• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 23
  • 12
  • 12
  • 12
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 303
  • 303
  • 303
  • 261
  • 157
  • 116
  • 41
  • 34
  • 31
  • 31
  • 29
  • 28
  • 28
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Synthesis and Characterization of Multiblock Copolymer Proton Exchange Membranes for High Temperature Fuel Cell Applications

Lee, Hae-Seung 04 June 2009 (has links)
The potential success of a proton exchange membrane (PEM) fuel cell as an alternative energy source depends highly upon the development of high performance PEMs. Typically, state-of-the-art PEMs have been perfluorinated sulfonated ionomer membranes such as Nafion® by DuPont. Although these membranes demonstrate good mechanical and electrochemical properties under moderate operating conditions (e.g., < 80 ºC), their performance at high temperature (e.g., > 80 ºC) and low relative humidity (RH) drastically deteriorates. To overcome these problems, PEM materials with enhanced properties are essential. Recently, the McGrath group has shown that PEM materials with hydrophilic-hydrophobic segments can significantly improve proton conductivity under low RH by forming enhanced hydrophilic domain connectivity. In this dissultation, novel multiblock copolymers based on disulfonated hydrophilic-hydrophobic multiblocks were synthesized and investigated for their potential application as PEMs. The relationship between copolymer chemical composition and resulting properties was probed with a variety of hydrophilic and hydrophobic segments. Most multiblock copolymers in this research were developed with fully disulfonated poly(arylene ether sulfone) (BPS100) as the hydrophilic segment, and various high performance polymers including polyimides, poly(arylene ether sulfone)s, and poly(arylene ether ketone)s as the hydrophobic segment. Ionic groups on the hydrophilic blocks act as proton conducting sites, while the non-ionic hydrophobic segments provide mechanical and dimensional stability. The correlation between the fuel cell performances and the hydrophilic-hydrophobic sequences was also evaluated. The morphological structures of the multiblock copolymers were investigated using tapping mode atomic force microscopy (TM-AFM), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). The experiments demonstrated a well-defined nanophase separated morphology. Moreover, changes in block length had a pronounced effect on the development of phase separated morphology of the system. Proton conductivity measurements elucidated the transport process in the system, with the multiblock copolymers demonstrating higher conductivities compared to Nafion and random copolymer systems with similar ion exchange capacity (IEC) values. The new materials are strong candidates for use in PEM systems. / Ph. D.
132

Morphological and Structure-Property Analyses of Poly(arylene ether sulfone)-Based Random and Multiblock Copolymers for Fuel Cells

Badami, Anand Shreyans 04 December 2007 (has links)
The commercialization of proton exchange membrane (PEM) fuel cells depends largely upon the development of PEMs whose properties are enhanced over current perfluorinated sulfonic acid PEMs. Understanding how a PEM's molecular weight and morphology affect its relevant performance properties is essential to this effort. Changes in molecular weight were found to have little effect on the phase separated morphologies, water uptake, and proton conductivities of random copolymers. Changes in block length, however, have a pronounced effect on multiblock copolymers, affecting surface and bulk morphologies, water uptake, proton conductivity, and hydrolytic stability, suggesting that multiblock copolymer PEM properties may be optimized by changes in morphology. A major goal of current proton exchange membrane fuel cell research involves developing high temperature membranes that can operate at ~120 °C and low humidites. Multiblock copolymers synthesized from 100% disulfonated poly(arylene ether sulfone) (BPSH100) and naphthalene polyimide (PI) oligomers may be an alternative. At block lengths of ~15 kg/mol they displayed no morphological changes up to 120 °C or even higher. Water desorption was observed to decrease with increasing block length. The copolymers exhibited little to no water loss during a 200 °C isotherm in contrast to random BPSH copolymers and Nafion. A BPSH100-PI multiblock copolymer with large block length appears to have morphological stability and retain water at temperatures exceeding 120 °C, suggesting its candidacy as a high temperature PEM. A growing number of alternative PEM research efforts involve multiblock copolymer chemistries, but little emphasis is placed on the methods used to couple the oligomers. Fluorinated linkage groups can help increase block efficiency during coupling, but their effect on a PEM is not well-known. The choice of linkage type, hexafluorobenzene (HFB) vs. decafluorobiphenyl (DFBP), appears to have small but observable influences on multiblock copolymers with disulfonated and unsulfonated poly(arylene ether sulfone) oligomers. DFBP linkages promote greater phase separation than HFB linkages, resulting in increased stiffness, decreased ductility, and increased proton conductivity at low humidities. DFBP linkages also promote more surface enrichment of fluorine, causing changes in surface morphology and slightly increased water desorption, but determining the impact on actual fuel cell performance requires further research. / Ph. D.
133

High Temperature Polymers for Proton Exchange Membrane Fuel Cells

Einsla, Brian Russel 27 April 2005 (has links)
Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80 C compared to the state-of-the-art PEM (Nafion®); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3′-disulfonate-4,4′-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of Nafion® membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was synthesized in order to investigate this possible advantage and to couple this with the excellent hydrolytic stability of poly(arylene ether)s. The methoxy groups were deprotected to afford reactive phenolic sites and nucleophilic substitution reactions with functional aryl sulfonates were used to prepare simple aryl or highly acidic fluorinated sulfonated copolymers. The proton conductivity and water sorption of the resulting copolymers increased with the ion exchange capacity, but changing the acidity of the sulfonic acid had no apparent effect. / Ph. D.
134

Transport and Structure in Fuel Cell Proton Exchange Membranes

Hickner, Michael Anthony 12 September 2003 (has links)
Transport properties of novel sulfonated wholly aromatic copolymers and the state-of-the-art poly(perfluorosulfonic acid) copolymer membrane for fuel cells, Nafion, were compared. Species transport (protons, methanol, water) in hydrated membranes was found to correspond with the water-self diffusion coefficient as measured by pulsed field gradient nuclear magnetic resonance (PFG NMR), which was used as a measure of the state of absorbed water in the membrane. Generally, transport properties decreased in the order Nafion > sulfonated poly(arylene ether sulfone) > sulfonated poly(imide). The water diffusion coefficients as measured by PFG NMR decreased in a similar fashion indicating that more tightly bound water existed in the sulfonated poly(arylene ether sulfone) (BPSH) and sulfonated poly(imide) (sPI) copolymers than in Nafion. Electro-osmotic drag coefficient (ED number of water molecules conducted through the membrane per proton) studies confirmed that the water in sulfonated wholly aromatic systems is more tightly bound within the copolymer morphology. Nafion, with a water uptake of 19 wt % (λ = 12, where λ = N H2O/SO3H) had an electro-osmotic drag coefficient of 3.6 at 60°C, while BPSH 35 had an electro-osmotic drag coefficient of 1.2 and a water uptake of 40 wt % (λ = 15) under the same conditions. Addition of phosphotungstic acid decreased the total amount of water uptake in BPSH/inorganic composite membranes, but increased the fraction of loosely bound water. Zirconium hydrogen phosphate/BPSH hybrids also showed decreased bulk water uptake, but contrary to the results with phosphotungstic acid, the fraction of loosely bound water was decreased. This dissimilar behavior is attributed to the interaction of phosphotungstic acid with the sulfonic acid groups of the copolymer thereby creating loosely bound water. No such interaction exists in the zirconium hydrogen phosphate materials. The transport properties in these materials were found to correspond with the water-self diffusion coefficients. Proton exchange membrane (PEM) transport properties were also found to be a function of the molecular weight of sulfonated poly(arylene thioether sulfone) (PATS). Low molecular weight (IV ~ 0.69) copolymers absorbed more water on the same ion exchange capacity basis than the high molecular weight copolymers (IV ~ 1.16). Surprisingly, protonic conductivity of the two series was similar. Moreover, the methanol permeability of the low molecular weight copolymers was increased, resulting in lower membrane selectivity and decreased mechanical properties. The feasibility of converting the novel sulfonated wholly aromatic systems to membrane electrode assemblies (MEAs) for use in fuel cells was studied by comparing free-standing membrane properties to those of MEAs assembled with standard Nafion electrodes. Significantly higher interfacial resistance was measured for BPSH samples. Fluorine was introduced into the copolymer backbone by utilizing bisphenol-AF in the copolymer synthesis (6F copolymers). These 6F copolymers showed a markedly lower interfacial resistance with Nafion electrodes and correspondingly greater direct methanol fuel cell performance. It was proposed that the addition of the hexafluoro groups increased the compatibility of the PEM with the highly fluorinated Nafion electrode. / Ph. D.
135

Durability study of proton exchange membrane fuel cells via experimental investigations and mathematical modeling

Liu, Dan 14 September 2006 (has links)
In this dissertation, novel approaches to PEMFC durability research are summarized. These efforts are significantly different from most other studies on durability in that rather than focusing on chemical degradation, more attention is given to the mechanical aspects of the PEMFC system. The tensile stress-strain behavior of Nafion® 117 (N117) and sulfonated poly(arylene ether sulfone) random copolymer (BPSH35) membranes is explored under ambient conditions, with respect to the effects of initial strain rate, counterion type, molecular weight and the presence of inorganic fillers. A three-dimensional "bundle-cluster" model is proposed to interpret the tensile observations, combining the concepts of elongated polymer aggregates, proton conduction channels as well as states of water. The rationale focuses on the polymer bundle rotation/interphase chain readjustment before yielding and polymer aggregates disentanglement/ reorientation after yielding. In addition, the influence of uniaxial loading on proton conductivity of N117 and BPSH35 membranes is investigated. When the membranes are stretched, their proton conductivities in the straining direction increase compared to the unstretched films, and then relax exponentially with time. The behavior is explained on the basis of the morphological variations of hydrophilic channels, accompanied by the rotation, orientation and disentanglement of the copolymer chains in the hydrophobic domains, as illustrated with the help of our bundle-cluster model. Finally, the long-term aging of hydrogen-air PEMFCs is examined with a cyclic current profile and under constant current conditions. The end-of-period diagnosis is performed for both MEAs at 100h aging intervals, including a series of cell polarization, impedance and electrochemical experiments. The results demonstrate that hydrogen crossover is the most significant result of degradation for the MEA under cyclic aging mode due to the formation of pinholes at approximately 500-600h, and mass transport limitations are the major degradation sources for constant current mode. A phenomenological mathematical model is set up to describe the PEMFC aging process under both cyclic and constant conditions. / Ph. D.
136

Solution-casting of Disulfonated Poly(arylene ether sulfone) Multiblock Copolymer Films for Proton Exchange Membranes

Lee, Myoungbae 09 June 2009 (has links)
The overall objective of the project, on which this thesis is based, is to develop a novel hydrocarbon-based proton exchange membrane (PEM) material that can produce a proton conductivity of 0.1 S/cm at the operating conditions of 50 % relative humidity and 120 oC, which is the performance target set by the U.S. DOE for automotive application. As a part of this project, our efforts have been focused on the investigation of the effects of solution-casting conditions on the final morphology and properties of disulfonated poly(arylene ether sulfone) multiblock copolymer films from the viewpoint of phase separation of block copolymers. Of equal importance to this work, is a possibility of utilizing a rheological technique for monitoring the transformation and kinetics of block copolymers during solvent removal process, which was initially examined in order to provide fundamental quantitative understanding and practical information on the solvent removal process. Our results demonstrated that solvent selectivity and drying temperature as well as the block length had considerable effects on the final morphology and properties. The proton conductivity could be significantly increased by simply utilizing a selective solvent, dimethylacetamide (DMAC), which is good and marginal for the sulfonated and unsulfonated blocks, respectively, rather than N-methyl-2-pyrrolidone (NMP), a neutral solvent for both blocks. The drying temperature was also observed to have considerable effects on the final properties, being coupled with the effects of solvent selectivity. Also, it was shown that the multiblock copolymer consisting of longer blocks was more sensitive to the processing conditions. From the morphological study using transmission electron microscopy and small-angle X-ray scattering, evidences for the above observations were obtained. In the second part of this dissertation, the evolution of GÎ and GË of the solutions of a styrene-butadiene-styrene (SBS) triblock copolymer in toluene was obtained as a function of concentration using a modified parallel-plate device and a rheology test scheme developed in this study in an effort to quantify the phase separation kinetics. Then, the information on the phase transformation and kinetics of the SBS block copolymer in the solution was obtained by analyzing the GÎ and GË data with the Avrami equation. The Avrami exponent was found to be approximately 1, which indicates that the phase transformation occurred by a one-dimensional growth mechanism. The rate constant showed a strong concentration-dependence. After the initial increase up to 45 vol %, the rate constant drastically decreased and, finally, converged to 0 at 70 vol %. It is believed that, at the concentration range below 45 vol %, the phase separation became more intense as the polymer molecules had more chances to interact owing to the concentration increase. However, above 45 vol %, the phase transformation became weaker due to the limited mobility of the polymer molecules, which finally led to a “kinetically frozen-in” structure, in which the polymer molecules could not move any longer. Thus, it can be concluded that the solvent removal rate is one of the dominant factors that decide the final microstructures of solution-cast block copolymer films. / Ph. D.
137

Synthesis, crosslinking and characterization of disulfonated poly(arylene ether sulfone)s for application in reverse osmosis and proton exchange membranes

Paul, Mou 14 August 2008 (has links)
Novel proton exchange (PEM) and reverse osmosis (RO) membranes for application in fuel cell and water purification respectively were developed by synthesis and crosslinking of disulfonated biphenol-based poly (arylene ether sulfone)s (BPS). Crosslinking is a prospective option to reduce the water swelling and improve the dimensional stability of hydrophilic BPS copolymers. Several series of controlled molecular weight, phenoxide-endcapped BPS copolymers were synthesized via direct copolymerization of disulfonated activated aromatic halide monomers. The degree of disulfonation was controlled by varying the molar ratio of sulfonated to non-sulfonated dihalide monomers. The molecular weights of the copolymers were controlled by offsetting the stoichiometry between biphenol and the dihalides. Biphenol was utilized in excess to endcap the copolymers with phenoxide groups, so that the phenoxide groups could be further reacted with a suitable crosslinker. Several crosslinking reagents such as methacrylate, multifunctional epoxy, phthalonitrile and phenylethynyls were investigated. A wide range of crosslinking chemistries i.e. free radical (methacrylate), step growth (epoxy), heterocyclic (phthalonitrile) and acetylenic (phenylethynyl) was explored. The effects of crosslinking on network properties as functions of molecular weight and degree of disulfonation of copolymers, crosslinking time and concentration of crosslinker were studied. The crosslinked membranes were characterized in terms of gel fraction, water uptake, swelling, self-diffusion coefficients of water, proton conductivity, methanol permeability, water permeability and salt rejection. In general, all of the crosslinked membranes had lower water uptake and swelling relative to their uncrosslinked counterparts, and less water uptake and volume swelling were correlated with increasing gel fractions. It was possible to shift the percolation threshold for water absorption of BPS copolymers to a higher ion exchange capacity (IEC) value compared to that of the uncrosslinked copolymers by means of crosslinking. This reduced water uptake increased the dimensional stability of higher IEC materials and extended their application for potential PEM or RO membranes. The reduction in water uptake and swelling also increased the effective proton concentration, resulting in no significant change in proton conductivity of the membranes after crosslinking. The self-diffusion coefficients of water and methanol permeability decreased with crosslinking, indicating restricted water and methanol transport. Therefore an improvement in the selectivity (ratio of proton conductivity to water swelling or methanol permeability) of PEMs for application in either H2/air or direct methanol fuel cells was achieved by crosslinking. The epoxy crosslinked BPS copolymers also had significantly enhanced salt rejection with high water permeability when tested in for RO applications. Reductions in salt permeability with increasing crosslinking density suggested that crosslinking inhibited salt transport through the membrane. In addition to the random copolymers, two series of multiblocks endcapped with either a phenoxide-terminated hydrophilic unit or a hydrophobic unit were synthesized and crosslinked with a multifunctional epoxy. Besides the crosslinking study, the effect of sequence distributions of the hydrophilic and hydrophobic blocks in the multiblock copolymers was also investigated. Similar to randoms, crosslinked multiblocks had lower water uptake and swelling but comparable proton conductivities relative to their uncrosslinked analogues. / Ph. D.
138

Influence of Sidechain Structure and Interactions on the Physical Properties of Perfluorinated Ionomers

Orsino, Christina Marie 19 October 2020 (has links)
The focus of this dissertation was to investigate the influence of sidechain structure and sidechain content on the morphology and physical properties of perfluorosulfonic acid ionomer (PFSA) membranes. One of the primary objectives was to characterize the thermomechanical relaxations for short sidechain PFSAs developed by 3M and Solvay, as well as a new multi-acid sidechain perfluoroimide acid ionomer (PFIA) from 3M. Partial neutralization experiments played a key role in systematically manipulating the strength of the electrostatic interactions between proton exchange groups on each sidechain, leading to the elucidation of the molecular-level motions associated with multiple thermal relaxations observed by dynamic mechanical analysis (DMA). Particularly, 3M PFSA and Solvay Aquivion lack an observable β-relaxation in the sulfonic acid-form that is observed in the long sidechain PFSA, Nafion. By varying the strength of the physically-crosslinked network through exchanging the proton on the sulfonic acid groups for large counterions, we were able to conclude that the shorter sidechain length and increase in ion content in the 3M PFSA and Solvay Aquivion serves to restrict the mobility of the polymer backbone such that the onset of segmental motions of the main chains is not observed at temperatures below the α-relaxation temperature, where destabilization of the physically crosslinked network occurs. As a complementary technique to DMA for probing the relaxations in PFSAs, we introduced a new pretreatment method for differential scanning calorimetry (DSC) measurements that uncover a thermal transition in H+-form 3M PFSA, Aquivion, and Nafion membranes. This thermal transition was determined to be of the same molecular origin as the dynamic mechanical α-relaxation temperature in H+-form PFSAs, and the β-relaxation temperature in tetrabutylammonium (TBA+)-form PFSAs. The thermomechanical relaxations in multi-acid sidechain 3M PFIA were also investigated. Interestingly, the additional acidic site on PFIA led to unexpected differences in thermal and mechanical properties, including the appearance of a distinct glass transition temperature otherwise not seen in PFSA ionomers. We utilized small-angle X-ray scattering (SAXS) studies to probe the differences in aggregate structure between the PFIA and PFSA membranes in order to uncover the morphological origin of the anomalous thermomechanical behavior in PFIA membranes. Larger aggregate structures for PFIA, compared to PFSA, incorporate intervening fluorocarbon chains within the aggregate, resulting in increased spacing between ions that reduce the collective electrostatic interactions between ions such that the onset of chain mobility occurs at lower temperatures than the α-relaxation for PFSA. The SAXS profiles of PFSAs showed two scattering features resulting from scattering between crystalline domains and ionic domains distributed throughout the polymer matrix. In order to fit the "ionomer peak" to models used for the PFIA and PFSA aggregate structure determination, we presented a method of varying the electron density of the ionic domains by using different alkali metal counterions as a tool to make the intercrystalline feature indistinguishable. This allows for isolation of the ionomer peak for better fits to scattering models without any interference from the intercrystalline peak. Lastly, an investigation of annealing PFSAs of different sidechain structures in the tetramethylammonium (TMA+) counterion form above their α-relaxation showed a profound crystalline-like ordering of the TMA+ counterions within the ionic domains. This ordering is maintained after reacidification and leads to improved proton conductivity, which indicates that this method can be used as a simple processing method for obtaining improved morphologies in proton exchange membranes for fuel cell applications. / Doctor of Philosophy / Hydrogen fuel cells offer an environmentally friendly, high efficiency method for powering vehicles, buildings, and portable electronic devices. At the center of a hydrogen fuel cell is a polymer membrane that contains ionic functionalities, which conduct hydrogen ions (protons) from the anode to the cathode while preventing conduction of electrons. The electrons travel through an external circuit to produce electricity, while the protons travel through the polymer membrane and meet with oxygen on the other side to produce water, the only byproduct of a hydrogen fuel cell. The efficiency of this process relies on the ability of the polymer membrane to conduct protons, and the lifetime of a fuel cell depends on the mechanical stability of this membrane. Perfluorosulfonic acid ionomers are good candidates for use as polymer membranes in hydrogen fuel cells due to their Teflon backbone that provides mechanical stability and their sulfonic acid functionalities that form channels for proton conduction. In this work, we probe the structure-property relationships of different perfluorosulfonic acid ionomers for use as fuel cell membranes. We focus on thermal analysis techniques to develop a fundamental understanding of the effect of chemical structure and sulfonic acid content on the temperature-induced mobility of the polymer chains in these ionomers. This mobility at elevated temperatures can be utilized to rearrange the morphological structure of perfluorosulfonic acid ionomer membranes in order to enhance proton conductivity and mechanical integrity.
139

Morphological and Mechanical Properties of Dispersion-Cast and Extruded Nafion Membranes Subjected to Thermal and Chemical Treatments

Osborn, Shawn James 06 May 2009 (has links)
The focus of this research project was to investigate morphological and mechanical properties of both extruded and dispersion-cast Nafion® membranes. The project can be divided into three primary objectives; obtaining a fundamental understanding of the glass transition temperature of Nafion®, determining the effect of thermal annealing treatments on the morphology and mechanical properties of dispersion-cast Nafion®, and examination of dispersion-cast Nafion® subjected to an ex-situ, Fenton's chemical degradation test. Nafion®, a perfluorosulfonate ionomer, is considered a commercially successful semi-crystalline ionomer with primary applications in chlor-alkali cells and proton exchange membrane fuel cells. With the aid of dynamic mechanical analysis (DMA) and dielectric spectroscopy (DS), we were able to provide definitive evidence for a genuine glass transition in Nafion®. DMA of Nafion® samples that were partially neutralized with tetrabutylammonium counterions showed a strong compositional dependence suggesting that the β-relaxations of H+-form Nafion® and the neutralized ionomers have the same molecular origin with respect to backbone segmental motions. Building upon our previous studies of the molecular and morphological origins of the dynamic mechanical relaxations of Nafion® neutralized with a series of organic ions, the glass transition temperature of H+-form Nafion® is now confirmed to be the weak β-relaxation centered at -20 °C. Dielectric spectra also showed this transition from the perspective of dipole relaxation. The signature of cooperative long range segmental motions in dielectric spectra was seen here, as with other polymers, mainly through the excellent agreement of the β-relaxation time-temperature dependence with the Vogel-Fulcher-Tammann equation. We have also discovered that new dispersion-cast H+ form Nafion® membranes are susceptible to disintegration/dissolution when subjected to boiling methanol. In this work, we have achieved significant decreases in the percent solubility of H+-form Nafion® by either thermally annealing above 175 °C or solution-processing at 180 °C using a high boiling point solvent. Small Angle X ray Scattering (SAXS) displayed a change in the morphology of H+ form membranes with increasing annealing temperature by a shift in the crystalline scattering peak (q â 0.05 Ã 1) to lower q values. Counterion exchange of Nafion® from H+ to Na+ form had no influence on the membrane's susceptibility to disintegration in boiling methanol. In order to achieve mechanical stability in boiling methanol, Na+ form membranes had to be annealed at 275 °C for at least fifteen minutes. The SAXS data of annealed Na+ form membranes showed a dramatic decrease in crystalline order with annealing temperature, ultimately leading to the disappearance of the crystalline scattering peak after fifteen minutes at 275 °C. The onset of methanol stability with the melting of Nafion® crystallites suggests that chain entanglement is an important parameter in obtaining solvent stability. With respect to chemical stability, we performed studies aimed at examining the effects of Fenton's Reagent on the resistance to radical attack of new generation, dispersion-cast Nafion®. Changes in the 19F solid-state NMR spectra of dispersion-cast Nafion® before and after chemical degradation via Fenton's Reagent predicts a rather random attack by ·OH and ·OOH radicals. Several membranes were also thermally annealed between 100-250 °C in an attempt to correlate crystallinity with chemical degradation kinetics of Nafion® via Fenton's Reagent. The results indicate that the effect of counterion exchange into the Na+ form was minimal, but the degree of thermal degradation had a tremendous effect on the fluoride release rate and chemical degradation kinetics. By exchanging the membranes into the Na+ form, thermal degradation was avoided, allowing us to study the role of crystallinity as a function of fluoride release. Ultimately, Nafion® crystallinity was deemed an important factor in deterring peroxide radical attack. As the percent crystallinity decreased with annealing temperature, the fluoride concentration in the resulting Fenton's media increased accordingly, indicating that the amorphous regions of the polymer are more susceptible to chemical degradation via peroxide radical attack. / Ph. D.
140

Polymeric and Polymer/Inorganic Composite Membranes for Proton Exchange Membrane Fuel Cells

Hill, Melinda Lou 18 April 2006 (has links)
Several types of novel proton exchange membranes which could be used for both direct methanol fuel cells (DMFCs) and hydrogen/air fuel cells were investigated in this work. One of the main challenges for DMFC membranes is high methanol crossover. Nafion, the current perfluorosulfonic acid copolymer benchmark membrane for both DMFCs and hydrogen/air fuel cells, shows very high methanol crossover. Directly copolymerized disulfonated poly(arylene ether sulfone)s copolymers doped with zirconium phosphates and phenyl phosphonates were synthesized and showed a significant reduction in methanol permeability. These copolymer/inorganic nanocomposite hybrid membranes show lower water uptake and conductivity than Nafion and neat poly(arylene ether sulfone)s copolymers, but in some cases have similar or even slightly improved DMFC performance due to the lower methanol permeability. These membranes also show advantages for high temperature applications because of the reinforcing effect of the filler, which helps to maintain the modulus of the membrane, allowing the membrane to maintain proton conductivity even above the hydrated glass transition temperature (Tg) of the copolymer. Sulfonated zirconium phenyl phosphonate additives were also synthesized, and membranes incorporating these materials and disulfonated poly(arylene ether sulfone)s showed promising proton conductivity over a wide range of relative humidities. Single-Tg polymer blend membranes were studied, which incorporated disulfonated poly(arylene ether sulfone) with varied amounts of polybenzimidazole. The polybenzimidazole served to decrease the water uptake and methanol permeability of the membranes, resulting in promising DMFC and hydrogen/air fuel cell performance. / Ph. D.

Page generated in 0.0569 seconds