• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 566
  • 5
  • 4
  • Tagged with
  • 575
  • 554
  • 412
  • 390
  • 382
  • 348
  • 303
  • 298
  • 295
  • 295
  • 236
  • 231
  • 222
  • 222
  • 185
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Sutureless Fixation of Amniotic Membrane for Therapy of Ocular Surface Disorders

Kotomin, Ilya, Valtnik, Monika, Hofmann, Kai, Frenzel, Annika, Morawietz, Henning, Werner, Carsten, Funk, Richard H. W., Engelmann, Katrin 27 July 2015 (has links)
Amniotic membrane is applied to the diseased ocular surface to stimulate wound healing and tissue repair, because it releases supportive growth factors and cytokines. These effects fade within about a week after application, necessitating repeated application. Generally, amniotic membrane is fixed with sutures to the ocular surface, but surgical intervention at the inflamed or diseased site can be detrimental. Therefore, we have developed a system for the mounting of amniotic membrane between two rings for application to a diseased ocular surface without surgical intervention (sutureless amniotic membrane transplantation). With this system, AmnioClip, amniotic membrane can be applied like a large contact lens. First prototypes were tested in an experiment on oneself for wearing comfort. The final system was tested on 7 patients in a pilot study. A possible influence of the ring system on the biological effects of amniotic membrane was analyzed by histochemistry and by analyzing the expression of vascular endothelial growth factor-A (VEGF-A), hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF 2) and pigment epithelium-derived factor (PEDF) from amniotic membranes before and after therapeutic application. The final product, AmnioClip, showed good tolerance and did not impair the biological effects of amniotic membrane. VEGF-A and PEDF mRNA was expressed in amniotic membrane after storage and mounting before transplantation, but was undetectable after a 7-day application period. Consequently, transplantation of amniotic membranes with AmnioClip provides a sutureless and hence improved therapeutic strategy for corneal surface disorders.
32

Subunits of the Pyruvate Dehydrogenase Cluster of Mycoplasma pneumoniae Are Surface-Displayed Proteins that Bind and Activate Human Plasminogen

Gründel, Anne, Friedrich, Kathleen, Pfeiffer, Melanie, Jacobs, Enno, Dumke, Roger 27 July 2015 (has links)
The dual role of glycolytic enzymes in cytosol-located metabolic processes and in cell surface-mediated functions with an influence on virulence is described for various micro-organisms. Cell wall-less bacteria of the class Mollicutes including the common human pathogen Mycoplasma pneumoniae possess a reduced genome limiting the repertoire of virulence factors and metabolic pathways. After the initial contact of bacteria with cells of the respiratory epithelium via a specialized complex of adhesins and release of cell-damaging factors, surface-displayed glycolytic enzymes may facilitate the further interac-tion between host and microbe. In this study, we described detection of the four subunits of pyruvate dehydrogenase complex (PDHA-D) among the cytosolic and membrane-associated proteins of M.pneumoniae. Subunits of PDH were cloned, expressed and purified to produce specific polyclonal guinea pig antisera. Using colony blotting, fractionation of total proteins and immunofluorescence experiments, the surface localization of PDHA-C was demonstrated. All pecombinant PDH subunits are able to bind to HeLa cells and human plasminogen. These interactions can be specifically blocked by the corresponding polyclon-al antisera. In addition, an influence of ionic interactions on PDHC-binding to plasminogen as well as of lysine residues on the association of PDHA-D with plasminogen was confirmed. The PDHB subunit was shown to activate plasminogen and the PDHB-plasminogen complex induces degradation of human fibrinogen. Hence, our data indicate that the surface-associated PDH subunits might play a role in the pathogenesis of M.pneumoniae infections by interaction with human plasminogen.
33

A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation: Research Article

Poznyakovskiy, Anton A., Mainka, Alexander, Platzek, Ivan, Mürbe, Dirk 08 June 2016 (has links)
Vocal tract morphology is an important factor in voice production. Its analysis has potential implications for educational matters as well as medical issues like voice therapy. The knowledge of the complex adjustments in the spatial geometry of the vocal tract during phonation is still limited. For a major part, this is due to difficulties in acquiring geometry data of the vocal tract in the process of voice production. In this study, a centerline-based segmentation method using active contours was introduced to extract the geometry data of the vocal tract obtained with MRI during sustained vowel phonation. The applied semiautomatic algorithm was found to be time- and interaction-efficient and allowed performing various three-dimensional measurements on the resulting model. The method is suitable for an improved detailed analysis of the vocal tract morphology during speech or singing which might give some insights into the underlying mechanical processes.
34

Facilitative-Competitive Interactions in an Old-Growth Forest: The Importance of Large-Diameter Trees as Benefactors and Stimulators for Forest Community Assembly

Fichtner, Andreas, Forrester, David I., Härdtle, Werner, Sturm, Knut, von Oheimb, Goddert 23 July 2015 (has links)
The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services.
35

Improved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature

Bernhardt, Anne, Wehrl, Markus, Paul, Birgit, Hochmuth, Thomas, Schumacher, Matthias, Schütz, Kathleen, Gelinsky, Michael 20 January 2016 (has links) (PDF)
The development of bio-resorbable implant materials is rapidly going on. Sterilization of those materials is inevitable to assure the hygienic requirements for critical medical devices according to the medical device directive (MDD, 93/42/EG). Biopolymer-containing biomaterials are often highly sensitive towards classical sterilization procedures like steam, ethylene oxide treatment or gamma irradiation. Supercritical CO2 (scCO2) treatment is a promising strategy for the terminal sterilization of sensitive biomaterials at low temperature. In combination with low amounts of additives scCO2 treatment effectively inactivates microorganisms including bacterial spores. We established a scCO2 sterilization procedure under addition of 0.25% water, 0.15% hydrogen peroxide and 0.5% acetic anhydride. The procedure was successfully tested for the inactivation of a wide panel of microorganisms including endospores of different bacterial species, vegetative cells of gram positive and negative bacteria including mycobacteria, fungi including yeast, and bacteriophages. For robust testing of the sterilization effect with regard to later application of implant materials sterilization all microorganisms were embedded in alginate/agarose cylinders that were used as Process Challenge Devices (PCD). These PCD served as surrogate models for bioresorbable 3D scaffolds. Furthermore, the impact of scCO2 sterilization on mechanical properties of polysaccharide-based hydrogels and collagen-based scaffolds was analyzed. The procedure was shown to be less compromising on mechanical and rheological properties compared to established low-temperature sterilization methods like gamma irradiation and ethylene oxide exposure as well as conventional steam sterilization. Cytocompatibility of alginate gels and scaffolds from mineralized collagen was compared after sterilization with ethylene oxide, gamma irradiation, steam sterilization and scCO2 treatment. Human mesenchymal stem cell viability and proliferation were not compromised by scCO2 treatment of these materials and scaffolds. We conclude that scCO2 sterilization under addition of water, hydrogen peroxide and acetic anhydride is a very effective, gentle, non-cytotoxic and thus a promising alternative sterilization method especially for biomaterials.
36

Optical nanoscopy of transient states in condensed matter

Kehr, Susanne C., Kuschewski, Frederik, Green, Bert, Bauer, Ch., Eng , Lukas M., Gensch, Michael 20 January 2016 (has links) (PDF)
Recently, the fundamental and nanoscale understanding of complex phenomena in materials research and the life sciences, witnessed considerable progress. However, elucidating the underlying mechanisms, governed by entangled degrees of freedom such as lattice, spin, orbit, and charge for solids or conformation, electric potentials, and ligands for proteins, has remained challenging. Techniques that allow for distinguishing between different contributions to these processes are hence urgently required. In this paper we demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) as a novel type of nano-probe for tracking transient states of matter. We introduce a sideband-demodulation technique that allows for probing exclusively the stimuli-induced change of near-field optical properties. We exemplify this development by inspecting the decay of an electron-hole plasma generated in SiGe thin films through near-infrared laser pulses. Our approach can universally be applied to optically track ultrafast/-slow processes over the whole spectral range from UV to THz frequencies.
37

Formalizing biomedical concepts from textual definitions

Petrova, Alina, Ma, Yue, Tsatsaronis, George, Kissa, Maria, Distel, Felix, Baader, Franz, Schroeder, Michael 07 January 2016 (has links) (PDF)
BACKGROUND: Ontologies play a major role in life sciences, enabling a number of applications, from new data integration to knowledge verification. SNOMED CT is a large medical ontology that is formally defined so that it ensures global consistency and support of complex reasoning tasks. Most biomedical ontologies and taxonomies on the other hand define concepts only textually, without the use of logic. Here, we investigate how to automatically generate formal concept definitions from textual ones. We develop a method that uses machine learning in combination with several types of lexical and semantic features and outputs formal definitions that follow the structure of SNOMED CT concept definitions. RESULTS: We evaluate our method on three benchmarks and test both the underlying relation extraction component as well as the overall quality of output concept definitions. In addition, we provide an analysis on the following aspects: (1) How do definitions mined from the Web and literature differ from the ones mined from manually created definitions, e.g., MeSH? (2) How do different feature representations, e.g., the restrictions of relations' domain and range, impact on the generated definition quality?, (3) How do different machine learning algorithms compare to each other for the task of formal definition generation?, and, (4) What is the influence of the learning data size to the task? We discuss all of these settings in detail and show that the suggested approach can achieve success rates of over 90%. In addition, the results show that the choice of corpora, lexical features, learning algorithm and data size do not impact the performance as strongly as semantic types do. Semantic types limit the domain and range of a predicted relation, and as long as relations' domain and range pairs do not overlap, this information is most valuable in formalizing textual definitions. CONCLUSIONS: The analysis presented in this manuscript implies that automated methods can provide a valuable contribution to the formalization of biomedical knowledge, thus paving the way for future applications that go beyond retrieval and into complex reasoning. The method is implemented and accessible to the public from: https://github.com/alifahsyamsiyah/learningDL.
38

PTBP1 Is Required for Embryonic Development before Gastrulation

Solimena, Michele, Suckale, Jakob, Wendling, Olivia, Masjkur, Jimmy, Jäger, Melanie, Münster, Carla, Anastassiadis, Konstantinos, Stewart, A. Francis 07 January 2016 (has links) (PDF)
Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.
39

Regeneration of Cryoinjury Induced Necrotic Heart Lesions in Zebrafish Is Associated with Epicardial Activation and Cardiomyocyte Proliferation

Weidinger, Gilbert, Schnabel, Kristin, Wu, Chi-Chung, Kurth, Thomas 07 January 2016 (has links) (PDF)
In mammals, myocardial cell death due to infarction results in scar formation and little regenerative response. In contrast, zebrafish have a high capacity to regenerate the heart after surgical resection of myocardial tissue. However, whether zebrafish can also regenerate lesions caused by cell death has not been tested. Here, we present a simple method for induction of necrotic lesions in the adult zebrafish heart based on cryoinjury. Despite widespread tissue death and loss of cardiomyocytes caused by these lesions, zebrafish display a robust regenerative response, which results in substantial clearing of the necrotic tissue and little scar formation. The cellular mechanisms underlying regeneration appear to be similar to those activated in response to ventricular resection. In particular, the epicardium activates a developmental gene program, proliferates and covers the lesion. Concomitantly, mature uninjured cardiomyocytes become proliferative and invade the lesion. Our injury model will be a useful tool to study the molecular mechanisms of natural heart regeneration in response to necrotic cell death.
40

Action dynamics in multitasking: the impact of additional task factors on the execution of the prioritized motor movement

Scherbaum, Stefan, Gottschalk, Caroline, Dshemuchadse , Maja, Fischer, Rico 18 January 2016 (has links) (PDF)
In multitasking, the execution of a prioritized task is in danger of crosstalk by the secondary task. Task shielding allows minimizing this crosstalk. However, the locus and temporal dynamics of crosstalk effects and further sources of influence on the execution of the prioritized task are to-date only vaguely understood. Here we combined a dual-task paradigm with an action dynamics approach and studied how and according to which temporal characteristics crosstalk, previously experienced interference and previously executed responses influenced participants' mouse movements in the prioritized task's execution. Investigating continuous mouse movements of the prioritized task, our results indicate a continuous crosstalk from secondary task processing until the endpoint of the movement was reached, although the secondary task could only be executed after finishing execution of the prioritized task. The motor movement in the prioritized task was further modulated by previously experienced interference between the prioritized and the secondary task. Furthermore, response biases from previous responses of the prioritized and the secondary task in movements indicate different sources of such biases. The bias by previous responses to the prioritized task follows a sustained temporal pattern typical for a contextual reactivation, while the bias by previous responses to the secondary task follows a decaying temporal pattern indicating residual activation of previously activated spatial codes.

Page generated in 0.1141 seconds