• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 33
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 235
  • 235
  • 38
  • 38
  • 33
  • 31
  • 29
  • 29
  • 28
  • 24
  • 16
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Desenvolvimento de um método de imunofluorescência aplicado à detecção de anticorpos contra o arbovírus Mayaro. / Development of an immunofluorescence method applied to detection of antibodies against Mayaro arbovirus.

Santos, Nayara Gomes Luiz 06 April 2017 (has links)
O vírus Mayaro (MAYV) é um Alphavirus artritogênico responsável por causar uma doença febril aguda com sintomas parecidos aos de Dengue não-hemorrágica, porém com o agravante, como a febre Chikungunya, de ocorrência de artralgia. Os dados epidemiológicos disponíveis ainda são poucos devido à falta de diagnóstico adequado, pois algumas das técnicas desenvolvidas apresentam dificuldades quanto à coleta de amostra, devido à curta viremia, e ao background que interfere na interpretação dos resultados, subestimando o real número dos casos de infecção. Isso é preocupante principalmente em tempos de co-circulação de outras arboviroses como Dengue, Zika e Chikungunya. Neste trabalho desenvolvemos um método de imunofluorescência indireta dirigido à detecção de anticorpos contra a glicoproteína E2 do vírus Mayaro expressa em células S2 de Drosophila melanogaster. / Mayaro virus (MAYV) is an arthritogenic Alphavirus responsible for causing an acute febrile illness with symptoms similar to non-hemorrhagic Dengue, but with the aggravation, as Chikungunya fever, to develop arthralgia. The epidemiological data available still are few due to lack of proper diagnosis, because some of the techniques developed present difficulties regarding sample collection, due to the short viremia, and background that interferes with the interpretation of the results, underestimating the actual number of cases. This is a concern especially in periods of co-circulation of many other socioeconomic impact arboviruses, such as Dengue, Zika and Chikungunya. In this work we developed an indirect immunofluorescence method to the detection of antibodies against Mayaro E2 glycoprotein expressed in Drosophila melanogaster S2 cells.
52

Montagem de um pseudo-hantavírus quimera, contendo a nucleoproteína do vírus Araraquara e as glicoproteínas do vírus Andes, em sistema baculovírus / Assembly of a chimeric hantavirus-like particle, containing the Araraquara nucleoprotein and the Andes glycoproteins, expressed in baculovirus system

Yeda, Fernanda Perez 22 February 2010 (has links)
Os hantavírus, membros da família Bunyaviridae, são os agentes infecciosos responsáveis pela Febre Hemorrágica com Síndrome Renal e pela Síndrome Cardiopulmonar por Hantavírus. São vírus com genoma constituído por três segmentos de RNA fita simples, de polaridade negativa, designados como S, M e L, que codificam, respectivamente, a nucleoproteína, as glicoproteínas G1 e G2 e a RNA polimerase dependente de RNA. Com o objetivo de estudar a montagem de pseudopartículas quiméricas de hantavírus, a proteína N do vírus Araraquara e as glicoproteínas G1 e G2 do vírus Andes foram expressas em sistema baculovírus. A microscopia confocal mostrou a colocalização das proteínas G1 e G2 com a proteína N. Pelos ensaios de imunoprecipitação e de centrifugação em gradiente de sacarose, foi observada a interação entre as proteínas N, G1 e G2. Nas análises por microscopia eletrônica de transmissão foi observada a montagem do pseudo-hantavírus quimera, com morfologia semelhante ao do vírion. O pseudo-hantavírus quimera obtido neste estudo poderá, no futuro, ser utilizado em estudos imunológicos, estruturais e morfológicos. / Hantaviruses, members of the Bunyaviridae family, are the infectious agents responsible for Hemorrhagic Fever with Renal Syndrome and the Hantavirus Cardiopulmonary Syndrome. The viral genome is composed by three segments of single-stranded negative-sense RNA, designated as S, M and L, which encode, respectively, the nucleoprotein, the G1 and G2 glycoproteins, and the RNA-dependent RNA polymerase. In order to study the assembly of a chimeric hantavirus-like particle, the Araraquara nucleoprotein and the Andes glycoproteins were expressed in a baculovirus system. Confocal microscopy showed the colocalization of G1 and G2 proteins with the N protein. Immunoprecipitation assay and sucrose density gradient showed the interaction among N, G1 and G2 proteins. The transmission electron microscopy showed the hantavirus-like particle with the same morphology of the virion. The chimeric hantavirus-like particle produced in this study could be used, in the future, in immunological, structural and morphological studies.
53

Produção e caracterização de Fibroblast Growth Factor (FGF)\" recombinante / Production and characterization of \"Fibroblast Growth Factor (FGF) recombinant

Miyamoto, Catarina Akiko 12 March 1992 (has links)
Este trabalho descreve a produção dos FGFs básico bovino e ácido humano (há) em E. coli utilizando o vetor pET. Para expressar o haFGF utilizamos o cDNA nativo com pequenas modificações, obtendo cerca de 40 mg da proteína por litro de cultura induzida. No caso do bbFGF, cerca de 60 pares de bases da extremidade 5 do cDNA nativo foram substituídos por oligonucleotídeos sintéticos contendo condons frequentemente usados em genes bacterianos altamente expressos e apresentando menor conteúdo de C+G do que a sequência nativa. Com este cDNA modificado, obteve-se cerca de 10mg 1-1 de bbFGF. Os FGFs intracelulares solúveis foram purificados a partir do extrato bacteriano por chromatografia de afinidade em Heparina-Sepharose atingindo um grau de pureza da ordem de 95%. O haFGF sozinho é ativo sobre fibroblastos 3T3 em cultura na concentração de ng ml-1; na presença de heparina, a atividade desloca-se para a faixa de pg ml-1. O bbFGF é ativo na concentração de pg ml-1 e sua atividade não é significantemente potenciada pela heparina. O sequenciamento da extremidade N-terminal e a análise de aminoácidos mostraram somente uma forma de haFGF recombinante correspondente à proteína autêntica de 154 aminoácidos. Foram encontradas duas formas de bbFGF recombinante, uma correspondente à proteína autêntica de 154 resíduos e outra contendo 153, onde os dois primeiros foram removidos. / Here we describe the use of the pET expression system to produce the 154 amino acid bovine basic (bb) and human acidic (ha) FGFs. To express haFGF we have used the native cDNA sequencewith minor modifications, obtaining about 40 mg of growth factor per liter of bacterial culture. In the case of bbFGF, about 60 base pairs form the 5-end of the native cDND were replaced with synthetic oligonucleotides containing codons frequently used in highly expressed bacterial genes and having a lower G+C content than the native sequence. By using this modified cDNA about 10 mg 1-1 of bbFGF was obtained. The intracellular, soluble FGFs were partially purified from bacterial extracts by heparin-affinity chromatography and shown to be more than 95% pure. The haFGF alone is active upon 3T3 fibroblasts in culture at the level of ng ml-1 or in the range of pg ml-1 when heparin is added to the incubation medium. The bbFGF is active in the range of pg ml-1 and its activity is not significantly potentiated by heparin. Only one form of recombinant haFGF corresponding to the authentic protein of 154 amino acids was found by N-terminal protein sequencing and amino acid analysis. Two forms of recombinant bbFGF were found, one corresponding to the authentic protein of 154 amino acids (about 75%) and another containing 153 amino acids where the first two residues were removed (about 25%>).
54

Genetic engineering tools for transforming the nucleus and chloroplast of microalgae

Herrera Rodriguez, Leopoldo January 2017 (has links)
Biotechnology of microalgae is a fast-growing field and several species have become targets for transgenic manipulation. Microalgae provide low-cost and scalable production platforms for manufacturing recombinant proteins and other high value products. However, the exploitation of microalgae as expression systems is restricted by the low yield of recombinant proteins and the limited availability of tools for the genetic manipulation of commercially important species. This thesis explores transgene instability and gene autoregulation as causes for low recombinant protein accumulation in the chloroplast of Chlamydomonas reinhardtii and describes the isolation of a mutant phytoene desaturase (PDS) gene which confers resistance to the herbicide norflurazon for future use as a selection marker for the marine microalga Dunaliella tertiolecta. Recombination between short dispersed DNA repeats (SDR) found in the chloroplast genome of C. reinhardtii was identified as a cause of transgene instability. The genes coding for β-glucuronidase (GUS) and peridinin-chlorophyll binding protein (PCP) were inserted in the chloroplast genome next to the atpB 3' UTR by homologous recombination. Recombination of a 30bp SDR located within the 3' UTR of atpB was identified as the cause of transgene excision in the transplastomic lines. Such transgene instability was tackled by replacing the 3' UTR of atpB with the rbcL 3' UTR from D. tertiolecta. Using this 3'UTR sequence from a different species produced a photosynthetic strain and prevented excision of the transgene by SDR recombination in all transfomants. Very low levels of recombinant GUS and PCP accumulated in chloroplast transformants when using the psbD 5' regulatory region to drive their expression. To address low levels of accumulation caused by regulatory pathways that inhibit transgene expression, I have engineered the chloroplast genome of a non-photosynthetic atpB mutant of C. reinhardtii by replacing the endogenous psbD promoter and 5'UTR with the promoter and 5'UTR of psbA. The engineered strain was subsequently transformed with the wildtype atpB and two different reporter genes driven by the psbD regulatory regions: gusA and kat, which code for GUS and the fluorescent protein Katushka respectively. Analysis of the transformants showed that accumulation of recombinant proteins in our engineered strain was 10 to 20 fold higher than in the nonengineered cells. Most of the selectable markers used in plants and algae are inefficient in Dunaliella, which is naturally resistant to many of the antibiotics used for the selection of transformants. Norflurazon inhibits PDS, an essential enzyme for carotenoid biosynthesis. Using forward genetics I have isolated, sequenced and characterised mutant PDS alleles conferring norflurazon resistance in D. tertiolecta. Independent mutations in pds, leading to substitutions R265C, S472L, S472F and L502F, all result in high resistance to norflurazon but differ in sensitivity to other bleaching herbicides. By mapping the four amino acid substitutions on 3D models of D. tertiolecta PDS I determined that R265C, S472L, S472F and L502F, cluster together in proximity to a Rossman-like domain and to aminoacids F128 and V469, previously reported to confer norflurazon resistance. This suggests that the mode of action of norflurazon is by competition with flavin adenine dinucleotide (FAD) for its binding site. A unique aspect of the R265C substitution is its negative cross-resistance to diflufenican and beflutamid which could be advantageous for its use as a positive/negative selection marker for transformation.
55

Correlation between the expression of integrins and their role in cancer progression : expression pattern of integrins αvβ3, αvβ5 and α5β1 in clinical and experimental tumour samples

Ahmedah, Hanadi Talal A. January 2015 (has links)
The integrins play a crucial role in cancer cell proliferation, migration, differentiation, survival and angiogenesis. It has been shown that integrin expression is positively correlated to cancer dissemination, this suggests targeting selected integrins as an anti-metastatic strategy. The aim of this study is to investigate the effect of novel antagonists of α5β1, αvβ3 and αvβ5 integrins on cancer cell migration, a key process in tumour cell dissemination. Immunohistochemistry was used to evaluate the expression of α5, αv, β3 and β5 integrin subunits in prostate cancer tissues. Furthermore the expression of these integrin subunits in tumour and normal human head and neck tissues was compared. The expression profile of these integrin subunits in established human cancer cell lines was subsequently evaluated using immunodetection methods in cells and xenograft tumour samples. The effect of integrin inhibition on cell migration was then assessed using neutralizing antibodies against αvβ3, αvβ5, and α5β1 integrins in the scratch-wound healing assay. This assay was then used to evaluate the potential of novel small molecule integrin antagonists in preventing tumour cell migration. In H & N tissues, αvβ3, αvβ5 and α5β1 integrins are extensively expressed in tumour tissues but weakly expressed in normal tissue from the same patient. Further, prostate cancer tissues expressed variable levels of αvβ3, αvβ5 and α5β1 integrins. αvβ3 and αvβ5 integrins were expressed in variable levels in OSC-19, PC-3, DU145, DLD-1, HT-29, HUVEC, MCF-7, MCF-7ADR and M14 human tumour cell lines and in OSC-19, PC-3, HT-29 and MCF-7 xenografts. α5β1 integrin was expressed in all cell lines and xenografts except in MCF-7 cell line and HT-29 cell line and xenograft. Overall, the expression was elevated in xenografts compared to the corresponding cultured cells. Based on the expression profile and ability of cells to migrate, three cell lines (DLD-1 colon, DU145 prostate and OSC-19 HNSCC) were selected as models to further evaluate the potential of novel small molecule integrin antagonists to inhibit cell migration. The cell lines were characterized by using neutralizing antibodies against αvβ3, αvβ5, and α5β1 integrins to determine which of these three integrins were primarily involved in tumour cell migration. In DLD-1 and DU145, blocking αvβ5 and αvβ3 significantly inhibited migration, whilst the migration of OSC-19 was 50% inhibited by a multi-integrin inhibitor combination. Among the antagonists, ICT9055 and ICT9072 significantly decreased DLD-1 cell migration by 70% and 60% respectively while ICT9023, ICT9024, and ICT9026 significantly decreased DU145 cell migration by 60%, 60% and 50% respectively. The findings suggest that single integrin inhibition is not sufficient to prevent cell migration whereas dual or multiple inhibition is more effective. Two novel anti-migratory agents were identified in colon cancer and three in prostate cancer which would warrant further investigation.
56

Studium proteas virů Zika a Dengue / Analysis of Zika and Dengue virus proteases

Novotný, Pavel January 2019 (has links)
in English Zika and Dengue flaviviruses are transmitted by mosquitoes in human populations living in tropical areas. They cause fevers which in the case of Dengue can lead to life threatening haemorrhagic form. There is a possible relationship between pregnant women being infected by Zika virus and higher risk of microcephaly in new-borns. The infection is currently treated mainly symptomatically. However, there is an effort to develop compounds which block viral life cycle and viral spread through organism. Viral enzymes, such as flaviviral proteases, are regarded as suitable targets for this effort. These serine proteases with chymotrypsin fold are heterodimers which consist of flaviviral non- structural proteins NS2B and NS3. NS3 domain also contains a helicase, which can be removed by gene recombination for study purposes. NS2B is a transmembrane protein, but only a hydrophilic 40 amino acid peptide is important for the interaction with NS3 domain. This peptide has a chaperon function and participates in substrate binding to the active site. In this study, six variants of recombinant proteins containing activating peptide of NS2B and protease domain of NS3 were expressed and purified. Four variants were characterized in enzymologic studies including testing of possible inhibitors. A dipeptide...
57

Studies on the stress response in Fusobacterium nucleatum.

Zilm, Peter S. January 2008 (has links)
Fusobacterium nucleatum is a saccharolytic Gram-negative anaerobic organism belonging to the so-called ‘orange complex’ which is believed to play an important role in the microbial succession associated with the pathogenesis of periodontal disease. Its genome contains niche-specific genes shared with the other inhabitants of dental plaque, which may help to explain its ability to survive and grow in the changing environmental conditions experienced in the gingival sulcus during the progression from health to disease. The pH of the gingival sulcus increases during the development of periodontitis and is thought to occur by the metabolism of nutrients supplied by gingival crevicular fluid. Studies have shown that F. nucleatum is partly responsible for the rise in pH and have concluded that in comparison to other plaque inhabitants, F. nucleatum has the greatest ability to neutralise acidic environments. In common with a number of other oral bacteria, F. nucleatum has also been shown to produce intracellular polyglucose (IP) from simple sugars such as glucose, galactose and fructose. Its response and adaptation to stressful environmental conditions such as pH is unknown. The overall aim of this study was, therefore, to determine how F. nucleatum copes with environmental stresses induced by pH changes. F. nucleatum was grown by continuous culture in a chemically defined medium at a growth rate corresponding to those measured in vivo. The effect on protein expression, and IP synthesis was examined during steady-state growth at high (>7.2<7.8) or low pH (pH 6.4). The present study also investigated the response of F. nucleatum to growth at pH 8.2. It was found that the organism grew as a biofilm and this corresponded with an increase in cellular hydrophobicity and decreased IP levels. Optimal growth pH’s differed between the different sub-species used in this study. In response to pH stress, F. nucleatum changed its amino acid and glucose utilisation and increased IP synthesis at the expense of cell numbers. Pulsing the chemostat with glutamic acid or serine produced an increase in IP synthesis and the pattern of end-products observed was dependent upon the amino acid being fermented. The effect on IP synthesis in response to increased levels of exogenous fermentable amino acids was also compared during concomitant fructose or glucose fermentation. Growth media containing fermentable amino acids and supplemented with fructose produced higher cell numbers and non-detectable levels of IP compared to media containing glucose. The differential expression of cytoplasmic- and cell envelope-proteins induced by changes in pH were identified by two-dimensional gel electrophoresis. The results represent the first proteomic investigation of F. nucleatum. Twenty-two cytoplasmic proteins were found to have altered expression in response to external pH. At low (sub-optimal) pH, proteins associated with the generation of ATP and ammonia were up-regulated, the latter contributing to the alkalinisation of the gingival sulcus. Conversely, neutral to alkaline pH conditions led to the upregulation of enzymes involved in energy storage. The study also identified several proteins associated with iron limitation and fatty acid synthesis which might not otherwise have been identified as part of the pH-dependent response. In response to growth at pH 7.8, 14 cell envelope proteins were identified as having significantly altered expression. Down-regulated proteins included those associated with uptake of C4 di-carboxylates and phosphorus, a potential membrane protease and an enzyme associated with amino acid fermentation. The up-regulation of a transcriptional regulator linked to the repression of sugar metabolism was also reported along with proteins linked to the transport of iron. The periplasmic chaperone, peptidyl prolyl cis trans isomerase, which is responsible for the folding of outer membrane proteins, was also found to be up-regulated. In conclusion, the proteomic investigation of protein expression by F. nucleatum identified gene products which form part of the organism’s coordinated stress response to changes in environmental pH. In addition to these, the physiological based studies also presented help to explain the organism’s persistence during the transition from health to disease in vivo. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1339503 / Thesis (Ph.D.) - University of Adelaide, Dental School, 2008
58

Tripeptidyl-Peptidase II : Structure, Function and Gene Regulation

Lindås, Ann-Christin January 2006 (has links)
<p>The protein degradation process is of vital importance for the cell to maintain cellular functions. An important enzyme in this process is the multimeric tripeptidyl-peptidase II (TPP II). It removes tripeptides from a free N-terminus of the substrates. TPP II has broad substrate specificity and wide-spread distribution, suggesting that the TPP II gene is a house-keeping gene. However, the levels of both mRNA and TPP II protein varies during different conditions and the TPP II gene promoter was therefore identified and characterized. It is a 215 bp fragment just upstream of the coding sequence. This fragment lacks a TATA-box but contains an initiator, two inverted CCAAT-boxes and an E-box. The CCAAT-boxes and the E-box were found to bind the nuclear factor Y (NF-Y) and upstream stimulatory factor-1 (USF-1) respectively. The CCAAT-boxes appear to be most important for the transcriptional activation. Furthermore, several silencer element were identified further upstream of the 215 bp promoter and the octamer binding factor Oct-1 was found to bind one of these fragments. If Oct-1 is responsible for the inhibition of the transcription of the TPP II gene remains to be investigated. In addition, the substrate specificity was investigated. For this purpose an expression system using <i>Pichia pastoris</i> was developed. The purified recombinant TPP II was found to have the same enzymatic properties as the native enzyme. In order to identify the amino acids involved in the binding of the N-terminus of the substrate, wild-type murine TPP II and four mutants E305Q, E305K, E331Q and E331K were purified. Steady-state kinetic analysis clearly demonstrated that both Glu-305 and Glu-331 are important for this binding as the K<sub>M</sub><sup>app</sup> is more than 10<sup>2</sup> higher for the mutants than wild-type. Finally, the pH-dependence for cleavage of two chromogenic substrates was compared for TPP II from different species.</p>
59

Recombinant Enzymes in Pyrosequencing Technology

Nourizad, Nader January 2004 (has links)
Pyrosequencing is a DNA sequencing method based on thedetection of released pyrophosphate (PPi) during DNA synthesis.In a cascade of enzymatic reactions, visible light isgenerated, which is proportional to the number of nucleotidesincorporated into the DNA template. When dNTP(s) areincorporated into the DNA template, inorganic PPi is released.The released PPi is converted to ATP by ATP sulfurylase, whichprovides the energy to luciferase to oxidize luciferin andgenerate light. The excess of dNTP(s) and the ATP produced areremoved by the nucleotide degrading enzyme apyrase. The commercially available enzymes, isolated from nativesources, show batch-tobatch variations in activity and quality,which decrease the efficiency of the Pyrosequencing reaction.Therefore, the aim of the research presented in this thesis wasto develop methods to recombinantly produce the enzymes used inthe Pyrosequencing method. Production of the nucleotidedegrading enzyme apyrase by Pichia pastoris expression system,both in small-scale and in an optimized large-scale bioreactor,is described. ATP sulfurylase, the second enzyme in thePyrosequencing reaction, was produced inEscherichia coli. The protein was purified and utilizedin the Pyrosequencing method. Problems associated with enzymecontamination (NDP kinase) and batch-to-batch variations wereeliminated by the use of the recombinant ATP sulfurylase. As a first step towards sequencing on chip-format,SSB-(single-strand DNA binding protein)-luciferase and KlenowDNA polymerase-luciferase fusion proteins were generated inorder to immobilize the luciferase onto the DNA template. The application field for the Pyrosequencing technology wasexpanded by introduction of a new method for clone checking anda new method for template preparation prior the Pyrosequencingreaction. Keywords:apyrase, Pyrosequencing technology, Zbasictag fusion, luciferase, ATP sulfurylase, dsDNAsequencing, clone checking, Klenow-luciferase, SSB-luciferase,Pichia pastoris, Echerichia coli.
60

Expression and Mutagenesis studies of Candida antactica lipase B

Rotticci-Mulder, Johanna C. January 2003 (has links)
Recombinant Candida antarctica lipase B was successfullyproduced in the methylotropic yeast Pichia pastoris. Thespecific activities of Candida antarctica lipase B produced inPichia pastoris and commercial Candida antarctica lipase B fromNovozymes were the same. In shake-flask cultivations theexpression levels were about 25 mg L-1. Production levels couldbe increased to 1.5 g L-1, using a fermentor. A model tosimulate growth and oxygen consumption was described. The highcell density growth could be explained by the low maintenancecoefficient of Pichia pastoris. Enrichment of the aeration withoxygen increased the recombinant protein production. The lipasewas also produced as a fusion to a cellulose binding module.The cellulose binding module did not interfere with thespecific activity of the lipase. With this fusion proteincatalytic reactions can be performed in close proximity to acellulose surface. The binding module can also function as anaffinity tag for purification. Establishment of the Candidaantarctica lipase B production system allowed the engineeringof Candida antarctica lipase B variants. Four differentvariants were produced in order to investigate if electrostaticinteractions contributed to enantioselectivity. Theenantioselectivity of two halogenated secondary alcohols wasdoubled for the Ser47Ala variant. Thisimplied thatelectrostatic interactions are important forenantioselectivity. The Trp104His variant showed a decrease inenantioselectivity for all tested substrates. This was causedby an increase in the size of the stereoselectivity pocket.Symmetrical secondary alcohols of different size were used tomap the stereoselectivity pocket. A substituent as large as apropyl or isopropyl could be accommodated in the pocket of theTrp104His variant. In the wild-type lipase thestereoselectivity pocket was estimated to fit an ethyl group.The enzyme variants were subjected to a thermodynamic study, toelucidate changes in the enthalpic and entropic contributionsto enantioselectivity. The enthalpic and entropic contributionschanged for the different lipase variants and werecompensatory. The compensation was not perfect, allowing forchanges in enantioselectivity. In general one can conclude that rational design of newenzyme properties, in order to change the substrateselectivity, is feasible if based on a thorough model ofsubstrate enzyme interactions. <b>Key words:</b>Protein expression, Candida antarctica lipaseB, Pichia pastoris, sitedirected mutagenesis, fermentation,selectivity

Page generated in 0.1116 seconds