• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 419
  • 86
  • 54
  • 54
  • 50
  • 21
  • 11
  • 7
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 846
  • 467
  • 347
  • 131
  • 118
  • 111
  • 105
  • 87
  • 66
  • 65
  • 61
  • 60
  • 58
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Development of large-scale cross-linking/mass spectrometry

Barysz, Helena Maria January 2014 (has links)
3D proteomics combines chemical cross-linking with mass spectrometry to study the structure of protein assemblies and protein-protein interactions both in vitro and in vivo by providing distance constraints that indicate which residues are in close spatial proximity. I addressed the main bottleneck of this technology: the reliable identification of cross-linked peptides. Reporter ion signatures for cross-linked peptides were developed, by fragmenting model compounds containing two lysine residues joined by a cross-linker backbone or a lysine residue modified with a hydrolysed cross-linker. The reporter ion signatures showed 97% specificity at 90% sensitivity and segregated cross-linked from modified and linear peptides. They decreased the false discovery rate of the identification of cross-linked peptides from 5% to 1% in a large dataset. The signatures permit data sorting during and after mass spectrometry acquisition. The advanced 3D proteomics workflow was applied to study the protein-protein interactions in Mycoplasma pneumoniae cells. In lysates of the bacterium we identified 128 protein-protein interactions (of which 24 are novel) and obtained in vivo topological data on 208 proteins, even for cases where high-resolution structures are not yet available. We showed that our data are in excellent agreement with crystal structures of proteins and complexes where available. We defined a network of ribosomal and RNA polymerase proteins that reveals an intricate link between transcription and translation in bacteria. We demonstrated that the method is suitable for identification of homomultimeric protein complexes by exploiting peptide pairs of identical amino acid sequence. The technology has the potential to provide a complete protein interaction network map after the selective enrichment of cross-lined peptides is achieved. The method was next applied to investigate the structure of condensin and cohesin complexes, which play a crucial role in stabilization of chromosome structure during mitosis. The complexes were purified, cross-linked and their linkage map created. The condensin coiled coil cross-linked on the entire length was modeled. The information was used to direct the analysis of in situ cross-linked condensin in intact chromosomes. I found two high confidence linkages between SMC2 and SMC4 coiled coils and identified H2A as a potential condensin receptor on chromosomes.
272

Protein Surface Recognition with Urea-based foldamers : application to the design of ligands targeting histone chaperone proteins / Reconnaissance de surfaces de protéines avec des foldamères à base d’urées : application au design de ligands ciblant une protéine chaperon d’histone

Mbianda, Johanne 08 October 2018 (has links)
Avec 8,8 millions de décès dénombrés en 2015, le cancer est l’une des plus grandes causes de mortalité dans le monde. De nouvelles stratégies thérapeutiques ont émergé et l’identification de nouvelles cibles biologiques comme notamment la protéine Asf1, un chaperon d’histone H3-H4 surexprimée dans les cellules cancéreuses et en particulier le cancer du sein. Cette protéine possède différentes fonctions dans la cellule et agit à plusieurs endroits par des interactions protéine-protéines. Au cours de cette thèse de doctorat, nous avons développé une stratégie originale de design d’inhibiteurs d’interactions protéine-protéine avec des foldamères peptidomimes à base d’urées. Ces foldamères ont 1) la capacité de se replier en hélice 2,5, rappelant les hélices α des peptides et 2) d’être hautement tolérés et initiateurs d’hélicité lorsqu’ils sont conjugués à des fragments peptidiques. Nous avons développé des oligomères mixtes comprenant une alternance de segment(s) peptidique(s) et multi-urée, appelées chimères, ayant l’avantage de combiner la reconnaissance naturelle de peptides et la forte propension des oligourées à former des hélices stables. Après une étude structurale montrant qu’avec l’insertion d’un court segment à base d’urées dans un peptide hydrosoluble adoptant une conformation en hélice  la conformation hélicoïdale pour une majorité des chimères est conservée, des composés mimant la partie hélicoïdale C-terminale de l’histone H3 ont été élaborés. Une interaction de l’ordre du micromolaire avec Asf1 a été observée en solution puis validée à l’état solide par cristallographie aux rayons X. En vue d’optimiser la reconnaissance de ces chimères avec la surface d’Asf1 et leur sélectivité, un panel de modifications a été réalisée (i.e. séquence primaire, longueur du segment urée). Nous avons ainsi conçu des chimères α/urée possédant des affinités de liaison pour Asf1 comprises entre le nano- et micromolaire. Le composé le plus prometteur a été internalisé avec succès dans des cellules cancéreuses après conjugaison bioreductible avec un peptide vecteur et pourrait conduire à la mort cellulaire de la lignée tumorale étudiée. / In 2015, 8.8 million of death were due to cancer making it an important cause of death in the world. The necessity to develop new anticancer treatments led to the search and discovery of new biological targets, such as Asf1, a histone chaperone protein of H3-H4 which is overexpressed in cancer cells, in particular in breast cancer. This protein plays a role in different biological processes in cells through protein-protein interactions (PPIs). During this thesis, we developed an original strategy to design inhibitors of PPIs with urea-based peptidomimetics. These foldamers are able to fold into stable 2.5-helix reminiscent to the natural α-helix. Designed urea-based foldamers have been synthesized as hybrid oligomers consisting of α-peptide and oligourea segments. With a combination of the two backbones, these compounds named “chimeras” presents advantages of both species with the natural recognition of α-peptides and the innate helical stability of oligourea. First, a model study was performed to evaluate the impact of the introduction of short urea segments into a long water-soluble peptide. Circular dichroism experiments confirmed that the helical conformation was conserved. New series of compounds that mimic a helical part of H3 were synthesized and their interaction with Asf1 was studied in solution and in solid state using a range of biophysical methods. Several modifications into the sequence were performed (side chain substitution, size of the urea segment or compound) in order to improve the recognition of Asf1 surface as well as their selectivity. We conceived oligourea-peptide chimeras with affinity for Asf1 in the micromolar range. Our best compound linked to a cell penetrating peptide was shown to enter into cells and to induce cell death.
273

Role de protéines associées au cytosquelette bactérien / Role of proteins associated with the bacterial cytoskeleton

Rueff, Anne-Stéphanie 12 July 2011 (has links)
Le cytosquelette bactérien des homologues d’actine (protéines de la famille MreB) joue un rôle majeur dans la morphogénèse cellulaire. Des homologues de MreB sont retrouvés chez la plupart des espèces bactériennes non sphériques, où ils sont essentiels pour la viabilité cellulaire. Les bactéries à Gram-positif ont généralement plusieurs isoformes. L’organisme modèle Bacillus subtilis en possède trois : MreB, Mbl et MreBH, tous trois impliqués dans la détermination de la forme de la cellule. Le postulat actuel est une organisation, des complexes de synthèse du peptidoglycane, le long des parois latérales par les filaments hélicoïdaux des MreB-like. Cependant, les mécanismes moléculaires et les protéines effectrices impliqués dans cette fonction ne sont pas encore élucidés. Par analogie avec les rôles de l’actine eucaryote, des implications dans d’autres processus cellulaires cruciaux et la présence de partenaires protéiques sont également attendus pour les actines procaryotes. Afin d’explorer les rôles des protéines MreB chez B. subtilis nous avons généré, par des criblages génomiques double hybride chez la levure, un réseau d’interaction protéine-protéine centré sur MreB, Mbl et MreBH. Une vérification systématique et drastique de toutes les interactions obtenues lors des criblages a été réalisée afin d’éliminer les faux positifs. Les interactions identifiées révèlent des liens entre les protéines MreB-like et seize protéines issues de catégories fonctionnelles variées ou de fonction inconnue. Une étude exploratoire a été menée pour huit des protéines partenaires par des approches in silico et in vivo et nous a permis de sélectionner une seule interaction à caractériser plus en détail. Nous nous sommes principalement intéressés à l’interaction physique et directe entre MreB et DapL, une protéine essentielle vraisemblablement impliquée dans la voie de biosynthèse des précurseurs du peptidoglycane, par analogie à DapE d’E. coli. La caractérisation approfondie de DapL a confirmé son essentialité dans la synthèse du peptidoglycane. Bien que l’interaction MreB-DapL ait été confirmée biochimiquement, son rôle biologique exact n’a pas été élucidé. Cependant, nous avons mis en évidence d’autres interactions entre MreB et DapG, LysA et MurE, des enzymes également impliquées dans les étapes précoces de la synthèse du peptidoglycane. L’existence de telles interactions renforce le rôle du cytosquelette MreB de B. subtilis dans l’orchestration des machineries de synthèse de la paroi cellulaire. / Bacterial actin homologues (MreB proteins) play a major role in cell morphogenesis in non-spherical bacteria. The prevailing model postulates that helical, membrane-associated MreB-like filaments organize elongation-specific peptidoglycan-synthesizing complexes along the sidewalls. However, the mechanistic details, as well as the effector proteins of MreBs morphogenetic function, remain to be elucidated. MreB proteins are also involved in DNA segregation, cell polarity, cell motility and, by analogy to eukaryotic actins, possibly in other functions that require the targeting and accurate positioning of proteins and molecular complexes in the cell. Gram-positive bacteria usually have more than one MreB isoform. Our model organism, Bacillus subtilis, has three called MreB, Mbl and MreBH. To explore the roles of the MreB cytoskeleton in B. subtilis, we used genome-wide yeast two-hybrid screens to identify proteins that physically associate with MreB, Mbl and MreBH. Stringent specificity assays were systematically performed to remove false positives and confirm the specificity of all potential interactions identified in the screens. A protein-protein interaction network centered on the three MreBs was generated which includes 16 protein partners. This interaction network provides insights into the links of MreB proteins with proteins belonging to several functional categories as well as proteins of unknown function. An exploratory study was conducted in silico and in vivo for 8 of the partner proteins identified in the network and allowed us to select one interaction for a more in-depth analysis. We next focused in the physical interaction between MreB and DapL, an essential protein presumably involved in the early steps of peptidoglycan biosynthesis. The characterization of DapL confirmed its essential role in cell wall synthesis. The MreB-DapL interaction was confirmed biochemically and we showed that MreB also associates with other proteins involved in the synthesis of the PG precursors (DapG, LysA and MurE). Together, these results suggest that B. subtilis MreB orchestrates the PG biosynthetic cytosolic machineries to achieve and maintain its rod shape.
274

Evolução convergente da protease FtsH5 de Arabidopsis thaliana e seu regulador negativo putativo FIP (FtsH5 interacting protein) / Convergent evolution of Arabidopsis thaliana FtsH5 protease and its putative negative regulator FIP (FtsH5 interacting protein)

Silva, Marcos Araújo Castro e 02 March 2015 (has links)
As metaloproteases AAA/FtsH são componentes chave do controle da qualidade das proteínas inseridas nas membranas de mitocôndrias e cloroplastos. Em Arabidopsis thaliana, as proteases FtsH presentes nas membranas dos tilacóides formam um complexo heterohexamérico composto pelas subunidades FtsH1/FtsH5 (tipo A) e FtsH2/FtsH8 (tipo B). Este complexo está envolvido na reciclagem de proteínas foto-danificadas, especialmente da proteína D1, centro de reação do PSII. Algumas linhas de evidências indicam ainda que existe um limiar de concentração das proteases FtsH, necessário para a correta formação e desenvolvimento dos cloroplastos. Apesar da extensiva caracterização genética e molecular das proteases FtsH, o mecanismo regulatório do complexo FtsH dos cloroplastos não foi totalmente elucidado até o momento, contudo existem evidências de que a sua ativação pode estar relacionada a alta incidência luminosa e a outras condições de estresse. A presença de fatores proteicos auxiliares, foi testada como hipótese alternativa por nosso grupo, através do uso da protease FtsH5 como isca em um ensaio de duplo híbrido de leveduras. Este ensaio identificou uma proteína interagente putativa, nomeada FIP (FtsH5 Interacting Protein), a qual comprovadamente interage com FtsH5 e está localizada nas membranas dos tilacóides. De modo a investigar o papel regulatório putativo de FIP sobre a atividade do complexo FtsH, nós analisamos os padrões de expressão em uma ampla gama de condições de estresse a partir de dados públicos de microarranjos de DNA. Os perfis de expressão indicam que FIP pode ser um regulador negativo da atividade do complexo. Os resultados também sugerem que o complexo pode estar envolvido na resposta do cloroplasto a diferentes tipos de condições de estresse. O estudo da história evolutiva das proteínas interagentes FtsH5 e FIP evidenciou que as sequências homólogas a FIP são encontradas exclusivamente em musgos e plantas superiores, sugerindo assim que a origem de FIP pode estar relacionada a colonização terrestre. Todos os genes codificantes das proteases FtsH do complexo foram usados como \"query\" na busca por sequências homólogas, permitindo a classificação das proteases FtsH nos tipos A e B por inferência filogenética Bayesiana. Análises filogenéticas Bayesianas também foram feitas para FIP e as proteases FtsH tipos A e B, independentemente. A análise Mirrortree suportou a existência de coevolução entre FIP e as proteases FtsH tipo A. Por outro lado, nenhuma correlação foi encontrada entre FIP e as proteases FtsH tipo B, o que corrobora nossas observações experimentais anteriores. Além disso, o agrupamento portador de homólogos FIP pôde ser recuperado em uma filogenia mais completa das proteases FtsH do tipo A. Análises subsequentes mostraram que ambas as proteínas interagentes estão extensivamente sobre seleção negativa e que proteases FtsH tipo A são bastante conservadas, principalmente nos seus domínios internos. / Eukaryotic AAA/FtsH metalloproteases display a key role in the protein quality control of membrane-inserted proteins in mitochondria and chloroplasts. In Arabidopsis thaliana, chloroplast thylakoidal membranes FtsH proteases form a heterohexameric complex made by FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. This complex is involved in protein turnover of photo-damaged proteins, in particular the D1 protein at the PSII reaction center. Several lines of evidence also indicate that a FtsH threshold level is necessary for the proper formation and development of chloroplasts. Despite extensive genetic and molecular characterization of the FtsH proteases, the regulatory mechanism of the FtsH complex in chloroplasts has not yet been fully elucidated, however, there are evidences that its activation might be related to high light incidence and other stress conditions. The presence of auxiliary protein factors, as an alternative hypothesis, was tested by our group, through the use of the protease FtsH5 as bait in a yeast two-hybrid assay. This essay identified a putative interacting protein named FIP (FtsH5 Interacting Protein), which has been proved to interact with FtsH5 and be located at the thylakoid membranes. In order to investigate a putative regulatory role of FIP on FtsH complex activity, we analyzed gene expression patterns in a wide range of stress conditions from public DNA microarray data. The expression profiles indicate that FIP could be a negative regulator of the FtsH complex activity. The results also suggest that the complex may be involved in the chloroplast response to different types of stress conditions. In order to shed some light on the evolutionary history of FtsH5 and FIP interacting proteins, we have shown that FIP\'s homologous sequences were exclusively found in mosses and higher plants, suggesting that FIP origin might be related to the plant terrestrial colonization. All Arabidopsis FtsH complex-encoding genes were used as \"query\" sequences in search for homologous sequences, allowing us to classify the FtsH proteases in type A and B by Bayesian phylogenetic inference. Bayesian phylogenetic analyses were also run for FIP and FtsH types A and B proteases, independently. Mirrortree analysis supported coevolution between FIP and type A FtsH proteases. On the other hand, no correlation was found between FIP and type B FtsH homologues, which support our previous experimental observations. In addition, the FIP bearing cluster could be recovered in a more complete type A FtsH phylogeny. Subsequent analyzes have shown that both interacting proteins are extensively under negative selection and that type A FtsH are very conserved, mainly in its inner domains.
275

Engineering PDZ domain specificity

Sun, Young Joo 01 May 2019 (has links)
PSD-95/Dlg/ZO-1 (PDZ) domain - PDZ binding motif (PBM) interactions have been one of the most well studied protein-protein interaction systems through biochemical, biophysical and high-throughput screening (HTS) strategies. This has allowed us to understand the mechanism of individual PDZ-PBM interactions and the re-engineering of PBMs to bind tighter or to gain or lose certain specificity. However, there are several thousand native PDZ domains whose biological ligands remain unknown. Because of the low sequence identity among PDZ domain homologues, promiscuous binding profiles (defined as a PDZ domain that can accommodate a set of PBMs or a PBM that can be recognized by many PDZ domains), and context-dependent interaction mechanism, we have an inadequate understanding of the general molecular mechanisms that determine the PDZ-PBM specificity. Therefore, predicting PDZ specificity has been elusive. In addition, no de novo PBM ligand or artificial non-native PDZ domain have been successfully designed. This reflects the general challenges in understanding the general principles of PDZ-ligand interactions, namely that they are context-dependent, exhibit weak binding affinity, narrow binding energy range, and larger interaction surface than other protein-ligand interactions. Together, PDZ domains make good model systems to investigate the fundamental principles of protein-protein interactions with a wide spectrum of biomedical implications. My studies suggest that understanding PBM specificity with the set of structural positions forming the binding pocket can connect sequence, structure and function of a PDZ domain in a general context. They also suggest that this way of understanding the specificity will shed light on prediction and engineering of specificity rationally. Structural analysis on most of the available PDZ domain structures was established to support the principle (Chapter I). The principle was tested against two different types of PBM; C-terminal PBM (Chapter II) and internal PBM (Chapter III), and shown to support better understanding and design of PDZ domain specificity. We further applied the principle to design de novo PDZ domains, and the preliminary data hints that it is optimistic to engineer PDZ domain specificity (Appendix A and B).
276

THE ROLE OF ALTERNATIVE POLYADENYLATION MEDIATED BY CPSF30 IN <em>ARABIDOPSIS THALIANA</em>

Hao, Guijie 01 January 2017 (has links)
Drought stress is considered one of the most devastating abiotic stress factors that limit crop productivity for modern agriculture worldwide. There is a large range of physiological and biochemical responses induced by drought stress. The responses range from physiological and biochemical to regulation at transcription and posttranscriptional levels. Post-transcription, the products encoded by eukaryotic genes must undergo a series of modifications to become a mature mRNA. Polyadenylation is an important one in terms of regulation. Polyadenylation impacts gene expression through determining the coding and regulation potential of the mRNA, especially when different mRNAs from the same gene may be polyadenylated at more than one position. This alternative polyadenylation (APA) has numerous potential effects on gene regulation and function. I have studied the impact of drought stress on APA, testing the hypothesis that drought stress may give rise to changes in the usage of poly(A) sites generating different mRNA isoforms. The results showed that usage of poly(A) sites that lie within 5’-UTRs and coding sequence (CDS) changes more than usage of sites in other regions due to drought stress. Alternative polyadenylation is meditated by the polyadenylation complex of proteins that are conserved in eukaryotic cells. The Arabidopsis CPSF30 protein (AtCPSF30), which is an RNA-binding endonuclease subunit of the polyadenylation complex, plays an important role in controlling APA. Previous study showed that poly(A) site choice changes on a large scale in oxidative stress tolerant 6 (oxt6), a mutant lacking AtCPSF30. Within the mutant/WT genotypes, there are three classes of poly(A) site, wild type specific, oxt6 specific, and common (both in wild type and mutant). The wild type specific and oxt6 specific mRNAs make up around 70% of the total of all mRNA species. I hypothesize that the stability of these various mRNA isoforms should be different, and that this is a possible way that AtCPSF30 regulates gene expression. I tested this by assessing the influence poly(A) sites can have on the mRNA isoform’s stability in the wild type and oxt6 mutant. My results show that most mRNA isoforms show similar stability profiles in the wild-type and mutant plants. However, the mRNA isoforms derived from polyadenylation within CDS are much more stable in the mutant than the wild-type. These results implicate AtCPSF30 in the process of non-stop mRNA decay. Messenger RNA polyadenylation occurs in the nucleus, and the subunits of the polyadenylation complex that meditate this process are expected to reside within the nucleus. However, AtCPSF30 by itself localizes not only to the nucleus, but also to the cytoplasm. AtCPSF30 protein contains three predicted CCCH-type zinc finger motifs. The first CCCH motif is the primary motif that is responsible for the bulk of its RNA-binding activity. It can bind with calmodulin, but the RNA-binding activity of AtCPSF30 is inhibited by calmodulin in a calcium-dependent manner. The third CCCH motif is associated with endonuclease activity. Previous studies demonstrated that the endonuclease activity of AtCPSF30 can be inhibited by disulfide reducing agents. These published results suggest that there are proteins that interact with AtCPSF30 and act through calmodulin binding or disulfide remodeling. To test this hypothesis, I screened for proteins that interact with AtCPSF30. For this, different approaches were performed. These screens led me to two proteins-one protein that is tyrosine-phosphorylated and whose phosphorylation state is modulated in response to ABA, which well-known ABA regulates guard cell turgor via a calcium-dependent pathway, and the other is ribosome protein L35(RPL35), which plays an important role in nuclear entry, translation activity, and endoplasmic reticulum(ER) docking. These results suggest that multiple calcium-dependent signaling mechanisms may converge on AtCPSF30, and AtCPSF30 might be directly interact with ribosome protein.
277

Biochemical techniques for the study of voltage-gated sodium channel auxiliary subunits

Molinarolo, Steven 01 May 2018 (has links)
Voltage-gated sodium channels auxiliary subunits evolutionary emerged nearly 500 million years ago during the Cambrian explosion. These subunits alter one the most important ion channels to electrical signaling, the voltage-gated sodium channels support the propagation of electric impulses in animals. The mechanism for the auxiliary subunits effects on the channels is poorly understand, as is the stoichiometry between the auxiliary subunit and the channel. The focus of my thesis is to generate assays and to use these approaches to understand the interactions different types of voltage-gated channels and their auxiliary subunits. A biochemical approach was taken to identify novel interactions between the eukaryotic sodium channel auxiliary subunits and a prokaryotic voltage-gated sodium channel, a protein that diverged from the eukaryotic voltage-gated sodium channels billions of years ago. These interactions between the auxiliary subunits and channels were probed with chemical and photochemical crosslinkers in search of interaction surfaces and similarity to explain the mechanisms of interaction. The work in this thesis identified novel interactions between the voltage-gated sodium channel auxiliary subunits and voltage-gated channels that are distantly related to the voltage-gated sodium channels principally thought to be modulated by the auxiliary subunits. From this work a rudimentary concept can be theorized that the voltage-gated sodium channel β-subunits and not only β1 have a more primary role in electrophysiology by associating with multiple different types of ion channels.
278

Interrogation of Protein Function with Peptidomimetics

Bolarinwa, Olapeju 03 July 2018 (has links)
Proteins can be described as the “machineries” responsible for almost all tasks in the levels of organizational complexity in multi-cellular organisms namely: the cells, tissues, organs and systems. Any disorder in the function of a protein at any of these levels could result in disease, and a study of protein function is critical to understanding the pathological features of the disease at the molecular level. A quick glance at these abundantly present proteins reveals two striking features: large diversity of biological function, and the variations in structural complexity, which varies from simple random coils, to turns and helices, and on to structured assemblies of turns, helices and sheets. Over the past few years, more research efforts have been channeled to the application of synthetic research to protein dynamics, most especially in disease conditions. This provides insight into the design and development of chemical tools capable of modulating protein functions .Some of such tools include small molecules, peptides and peptidomimetics. In this work, we have described the application of these tools to three (3) different disease systems topping the list of incurable diseases: HIV, Diabetes, and Cancer. We have designed and developed chemical probes to facilitate a better understanding of major “culprit” proteins underlying the pathological conditions associated with these diseases. Our designed chemical probes were capable of modulating protein functions by producing the desired effects: inhibition of protein-protein interactions.
279

Self-assembly processing of virus-like particles

Yap Chuan Unknown Date (has links)
Virus-like particles (VLPs) are elegant functional architectures formed by the self-assembly of viral structural proteins. VLPs have been developed as vaccines against hepatitis B and cervical cancer, and have recently been shown in animal studies to provide protection against both seasonal and avian influenza following intranasal administration. This new class of vaccines offers unprecedented immunoprotection, inherent safety, and a simple route of administration. To realize the full potential of VLP technology as an efficient and responsive vaccine platform, this project exploits the parallel advancements in recombinant technology, analytical techniques and colloidal science to facilitate the swift and economical delivery of candidate VLP vaccines from laboratory to clinical trials, and ultimately into commercial production. Three areas of VLP production are specifically targeted in this work, i.e., VLP subunit production, particle characterisation and assembly. The major research outcomes in this work are: (i) establishment of a simple and economical VLP subunit production method which eliminates inefficient and complicated purification procedures necessitated by the current in vivo production methods; (ii) development of a high-resolution and high-throughput analytical method for rapid and reliable quality control check of VLP products; and (iii) establishment of the foundation to predict optimal VLP self-assembly conditions through molecular thermodynamics. These research outcomes collectively enhance the quantitative knowledge base in VLP assembly and may ultimately enable the development of a mechanistic and descriptive modelling approach to optimize VLP production. From a fundamental perspective, this work introduces the first experimental technique to measure protein interactions of viral subunits undergoing rapid, irreversible assembly reaction. Such information, when correlated with molecular details and assembly conditions may provide unique insights into the molecular switches responsible for viral assembly, unveiling the fundamental mechanism underpinning viral self-assembly.
280

An XML-based Database of Molecular Pathways / En XML-baserad databas för molekylära reaktioner

Hall, David January 2005 (has links)
<p>Research of protein-protein interactions produce vast quantities of data and there exists a large number of databases with data from this research. Many of these databases offers the data for download on the web in a number of different formats, many of them XML-based.</p><p>With the arrival of these XML-based formats, and especially the standardized formats such as PSI-MI, SBML and BioPAX, there is a need for searching in data represented in XML. We wanted to investigate the capabilities of XML query tools when it comes to searching in this data. Due to the large datasets we concentrated on native XML database systems that in addition to search in XML data also offers storage and indexing specially suited for XML documents.</p><p>A number of queries were tested on data exported from the databases IntAct and Reactome using the XQuery language. There were both simple and advanced queries performed. The simpler queries consisted of queries such as listing information on a specified protein or counting the number of reactions.</p><p>One central issue with protein-protein interactions is to find pathways, i.e. series of interconnected chemical reactions between proteins. This problem involve graph searches and since we suspected that the complex queries it required would be slow we also developed a C++ program using a graph toolkit.</p><p>The simpler queries were performed relatively fast. Pathway searches in the native XML databases took long time even for short searches while the C++ program achieved much faster pathway searches.</p>

Page generated in 0.0627 seconds