso de peroxinitrito em relação aos grupos tióis reativos por diferentes metodologias. Experimentos de SDS-PAGE, western-blot e atividade redutase mostraram que o peroxinitrito promove inativação, nitração e agregação da PDI de forma dependente da concentração de peroxinitrito. Análises de MS e MS/MS mostraram que, em excesso, o peroxinitrito promove nitração (Tyr43, Tyr49, Tyr196, Tyr393, Trp52, Trp396) e hidroxilação (Trp52, Trp396) da PDI. Em síntese, nossos estudos contribuem para melhor compreensão da oxidação da PDI por peroxinitrito e de suas possíveis consequências biológicas. / Protein disulfide isomerase (PDI) is a ubiquitous dithiol-disulfide oxidoreductase that performs an array of cellular functions, including in cellular signaling and responses to cell-damaging events. Nevertheless, PDI can become dysfunctional by post-translational modifications, including those promoted by biological oxidants. These oxidants are likely responsible for the oxidative post-translational modifications of PDI, which have detected under various conditions associated with oxidative stress, leading to protein dysfunction. However, the kinetics of the reactions of PDI with biological oxidants received limited studies and the products of these reactions were not characterized. Here, we examined whether the decrease in PDI fluorescence can be employed to follow the kinetics of the reaction of the full-length protein with biological oxidants. Also, we investigated the kinetics and products of the reaction between PDI and peroxynitrite. Our experiments showed that oxidation by excess hydrogen peroxide led to a decrease of PDI intrinsic fluorescence in a time- and concentration-dependent manner , permitting the determination of the second-order rate constant of the reaction (k = (17.3 ± 1.3 ) M1 s-1, pH 7.4, 25 ° C). The oxidation was reversed by DDT, indicating that hydrogen peroxide oxidizes mainly PDI dithiols (Cys53 and Cys56 and Cys397 and Cys400). Using the same approach to study PDI oxidation by peroxynitrite we noted that the decrease of the native PDI fluorescence was proportional to sub-stoichiometric or stoichiometric concentrations of the oxidant relative to that of PDI reactive thiols. Only under these conditions, PDI oxidation was reversed by DDT, indicating that PDI dithiols were the preferred target of peroxynitrite but that oxidation of other residues also occurred. The reaction of the active redox thiols of the PDI with peroxynitrite can be considered relatively fast (6.9 ± 0.6 × 104 M-1 s-1, pH 7.4, 25 ° C), and the reactive Cys residues of domains a and a\' were kinetically indistinguishable. Limited proteolysis experiments, kinetic simulations, and MS and MS/MS analyses confirmed that peroxynitrite preferentially oxidizes the redox-active Cys residues of PDI to the corresponding sulfenic acids, which subsequently react with the resolving thiols to produce disulfides (Cys53-Cys56 and Cys397-Cys400). However, a fraction of peroxynitrite decays to radicals leading to hydroxylation and nitration to other residues located close to the active site (Trp52 Trp396 and Tyr393). SDS-PAGE, western blotting and inhibition of the reductase activity experiments confirmed that excess peroxynitrite promotes further PDI oxidation, nitration, inactivation and aggregation in a concentration-dependent manner. MS and MS/MS analyzes showed that peroxynitrite in a ten times excess relative to PDI reactive thiols promote PDI nitration (Tyr43, Tyr49, Tyr196, Tyr393, Trp52, Trp396) and hydroxylation (Trp52, Trp396). In conclusion, our studies contribute to a better understanding of PDI oxidation by peroxynitrite and its possible biological consequences
28

Mechanisms and applications of disulfide bond formation

Nguyen, V. D. (Van Dat) 27 January 2015 (has links)
Abstract About one-third of mammalian proteins are secreted proteins and membrane proteins. Most of these proteins contain disulfide bonds in their native state, covalent links formed between the thiol groups of cysteine residues. In many proteins, disulfide bonds play an essential role in folding, stabilizing structure and the function of the protein. Therefore, understanding the pathways of disulfide bond formation is crucial for a wide range of medical processes and therapies. Disulfide bond formation is catalyzed by the Protein Disulfide Isomerase (PDI) family. To date the mechanisms of the PDIs in disulfide bond formation and pathways for disulfide bond formation have not been fully characterized. Here the structure of the substrate binding <b>b’x</b> domain of human PDI was determined. The structure shows that the<b> b'</b> domain has a typical thioredoxin fold and that the <b>x</b> region can interact with the substrate binding site of the <b>b'</b> domain. Specifically, the <b>x</b> region of PDI can adopt alternative conformations during the functional cycle of PDI action and that these are linked to the ability of PDI to interact with folding substrates. In addition, this study showed that two human proteins, GPx7 and GPx8 are involved in disulfide bond formation. The addition of GPx7 or GPx8 to a folding protein along with PDI and peroxide allows the efficient oxidative refolding of a reduced denatured substrate protein. Finally, this thesis includes the development of a system for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli. It showed that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond, allows the formation of native disulfide bonds in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction. Introduction of Erv1p and a disulfide isomerase, e.g. PDI, allows the efficient formation of natively folded eukaryotic proteins with multiple disulfide bonds in the cytoplasm of E. coli. This system is able to express high levels of complex disulfide bonded eukaryotic proteins. / Tiivistelmä Noin kolmasosa kaikista nisäkkäiden proteiineista on solun ulkopuolelle eritettäviä proteiineja ja kalvoproteiineja. Monet näistä proteiineista sisältävät natiivissa konformaatiossaan disulfidisidoksia, jotka ovat kovalenttisia sidoksia kysteiinitähteiden tioliryhmien välillä. Useissa proteiineissa näillä disulfidisidoksilla on keskeinen rooli proteiinin laskostumisessa, kolmiulotteisen rakenteen stabiloinnissa sekä proteiinin toiminnassa. Disulfidisidosten muodostumisen taustalla olevien mekanismien tunteminen onkin tärkeää monien lääketieteellisten prosessien ja hoitomenetelmien kannalta. Disulfidisidosten muodostumista katalysoivat proteiinidisulfidi-isomeraasi (PDI) -perheeseen kuuluvat entsyymit. PDI entsyymien toimintamekanismeja ja disulfidisidosten muodostumisen reaktioreittejä ei kuitenkaan vielä tunneta tarkasti. Tässä väitöskirjassa selvitettiin ihmisen PDI entsyymin substraattia sitovan <b>b’x</b> alayksikön rakenne. Rakenteesta voidaan todeta <b>b’</b> alayksikön laskostuminen tyypilliseen tioredoksiini muotoon sekä <b>x</b> alueen interaktio <b>b’</b> alayksikön substraattia sitovan kohdan kanssa. PDI entsyymin katalysoiman reaktioketjun aikana <b>x</b> alayksikkö voi muuttaa konformaatiotaan mahdollistaen PDI entsyymin interaktion laskostuvien substraattiproteiinien kanssa. Tässä tutkimuksessa osoitettiin myös kahden ihmisen proteiinin, GPx7 ja GPx8 osallistuminen disulfidisidosten muodostumista katalysoiviin reaktioihin. GPx7 ja GPx8 entsyymien lisäys laskostumisreaktioon yhdessä PDI:n ja vetyperoksidin kanssa mahdollistaa pelkistetyn, denaturoidun substraattiproteiinin tehokkaan, hapettaviin reaktioihin perustuvan uudelleenlaskostumisen natiiviin muotoonsa. Osana tätä väitöstutkimusta kehitettiin menetelmä, joka mahdollistaa disulfideja sisältävien proteiinien tehokkaan tuoton E.colin solulimassa. Menetelmässä sulfhydryylioksidaasina ja FAD:sta riippuvana disulfidisidosten muodostumisen katalysaattorina toimiva Erv1p mahdollistaa disulfidisidosten muodostumisen E.colin solulimassa myös ilman solun pelkistävien reaktioreittien geneettistä poistamista. Erv1p yhdessä disulfidi-isomeraasin, kuten PDI, kanssa mahdollistaa oikein laskostuneiden, useita disulfidisidoksia sisältävien eukaryoottisten proteiinien tehokkaan tuotannon E.colin solulimassa. Menetelmällä pystytään tuottamaan suuria määriä monimutkaisia disulfidisidoksellisia proteiineja.
29

Inibição do proteasoma aumenta o estresse oxidativo e bloqueia a resposta da NADPH oxidase a estímulos em células musculares lisas vasculares / Proteasome Inhibiton increases oxidative stress and disrupts NADPH oxidase response to stimuli in vascular smooth muscle cells

Angelica Mastandréa Amanso 24 June 2009 (has links)
Processos celulares que governam as NADPH oxidases vasculares em condições patológicas não estão claros ainda. Como os processos redox são parte intrínseca da resposta da célula ao estresse, temos investigado se o estresse oxidativo pode convergir com outros tipos de estresse via Nox(es). No presente estudo, focamos na inibição do proteasoma como uma condição relevante de estresse. A incubação de células musculares lisas com concentrações não apoptóticas de inibidores do proteasoma, MG132 e lactacistina, promoveu aumento na produção basal de superóxido e na atividade da NADPH oxidase, diminuição da atividade da SOD e da razão GSH/GSSG. Por outro lado, a inibição do proteasoma diminui a atividade da Nox após estímulo com Angiotensina II ou Tunicamicina, conhecido estressor do retículo endoplasmático. Em condições basais, MG132 induz a expressão de mRNA da Nox1, entretanto o aumento de Nox1 induzido por Angiotensina II foi diminuído na presença de MG132. O mesmo efeito ocorre com a indução de Nox4 pela Tunicamicina, que nesse caso foi drasticamente reduzida na presença de MG132. Além disso, tanto Angiotensina II quanto Tunicamicina induziram a atividade lítica do proteasoma 20S. A seguir, investigamos as conseqüências fisiológicas do MG132 na sinalização do estresse do RE, uma conhecida resposta mediada por Nox4. Células vasculares incubadas com MG132 induzem a expressão de marcadores do estresse do RE, GRP78 e XBP1, e também os marcadores mais tardios ATF4 e o próapoptótico CHOP/GADD153. Resultados similares ocorrem também com a Tunicamicina. Entretanto, a co-incubação de Tunicamicina e MG132 diminui e a sinalização do estresse do RE. AKT e p38 MAPK foram ativados por MG132, possivelmente como resposta ao estresse induzido pela inibição do proteasoma. Assim, a inibição do proteasoma bloqueia a NADPH oxidase, com aumento da atividade basal e expressão da Nox1 versus forte inibição da ativação e expressão da Nox4 frente ao estímulo. A inibição da Nox4 associa-se e pode contribuir para a inibição pelo MG132 da sinalização do estresse do RE. Portanto, o proteasoma parece exercer papel na integração de estresses celulares envolvendo a NADPH oxidase. A inibição do proteasoma pode ter papel na terapia de doenças associadas a estresse do RE. / Cellular processes governing vascular Nox family NADPH oxidases in disease conditions are unclear. Since redox processes are intrinsic to cell stress response, we asked whether oxidative stress merges with other types of stress via Nox(es). We focused on proteasome inhibition as a relevant stress condition. Vascular smooth muscle cells (VSMC) incubation with non-apoptotic concentrations of proteasome inhibitors MG132 or lactacystin promoted increased baseline superoxide generation (HPLC/DHE products) and NADPH oxidase activity, decreased SOD activity and GSH/GSSG ratio. Conversely, proteasome inhibitors decreased by Nox response to Angiotensin II (AngII) and abrogated Nox response to endoplasmic reticulum (ER) stressor tunicamycin. With MG132, basal Nox1 mRNA levels were increased, while Nox1 response to AngII was blunted. Moreover, MG132 abolished Nox4 mRNA levels TN-induced. Both AngII and TN (at 2 and 4 hs) promoted increased 20S proteasome lytic activity. We next assessed physiological consequences of MG132 in ER stress signaling, a known Nox4- mediated response. VSMC incubation with MG132 alone enhanced expression of the ER stress markers Grp78 and XBP1 and late markers such as ATF4 and proapoptotic CHOP/GADD153. Similar results occurred with the known ER stressor TN. However, co-incubation of TN and MG132 decreased Grp78, Grp94 and CHOP/GADD153, indicating that proteasome inhibition interrupts ER stress. AKT and p38 are activated by MG132 as response to stress and recover to survival. Thus, proteasome inhibition disrupts NADPH oxidase, with increased baseline activity and Nox1 expression vs. strong inhibition of stimulated Nox1 and Nox4 activation/expression. The later effect may underlie MG132-mediated inhibition of ER stress signaling. (Support: FAPESP, CNPq Milênio Redoxoma)
30

ROLE OF SULFIREDOXIN INTERACTING PROTEINS IN LUNG CANCER DEVELOPMENT

Chawsheen, Hedy 01 January 2016 (has links)
Sulfiredoxin (Srx) is an antioxidant enzyme that can be induced by oxidative stress. It promotes oncogenic phenotypes of cell proliferation, colony formation, migration, and metastasis in lung, skin and colon cancers. Srx reduces the overoxidation of 2-cysteine peroxiredoxins in cells, in addition to its role of removing glutathione modification from several proteins. In this study, I explored additional physiological functions of Srx in lung cancer through studying its interacting proteins. Protein disulfide isomerase (PDI) family members, thioredoxin domain containing protein 5 (TXNDC5) and protein disulfide isomerase family A member 6 (PDIA6), were detected to interact with Srx. Therefore, I proposed that TXNDC5 and PDIA6 are important for the oncogenic phenotypes of Srx in lung cancer. In chapter one, I presented background information about the role of Srx as an antioxidant enzyme in cancer. I also explained the functional significance of PDIs as oxidoreductase and chaperones in cells. In chapter two, I verified the Srx-TXNDC5/PDIA6 interaction in HEK293T and A549 cells by co-immunoprecipitation and other assays. In TXNDC5 and PDIA6, the N-terminal thioredoxin-like domain (D1) is determined to be the main platform for interaction with Srx. The Srx-TXNDC5 interaction was enhanced by H2O2 treatment in A549 cells. Srx was determined to localize in the endoplasmic reticulum (ER) of A549 cells along with TXNDC5 and PDIA6. This localization was confirmed by both subcellular fractionation and immunofluorescence imaging experiments. In chapter three I focused on studying the physiological function of Srx interacting proteins in the ER. A549 subcellular fractionation results showed that TXNDC5 facilitates Srx retention in the ER. Moreover, TXNDC5 and Srx were found to participate in chaperone activities in lung cancer. Both proteins contributed in the refolding of heat-shock induced protein aggregates. In addition, TXNDC5 and PDIA6 were found to enhance the protein refolding in response to H2O2 treatment. Conversely, Srx appeared to have an inhibitory effect on protein folding under same treatment conditions. Downregulation of Srx, TXNDC5, or PDIA6 significantly reduced cell viability in response to tunicamycin treatment. TXNDC5 knockdown decreased the time required for the splicing of X-box binding protein-1 (XBP-1). In either knockdown Srx or TXNDC5 cells, there was an observable decrease in the expression of GRP78 and the splicing of spliced XBP-1. These results suggest a possible role of Srx in unfolded protein response signaling. TXNDC5 and PDIA6, similar to Srx, contribute to the proliferation, anchorage independent colony formation and migration of lung cancer cells. In this dissertation I concluded that Srx TXNDC5, and PDIA6 proteins participate in oxidative protein folding in lung cancer. Srx and TXNDC5 can modulate unfolded protein response (UPR) sensor activation and growth inhibition. Furthermore, TXNDC5 and PDIA6 can promote tumorigenesis of lung cancer cells. Therefore, the molecular interaction of Srx with TXNDC5/PDIA6 has the potential to be used as novel therapeutic targets for lung cancer treatment.

Page generated in 0.2508 seconds