Spelling suggestions: "subject:"pythagorean theorem."" "subject:"pythagoreans theorem.""
1 |
Analyticam demonstrationem, propos. 47. primi elementorum Euclidis consensu amplissimae facultatis philosophicae in incluta lipsiensi adornatam,Christ, Andreas Stephanus, Thorinus, Andreas, January 1900 (has links)
Diss.--Leipzig (Andreas Thorinus, respondent). / At head of title: Q.D.B.V. Day of the month in title supplied in manuscript.
|
2 |
Analyticam demonstrationem, propos. 47. primi elementorum Euclidis consensu amplissimae facultatis philosophicae in incluta lipsiensi adornatam,Christ, Andreas Stephanus, Thorinus, Andreas, January 1900 (has links)
Diss.--Leipzig (Andreas Thorinus, respondent). / At head of title: Q.D.B.V. Day of the month in title supplied in manuscript.
|
3 |
Should the Pythagorean Theorem Actually be Called the 'Pythagorean' TheoremMoledina, Amreen 05 December 2013 (has links)
This paper investigates whether it is reasonable to bestow credit to one person or group for the famed theorem that relates to the side lengths of any right-angled triangle, a theorem routinely referred to as the “Pythagorean Theorem”. The author investigates the first-documented occurrences of the theorem, along with its first proofs. In addition, proofs that stem from different branches of mathematics and science are analyzed in an effort to display that credit for the development of the theorem should be shared amongst its many contributors rather than crediting the whole of the theorem to one man and his supporters.
|
4 |
Should the Pythagorean Theorem Actually be Called the 'Pythagorean' TheoremMoledina, Amreen 05 December 2013 (has links)
This paper investigates whether it is reasonable to bestow credit to one person or group for the famed theorem that relates to the side lengths of any right-angled triangle, a theorem routinely referred to as the “Pythagorean Theorem”. The author investigates the first-documented occurrences of the theorem, along with its first proofs. In addition, proofs that stem from different branches of mathematics and science are analyzed in an effort to display that credit for the development of the theorem should be shared amongst its many contributors rather than crediting the whole of the theorem to one man and his supporters.
|
5 |
A Study of Grade Eight Students¡¦ Concepts on Pythagorean Theorem and Problem-Solving Process in Two Problem RepresentationsCHIU, HSIN-HUI 30 June 2008 (has links)
The aim of this study is to analyze students¡¦ mathematics concepts in solving
Pythagorean Theorem problems presented in two different representations (word
problems and word problems with diagrams). The investigators employed the
mathematics competence indicators in Grade 1-9 Integrated Curriculum in developing
such problems. In analyzing data, the investigator used Schoenfeld¡¦s method in
depicting their problem-solving processes, with attention to students¡¦ sequence and
difference in time consumption. Four eight grade students with good competence in
mathematics and expressions from a secondary school were selected as research
subjects. Problems related to Pythagorean Theorem were divided into three types:
Shape, Area, and Number. Data were collected using thinking aloud method and
semi-structured interview, and triangulation was further applied in protocol analysis.
The research results revealed 3 findings: (1) For the ¡§Shape¡¨ type problems,
students¡¦ problem-solving concepts varied with different problem representation. For
the ¡§Area¡¨ and ¡§Number¡¨ types of problems (without diagram), students were
required to use their geometric concept when processing word problems. Students¡¨
use of problem-solving concepts would not significantly vary with problem
representation types. However, students¡¦ use of problem-solving methods would
affect the types and priorities of concepts used. Generally, the types of mathematics
concepts could be made up by the frequency of concepts used, and more types of
problem-solving concepts would be used for word problems representation than for
word problems with diagrams representation. (2) In terms of the time consumed in the
first three problem-solving stages of Schoenfeld, the time required to solve word
problems was 1.6 times of that required to solve word problems with diagrams. In
terms of the total time consumed, the time required to solve word problems was 1.25
times of that required to solve word problems with diagrams. In the problem-solving
stages, students needed to explore the problem first when dealing with word problems
before they could go on to solve the problem, and such repetition was more frequent
when they dealt with word problems. (3) For both type of problem representations,
there is a higher number of correctly-answered problems. This finding indicated that
a higher frequency of problem-solving concepts and less repetition in the
problem-solving stage were required; and vice versa.
As to the sequence of Pythagorean Theorem concepts to be taught, the
investigator suggest teachers to start with the concept of area filling in the ¡§Shape¡¨
type of problems to derive Pythagorean Theorem, and further apply the formula to
- III -
solving ¡§Number¡¨ problems. After students have acquired basic competency in
¡§Shape¡¨ and ¡§Number¡¨ Pythagorean Theorem problems, teachers could explain and
introduce this theorem from the perspective of ¡§Area¡¨. Finally, in problem posing,
teachers were also advised to apply various contexts; covering all kinds of
representations of problems that enhance students¡¦ utilization of mathematics
concepts; and to cater for various needs of students.
|
6 |
O teorema de Pitágoras: abordagem no cotidiano da educação matemática e suas diversas demonstrações / The Pythagorean theorem: an everyday approach to mathematics education and its various demonstrationsSilva, Danniel Emanuel Bruno January 2014 (has links)
SILVA, Danniel Emanuel Bruno. O teorema de Pitágoras: abordagem no cotidiano da educação matemática e suas diversas demonstrações. 2014. 55 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2014. / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-08-21T19:55:33Z
No. of bitstreams: 1
2014_dis_debsilva.pdf: 1316565 bytes, checksum: f9f30b38921af75056aba52ae1360c98 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia,
Na folha de aprovação não deve constar as assinaturas dos membros da banca.
Rocilda on 2017-08-22T13:51:25Z (GMT) / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-08-23T14:35:03Z
No. of bitstreams: 1
2014_dis_debsilva.pdf: 1008247 bytes, checksum: e15ea5795b214cc268197d35bb86e018 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde,
encontrei alguns pequenos erros na Dissertação de DANNIEL EMANUEL, e já envie uma cópia do email para ele avisando quais eram os erros.
1 – FOLHA DE ROSTO (centralize o nome Fortaleza e o ano da Dissertação)
2- FICHA CATALOGRÁFICA (o título da Dissertação que aparece na ficha catalográfica deve estar em letra minúscula, só a primeira letra deve ser maiúscula)
3- FOLHA DE APROVAÇÃO (está faltando seu nome na parte superior da folha de aprovação, acima do título da Dissertação)
4- EPÍGRAFE (retire o sublinha que aparece no nome EINSTEIN)
5- NUMERAÇÃO DAS PÁGINAS (coloque a numeração das páginas no CANTO SUPERIOR DIREITO)
Atenciosamente,
on 2017-08-23T15:50:40Z (GMT) / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-08-23T19:33:51Z
No. of bitstreams: 1
2014_dis_debsilva.pdf: 1008605 bytes, checksum: 92cfe1499970b1c1f1a10d77725f68b3 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-08-25T11:13:23Z (GMT) No. of bitstreams: 1
2014_dis_debsilva.pdf: 1008605 bytes, checksum: 92cfe1499970b1c1f1a10d77725f68b3 (MD5) / Made available in DSpace on 2017-08-25T11:13:24Z (GMT). No. of bitstreams: 1
2014_dis_debsilva.pdf: 1008605 bytes, checksum: 92cfe1499970b1c1f1a10d77725f68b3 (MD5)
Previous issue date: 2014 / This work is about the Pythagorean Theorem and its various statements, addressing its
importance and as has been shown in mathematics education. We will present some of
the history of Pythagoras, as well as on his theorem, and well see a search on their
importance, and how students receive this information. We'll talk a bit about how the
textbooks, from elementary school to the middle, deal about it, and finally we will see some
statements about this theorem seeking to open a lot more range of options for students
and lovers of mathematics teachers. These statements are part of the collection
assembled by Loomis, who managed to submit more than three hundred statements of the
theorem in a publication of 1940. / Este trabalho trata sobre o Teorema de Pitágoras e suas diversas demonstrações, abordando sua importância e como vem sendo apresentado na educação matemática. Apresentaremos um pouco da história de Pitágoras, bem como, sobre o seu teorema, e veremos uma pesquisa sobre a sua importância, e como os alunos recebem essa informação. Falaremos um pouco, sobre como os livros didáticos, tanto do ensino fundamental como no médio, tratam sobre o assunto, e por fim veremos algumas demonstrações sobre este Teorema buscando abrir muito mais o leque de opções para os alunos e professores amantes da matemática. Essas demonstrações fazem parte do acervo reunido por Loomis, que conseguiu apresentar mais de trezentas demonstrações do teorema em uma publicação de 1940.
|
7 |
Teaching for the objectification of the Pythagorean TheoremSpyrou, Panagiotis, Moutsios-Rentzos, Andreas, Triantafyllou, Dimos 09 May 2012 (has links) (PDF)
This study concerns a teaching design with the purpose to facilitate the students’ objectification of the Pythagorean Theorem. Twelve 14-year old students (N=12) participated in the study before the theorem was introduced to them at school. The design incorporated
ideas from the ‘embodied mind’ framework, history and realistic mathematics, linking ‘embodied verticality’ with ‘perpendicularity’. The qualitative analyses suggested that the participants were led to the conquest of the ‘first level of objectification’ (through numbers)
of the Pythagorean Theorem, showing also evidence of appropriate ‘fore-conceptions’ of the ‘second level of objectification’ (through proof) of the theorem. The triangle the sides of which are associated with the Basic Triple (3,4,5) served as a primary instrument for the
students’ objectification, mainly, by facilitating their ‘generic abstraction’ of the Pythagorean Triples.
|
8 |
O teorema de pitágoras em uma abordagem experimental / The pythagorean theorem in an experimental approachCupaioli, Marcos Eder [UNESP] 19 August 2016 (has links)
Submitted by MARCOS EDER CUPAIOLI (marcoscupaioli@hotmail.com) on 2016-09-13T14:53:52Z
No. of bitstreams: 1
Dissertação-MARCOS-EDER-CUPAIOLI-Matemática-Final Repositório.pdf: 3030917 bytes, checksum: 5fee5216541ccf70c5a9acb075b9976f (MD5) / Rejected by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo:
No campo “Versão a ser disponibilizada online imediatamente” foi informado que seria disponibilizado o texto completo porém no campo “Data para a disponibilização do texto completo” foi informado que o texto completo deverá ser disponibilizado apenas 6 meses após a defesa.
Caso opte pela disponibilização do texto completo apenas 6 meses após a defesa selecione no campo “Versão a ser disponibilizada online imediatamente” a opção “Texto parcial”. Esta opção é utilizada caso você tenha planos de publicar seu trabalho em periódicos científicos ou em formato de livro, por exemplo e fará com que apenas as páginas pré-textuais, introdução, considerações e referências sejam disponibilizadas.
Se optar por disponibilizar o texto completo de seu trabalho imediatamente selecione no campo “Data para a disponibilização do texto completo” a opção “Não se aplica (texto completo)”. Isso fará com que seu trabalho seja disponibilizado na íntegra no Repositório Institucional UNESP.
Por favor, corrija esta informação realizando uma nova submissão.
Agradecemos a compreensão.
on 2016-09-14T21:55:41Z (GMT) / Submitted by MARCOS EDER CUPAIOLI (marcoscupaioli@hotmail.com) on 2016-09-15T01:47:57Z
No. of bitstreams: 1
Dissertação-MARCOS-EDER-CUPAIOLI-Matemática-Final Repositório.pdf: 3030917 bytes, checksum: 5fee5216541ccf70c5a9acb075b9976f (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-09-15T18:14:38Z (GMT) No. of bitstreams: 1
cupaioli_me_me_sjrp.pdf: 3030917 bytes, checksum: 5fee5216541ccf70c5a9acb075b9976f (MD5) / Made available in DSpace on 2016-09-15T18:14:38Z (GMT). No. of bitstreams: 1
cupaioli_me_me_sjrp.pdf: 3030917 bytes, checksum: 5fee5216541ccf70c5a9acb075b9976f (MD5)
Previous issue date: 2016-08-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho aborda um conjunto de atividades experimentais com a finalidade de demonstrar um dos mais belos e importantes teoremas da Matemática: o Teorema de Pitágoras. São conhecidas mais de 400 demonstrações, aqui optamos por utilizar uma demonstração devido a Rudolf Wolf, por possibilitar uma abordagem geométrica lúdica através da dissecção de figuras planas. Inicialmente apresentamos o conceito geral de semelhança e áreas das figuras planas que utilizam propriedades e áreas de polígonos equidecomponíveis. Posteriormente, realizamos um breve resgate histórico sobre diversas demonstrações do Teorema e da vida de Pitágoras. Destacamos, também, uma maneira de achar algumas ternas pitagóricas, utilizando a sequência de Fibonacci. Por fim, foram propostas e desenvolvidas atividades experimentais em sala de aula com a utilização de moldes em EVA, explorando o Teorema de Pitágoras e algumas de suas aplicações. / This work contains a set of experimental activities in order to prove one of the most beautiful and important theorems in Mathematics: the Pythagorean Theorem. There are known more than 400 proofs, here we chose to use a proof due to Rudolf Wolf, by allowing a playful geometric approach by dissection of plane figures. Initially we present the general concept of similarity and areas of plane figures using properties and areas of equidecomposable polygons. Later, we do a brief historical review of some proofs of Theorem and Pythagoras's life. We also highlight a way to find some Pythagorean triples using the Fibonacci sequence. Finally, it was proposed and developed experimental activities in the classroom with the use of molds EVA, exploring the Pythagorean theorem and some of its applications.
|
9 |
A Novel Kernel-Based Classification Method using the Pythagorean TheoremWood, Nicholas Linder 25 October 2016 (has links)
No description available.
|
10 |
Kan du bevisa det? : En enkätstudie av gymnasielärarens förhållningssätt till matematiska bevisBatal, Jamil, Marklund, Daniel January 2012 (has links)
Practice of mathematical proof increase the understanding of mathematics anddevelop creativity skills, problem solving, communication, logical thinking andreasoning which are all important tools not only within the subject of mathematicsbut also important tools for the society in which we are living. The aim of this projectwas to investigate whether it is accurate that proof and proving has a subordinate rolein mathematic education in the upper secondary school in Sweden. This was done byconstructing of a digital survey that was sent to approximately 100 practicingmathematics teachers in a normal size city located in the middle of Sweden. Theresults of the survey show that the teachers consider themselves comfortable withtheir own skills in teaching proof. Paradoxically, the results also show that there is alack of teaching of proof and proving in the upper secondary school, although the newcurriculum puts more focus on proof and proving. / Matematiska bevis ger eleven en ökad förståelse för matematiken och utvecklarförmågor som kreativitet, problemlösning, kommunikation, logiskt tänkande ochresonemang, vilka alla är viktiga även utanför matematiken och för det samhälle vilever i. Syftet med detta arbete var att undersöka om det stämmer att bevis ochbevisföring har en underordnad roll i matematikundervisningen i den svenskagymnasieskolan vilket gjordes med hjälp av en enkät som skickades digitalt till cirka100 gymnasiematematiklärare i en medelstor stad i Mellansverige. Det visade sig attlärarna själva anser sig tillräckligt kunniga för att undervisa i bevis men det förefallerinte som att undervisningen är tillräcklig trots att dagens läroplaner sätter bevis istörre fokus än tidigare.
|
Page generated in 0.0749 seconds