Spelling suggestions: "subject:"pythagorean"" "subject:"pythagoreans""
41 |
O teorema de Pitágoras no oitavo ano do ensino fundamentalStegani, Ozilde Peter 23 May 2014 (has links)
Made available in DSpace on 2016-06-02T20:29:26Z (GMT). No. of bitstreams: 1
6029.pdf: 25766994 bytes, checksum: cfaba0f2589004cda853d07a65fa78fe (MD5)
Previous issue date: 2014-05-23 / Financiadora de Estudos e Projetos / In this paper we reflect on a group of eight lessons applied in the eighth year of elementary school. In these classes, we treat the Pythagorean Theorem, seeking to justify this outcome appropriate to the student s eighth grade elementary school mode. We were interested in seeking justifications with historical content, to rescue, to the extent possible, a part of the history of the Pythagorean Theorem. We take care to seek a mathematical justification for each procedure adopted to develop pedagogical activities. Throughout the text brushing been several suggestions for improving the finished product, though it kept almost entirely in Appendix 1. Also critical to our work interweave throughout the text, seeking both personal growth as offering the opportunity for a better match of the final product to whom this is of interest. At the end we suggest some current applications of the Pythagorean Theorem. Finished the job in the classroom involving the class with the game of dominoes, adapted to the content studied, trying to leave a better final impression on the students. We describe the construction of pedagogical object, the math worked during such construction and finally its application in the classroom. We make four appendices. In the first present the final product. In the second we seek to exemplify the student s work. In the third and fourth work building Pythagorean triangles. / Neste trabalho procuramos refletir sobre um grupo de oito aulas aplicadas no oitavo ano do Ensino Fundamental. Nestas aulas, tratamos do Teorema de Pitágoras, buscando justificar este resultado de modo adequado ao aluno do oitavo ano do Ensino Fundamental. Foi de nosso interesse buscar justificativas com um teor histórico, de modo a resgatar, na medida do possível, uma parte da história do Teorema de Pitágoras. Tomamos o cuidado de buscar uma justificativa matemática para o cada procedimento pedagógico adotado ao desenvolver as atividades. Durante todo o texto fomos pincelando várias sugestões para melhorar o produto final, se bem que o mantivemos quase que totalmente no Apêndice 1. Também entremeamos críticas ao nosso trabalho durante todo o texto, buscando tanto um crescimento pessoal quanto ofertando a oportunidade de uma melhor adequação do produto final a quem este for de interesse. Ao final sugerimos algumas aplicações atuais do Teorema de Pitágoras. Terminamos o trabalho em sala de aula envolvendo a classe com o jogo de dominó, adaptado ao conteúdo estudado, buscando deixar uma melhor impressão final nos alunos. Descrevemos a construção deste objeto pedagógico, a matemática trabalhada durante tal construção e por último sua aplicação com em aula. Confeccionamos quatro apêndices. No primeiro apresentamos o produto final. No segundo buscamos exemplificar os trabalhos dos alunos. No terceiro e quarto trabalhamos a construção de triângulos pitagóricos.
|
42 |
Teorema de Pitágoras, aplicações de demonstrações em sala de aulaTartaglia Filho, Leonardo 26 October 2016 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2017-02-16T11:55:02Z
No. of bitstreams: 1
DissLTF.pdf: 7687528 bytes, checksum: 21db8089b37d9b1d1cbb6276365f0436 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-03-14T19:38:10Z (GMT) No. of bitstreams: 1
DissLTF.pdf: 7687528 bytes, checksum: 21db8089b37d9b1d1cbb6276365f0436 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-03-14T19:38:19Z (GMT) No. of bitstreams: 1
DissLTF.pdf: 7687528 bytes, checksum: 21db8089b37d9b1d1cbb6276365f0436 (MD5) / Made available in DSpace on 2017-03-14T19:48:08Z (GMT). No. of bitstreams: 1
DissLTF.pdf: 7687528 bytes, checksum: 21db8089b37d9b1d1cbb6276365f0436 (MD5)
Previous issue date: 2016-10-26 / Não recebi financiamento / [ENG]The official curriculum of the state of São Paulo in their spiral character, discusses the
Pythagorean Theorem as one of their learning situations for the 9th year of elementary
school, and on top of that content, contextualizes the topic in several other opportunities
in high school, one of the most common theories in the Euclidean geometry. The work
contributes in the creation of skills and competencies necessary for the understanding of
geometry, which is apparent or not the figure of the right triangle, with the aim of
providing tools for students to build knowledge necessary in order to find solutions to
the problems posed by notebook student, which is the basic curriculum for all students
of the state of São Paulo school. The activities, as workshops and activity sheets,
proposed by the developer of this dissertation were applied to 35 students of the 9th
grade of elementary school of the State School Pedro Bento Alves, located in central city
of Arandu, state of São Paulo, which has in its framework students 800 students, divided
shapeless way in 22 classrooms. Through the activity sheets, the author made the draft
statements for the Pythagorean Theorem through manual labor, which believes it has a
more significant effect to the students. The results were analyzed and compared with
the assumptions previously raised during the preparation and creation of the
dissertation, and the Didactic Engineering as the main research methodology and data
analysis. Proposals classes had a good development because students behaved as
protagonists of actions, being motivated and participative during the execution of
activities. Students reached the proposed objectives, understanding that the material
developed provided a different routine, as it has been applied, and thus conclude that
the leaves of activities will be useful to all teachers who want to develop them in their
classes, adapting -the as reality, performance and utilization of their students.
The work contributed greatly to the professional development of the author, since
rethink strategies and pursue new activities through research, raised the level of
knowledge on the subject, which provided new practices in the classroom. / O currículo oficial do estado de São Paulo em seu caráter espiral, aborda o Teorema de
Pitágoras como uma de suas situações de aprendizagem para o 9° ano do ensino
fundamental, e em cima desse conteúdo, contextualiza o tema em diversas outras
oportunidades no ensino médio, sendo uma das teorias mais frequentes na parte da
geometria euclidiana. O trabalho contribui na criação de habilidades e competências
necessárias para a interpretação da geometria, que tem aparente ou não a figura do
triângulo retângulo, com o objetivo de dar ferramentas para que o aluno construa
conhecimentos necessários, a fim de encontrar soluções aos problemas propostos pelo
caderno do aluno, que é a base curricular para todos os estudantes da rede estadual de
ensino paulista. As atividades, em forma de oficinas e folhas de atividades, propostas
pelo desenvolvedor dessa dissertação, foram aplicadas para 35 alunos do 9° ano do
ensino fundamental da Escola Estadual Pedro Bento Alves, situada na região central da
cidade de Arandu, estado de São Paulo, a qual tem em seu quadro discente 800 alunos,
divididos de maneira disforme em 22 salas de aula. Nas folhas de atividades o autor fez a
proposta de demonstrações para o Teorema de Pitágoras através do trabalho manual,
que acredita ter efeito mais significativo para os alunos. Os resultados foram analisados e
comparados com as hipóteses levantadas previamente durante a fase de preparação e
criação da dissertação, tendo a Engenharia Didática como metodologia principal de
investigação e análise dos dados. As aulas propostas tiveram um bom desenvolvimento,
pois os alunos se portaram como protagonistas das ações, mostrando-se motivados e
participativos durante a execução das atividades. Os alunos atingiram os objetivos
propostos, entendendo que o material desenvolvido proporcionava uma rotina
diferenciada, na forma com que foi aplicado, e com isso concluo que as folhas de
atividades poderão ser úteis a todos os professores que queiram desenvolvê-las em suas
aulas, adaptando-as conforme realidade, rendimento e aproveitamento de seus alunos.
O trabalho contribuiu muito para o desenvolvimento profissional do autor, uma vez que
repensar estratégias e buscar novas atividades através de pesquisas, elevou o nível de
conhecimento sobre o tema, que propiciou novas práticas em sala de aula.
|
43 |
Analýza řešení úloh 2. kola 56. ročníku MO v Jihočeském kraji / The problem solutions analysis of the 2nd round of 56th year MO in South BohemiaVELC, Radovan January 2009 (has links)
The purpose of this thesis is the analysis of the 2nd round of the mathematical olympiad, including the statistics of the success rate of the students in particular problems, analysis of their procedures and error analysis. This thesis should serve as a survey of the problems of 56th year of MO and as a study text for the mathematical olympiad participants.
|
44 |
Didaktické přístupy k výuce některých témat v matematice na základní škole v řeči učitelů / Didactic approaches to the teaching of some mathematical topics at the primary school in teachers ́ diskurseVencovská, Jaroslava January 2017 (has links)
The aim of the thesis was through a new analysis of interviews with teachers of mathematics, to describe didactic practices used by teachers while teaching selected topics (namely, proportions, linear equations, divisibility, percent, symmetry, Pythagorean theorem ) and compare them with the practices reported in textbooks and other literature. First, teaching methods, teaching forms and the mechanism of concept development by M. Hejný are given. Based on the analysis of more than thirty interview, it was found that teachers use the usual didactic practices but also create their own methods and procedures. These methods and techniques are provided for each critical issue separately in the fourth chapter of the thesis. Furthermore, the content analysis of selected textbooks is given for each topic. Identified practices of teachers which they use in their teaching practice, form the result of my work.
|
45 |
[en] DIALOGUES BETWEEN MATHEMATICS STORIES AND EXPERIMENTAL PRACTICES IN ELEMENTARY SCHOOL / [pt] DIÁLOGOS ENTRE HISTÓRIAS DA MATEMÁTICA E PRÁTICAS EXPERIMENTAIS NA ESCOLA BÁSICAANDERSON DE OLIVEIRA MELO SILVA 13 July 2021 (has links)
[pt] O objetivo deste trabalho é propor atividades experimentais, fundamentadas
na História da Matemática, que problematizem o conteúdo ensinado no 9º ano do ensino fundamental da escola básica, com base nos seus processos históricos de
produção provocando o diálogo entre duas abordagens que fundamentam o
presente estudo: a história da matemática e o ensino por atividades experimentais.
Acreditamos que esse diálogo possibilita o alcance de objetivos específicos
importantes: humanização da matemática possibilitando que alunos deste ano
de escolaridade compreendam a matemática como produto da necessidade
humana e significação da matemática promovendo o aprendizado através do
desenvolvimento de atividades práticas que tragam sentido e motivação à
aprendizagem de novos saberes. Três conteúdos tradicionais que constam no
currículo deste segmento são apesentados com base na conjugação simultânea
destas abordagens: o teorema de Tales, o teorema de Pitágoras e a equação do segundo grau. Para cada um deles, apresentamos uma abordagem histórica, levantamos reflexões importantes sobre construções e autorias e sugerimos atividades fundamentadas no diálogo entre história e prática como propostas a serem
desenvolvidas juntos aos alunos. / [en] The objective of this work is to propose experimental activities, based on
the History of Mathematics, that problematize the content taught in the 9th grade of elementary school, based on their historical production processes, provoking a dialogue between two approaches that underlie the present study: the history of mathematics and teaching by experimental activities. We believe that this dialogue enables the achievement of important specific objectives: humanization of mathematics enabling students of this school year to understand mathematics as a product of human need and meaning of mathematics promoting learning
through the development of practical activities that bring meaning and motivation to learn new knowledge. Three traditional contents that appear in the curriculum of this segment are presented based on the simultaneous combination of these approaches: the Tales theorem, the Pythagorean theorem and the 2nd degree
equation. For each of them, we present a historical approach, raise important
reflections on constructions and authorship and suggest activities based on the dialogue between history and practice as proposals to be developed together with
the students.
|
46 |
Musiktheorie zwischen den Kulturen: Nachdenken über die westeuropäische Musiktheorie und deren Vermittlung aus einer anderen PerspektiveIckstadt, Andreas 28 October 2024 (has links)
No description available.
|
47 |
Beziehungshaltigkeit und Vernetzungen im Mathematikunterricht der Sekundarstufe INordheimer, Swetlana 05 March 2014 (has links)
Die Notwendigkeit einer Untersuchung über Beziehungshaltigkeit und Vernetzungen im Mathematikunterricht ergibt sich einerseits aus den aktuellen bildungspolitischen Forderungen, andererseits aus den reichhaltigen bildungsphilosophischen Traditionen im deutschsprachigem Raum(KMK 2012, 11). Das Ziel der vorliegenden Arbeit besteht vor allem in der Reflexion von Beziehungshaltigkeit und Vernetzungen im Mathematikunterricht. Diese Reflexion ist durch drei Fragen bestimmt: Was kann man als Lehrer über Beziehungshaltigkeit wissen? Wie kann man als Lehrer handeln, so dass die Schüler Beziehungen zwischen mathematischen Inhalten erkennen bzw. selbständig herstellen? Um handeln zu können, muss man die Wirklichkeit oder die Praxis (bzw. Empirie) kennen, in der man handelt. In diesem Sinne ist die vorliegende Arbeit aufgebaut. Dabei wird ein Versuch unternommen, die klassische Aufteilung zwischen Theorie und Empirie bzw. Praxis des Mathematikunterrichts aufzubrechen, um eine Verzahnung zwischen diesen zu verstärken. Das Herzstück der Arbeit bilden zwei ausgearbeitete und in der schulischen Arbeit erprobte Aufgabennetze (Pythagorasbaum und Rund ums Sechseck), die den Rahmen zur Reflexion bieten. / The need for a study on relations sustainability and networks in mathematics stems, on the one hand, from current education policy requirements, and, on the other, from the rich philosophical traditions of education in the German-speaking countries (KMK 2012, 11). The goal of the present work consists, above all, in reflecting on relations sustainability and networks in mathematics lessons. This reflection is guided by three questions: What can one know, as a teacher, about relations sustainability? How can one act a teacher to ensure that students recognise relationships between mathematical content, or independently produce such relations? In order to act, one must know the reality or practice (e.g. empiricism) in which one acts. The project is focused on the development and testing of worked examples of concrete task networks ("Pythagoras’ tree" and "Around the hexagon").
|
48 |
Caleidociclos / KaleidocyclesSilva, Reginaldo Alexandre da 13 January 2017 (has links)
Os caleidociclos têm sido utilizados como forma artística de apresentação de imagens, pinturas ou como parte de trabalhos artísticos, principalmente de imagens com simetrias; talvez os mais conhecidos sejam os trabalhos de M. C. Escher. As poucas publicações encontradas da teoria matemática envolvida nos caleidociclos dão base para imaginar e criar aplicações no desenvolvimento de habilidades e competências trabalhadas na escola. Para aumentar as possibilidades de aplicações de conceitos, teoremas e relações matemáticas estudadas no ensino básico, o presente trabalho apresenta algumas propostas de atividades utilizando os caleidociclos. As propostas foram elaboradas de acordo com o nível de ensino, ou seja, simetrias para o 7o ano, teorema de Pitágoras para os 8o e 9o anos do Ensino Fundamental, lei dos cossenos e relação fundamental da trigonometria para a 1a série e volume e área de superfície de sólidos geométricos para 2a série do Ensino Médio; algumas das propostas apresentam variações para se adequar ao nível de desenvolvimento em que a turma se encontra. Todos os moldes utilizados e outras possibilidades de caleidociclos, incluindo sólidos encaixantes aos caleidociclos, foram organizados ao final deste trabalho em um dos apêndices. Há também um apêndice com outros tipos de sólidos geométricos com movimentos, que podem ser usados no mesmo intuito de aplicação diferenciada da geometria espacial. / Kaleidocycles have been used asan artistic formof presentation of pictures, paintings or a part of artworks, especially images with symmetries; perhaps the best known works are M. C. Eschers. The few finded publications of the mathematical theory related to these three-dimensional rings give rise to imagine and create applications for developing skills to be worked in classroom. In order to increase the possibility of applications of concepts, theorems and mathematical relations, the present work proposes some activities dealing with kaleidocycles. The proposals were prepared in accordance with the students level of education, i.e., symmetries for the7th grade, the Pythagorean theorem for the 8th and 9th grades, law of cosines and the fundamental relation of trigonometry, volume and surface area of geometric solids for high school students; some of the proposals have variations to suit the level of development in which the class is at. All the molds used and other possibilities of kaleidocycles, including solids which fit into kaleidocycles, were organized at the end of this dissertation in one of the appendices. There is also an appendix with other types of mobile geometric solids that can be used in the same purpose in different applications of spatial geometry.
|
49 |
GeoGebra, recurso computacional a favor da aprendizagem matemática no ensino fundamental IISelli, Luis Fernando 21 March 2014 (has links)
Made available in DSpace on 2016-06-02T20:29:25Z (GMT). No. of bitstreams: 1
5860.pdf: 2193810 bytes, checksum: 8f6aaa00065dd7db0a219c6a2f7e41a9 (MD5)
Previous issue date: 2014-03-21 / Financiadora de Estudos e Projetos / This paper is related to the application of GeoGebra software in the following topics: Ratio, Proportion, Thales Theorem, Similarities, Similarity of Triangles, Pythagorean Theorem, Trigonometric Ratios in the Triangle Rectangle, Number and circumference. Initially all the contents were thought by traditional method, board and chalk. Therefore the GeoGebra software was applied. It was developed to teachers and students (9th grade) of an elementary school involved in these activities. Positive and negative results were showed but there is a perspective of improvement. All the stages are separately related to help the understanding. The object is the analyses about the importance and relevancy of using computerized mathematical tools during the learning process. / Este trabalho trata da aplicação do software GeoGebra nos seguintes temas: Razão, Proporção, Teorema de Tales, Semelhança, Semelhança de Triângulos, Teorema de Pitágoras, Razões Trigonométricas no Triângulo Retângulo, o número e a Circunferência. Cada conteúdo foi trabalhado inicialmente do modo tradicional, giz e lousa, e posteriormente com o uso do GeoGebra. Desenvolvido de modo inédito para o professor e para os alunos de 8ª série (9° ano) envolvidos nas atividades, mostra resultados positivos e negativos com perspectiva de melhoras. Todas as etapas estão relatadas separadamente e o desenvolvimento foi feito de modo a favorecer uma compreensão adequada sobre o trabalho com o objetivo de propiciar a análise sobre a importância e relevância do uso de ferramentas matemáticas informatizadas no auxílio da aprendizagem.
|
50 |
Caleidociclos / KaleidocyclesReginaldo Alexandre da Silva 13 January 2017 (has links)
Os caleidociclos têm sido utilizados como forma artística de apresentação de imagens, pinturas ou como parte de trabalhos artísticos, principalmente de imagens com simetrias; talvez os mais conhecidos sejam os trabalhos de M. C. Escher. As poucas publicações encontradas da teoria matemática envolvida nos caleidociclos dão base para imaginar e criar aplicações no desenvolvimento de habilidades e competências trabalhadas na escola. Para aumentar as possibilidades de aplicações de conceitos, teoremas e relações matemáticas estudadas no ensino básico, o presente trabalho apresenta algumas propostas de atividades utilizando os caleidociclos. As propostas foram elaboradas de acordo com o nível de ensino, ou seja, simetrias para o 7o ano, teorema de Pitágoras para os 8o e 9o anos do Ensino Fundamental, lei dos cossenos e relação fundamental da trigonometria para a 1a série e volume e área de superfície de sólidos geométricos para 2a série do Ensino Médio; algumas das propostas apresentam variações para se adequar ao nível de desenvolvimento em que a turma se encontra. Todos os moldes utilizados e outras possibilidades de caleidociclos, incluindo sólidos encaixantes aos caleidociclos, foram organizados ao final deste trabalho em um dos apêndices. Há também um apêndice com outros tipos de sólidos geométricos com movimentos, que podem ser usados no mesmo intuito de aplicação diferenciada da geometria espacial. / Kaleidocycles have been used asan artistic formof presentation of pictures, paintings or a part of artworks, especially images with symmetries; perhaps the best known works are M. C. Eschers. The few finded publications of the mathematical theory related to these three-dimensional rings give rise to imagine and create applications for developing skills to be worked in classroom. In order to increase the possibility of applications of concepts, theorems and mathematical relations, the present work proposes some activities dealing with kaleidocycles. The proposals were prepared in accordance with the students level of education, i.e., symmetries for the7th grade, the Pythagorean theorem for the 8th and 9th grades, law of cosines and the fundamental relation of trigonometry, volume and surface area of geometric solids for high school students; some of the proposals have variations to suit the level of development in which the class is at. All the molds used and other possibilities of kaleidocycles, including solids which fit into kaleidocycles, were organized at the end of this dissertation in one of the appendices. There is also an appendix with other types of mobile geometric solids that can be used in the same purpose in different applications of spatial geometry.
|
Page generated in 0.0545 seconds