Spelling suggestions: "subject:"usar"" "subject:"sar""
61 |
Kernel Methods in Computer-Aided Constructive Drug DesignWong, William Wai Lun 04 May 2009 (has links)
A drug is typically a small molecule that interacts with the binding site of some
target protein. Drug design involves the optimization of this interaction so that the
drug effectively binds with the target protein while not binding with other proteins
(an event that could produce dangerous side effects). Computational drug design
involves the geometric modeling of drug molecules, with the goal of generating
similar molecules that will be more effective drug candidates. It is necessary that
algorithms incorporate strategies to measure molecular similarity by comparing
molecular descriptors that may involve dozens to hundreds of attributes. We use
kernel-based methods to define these measures of similarity. Kernels are general
functions that can be used to formulate similarity comparisons.
The overall goal of this thesis is to develop effective and efficient computational
methods that are reliant on transparent mathematical descriptors of molecules with
applications to affinity prediction, detection of multiple binding modes, and generation
of new drug leads. While in this thesis we derive computational strategies for
the discovery of new drug leads, our approach differs from the traditional ligandbased
approach. We have developed novel procedures to calculate inverse mappings
and subsequently recover the structure of a potential drug lead. The contributions
of this thesis are the following:
1. We propose a vector space model molecular descriptor (VSMMD) based on
a vector space model that is suitable for kernel studies in QSAR modeling.
Our experiments have provided convincing comparative empirical evidence
that our descriptor formulation in conjunction with kernel based regression
algorithms can provide sufficient discrimination to predict various biological
activities of a molecule with reasonable accuracy.
2. We present a new component selection algorithm KACS (Kernel Alignment
Component Selection) based on kernel alignment for a QSAR study. Kernel
alignment has been developed as a measure of similarity between two kernel
functions. In our algorithm, we refine kernel alignment as an evaluation tool,
using recursive component elimination to eventually select the most important
components for classification. We have demonstrated empirically and proven
theoretically that our algorithm works well for finding the most important
components in different QSAR data sets.
3. We extend the VSMMD in conjunction with a kernel based clustering algorithm
to the prediction of multiple binding modes, a challenging area of
research that has been previously studied by means of time consuming docking
simulations. The results reported in this study provide strong empirical
evidence that our strategy has enough resolving power to distinguish multiple
binding modes through the use of a standard k-means algorithm.
4. We develop a set of reverse engineering strategies for QSAR modeling based
on our VSMMD. These strategies include:
(a) The use of a kernel feature space algorithm to design or modify descriptor
image points in a feature space.
(b) The deployment of a pre-image algorithm to map the newly defined
descriptor image points in the feature space back to the input space of
the descriptors.
(c) The design of a probabilistic strategy to convert new descriptors to meaningful
chemical graph templates.
The most important aspect of these contributions is the presentation of strategies that actually generate the structure of a new drug candidate. While the training
set is still used to generate a new image point in the feature space, the reverse engineering
strategies just described allows us to develop a new drug candidate that is
independent of issues related to probability distribution constraints placed on test
set molecules.
|
62 |
Vaistinių junginių absorbcija ir pasiskirstymas audiniuose: kiekybinio struktūros ir aktyvumo ryšio analizė / Absorption and Tissue Distribution of Drug-Like Compounds: Quantitative Structure-Activity Relationship AnalysisLanevskij, Kiril 03 October 2011 (has links)
Šiame darbe pristatomi mechanistiniai kiekybinio struktūros ir aktyvumo ryšio modeliai, skirti vaistinių junginių savybių, charakterizuojančių jų absorbciją ir pasiskirstymą organizme prognozavimui. Nagrinėjama keletas parametrų, apibūdinančių paprastos difuzijos per biologines membranas greitį, taip pat termodinaminės konstantos, aprašančios vaistų pasiskirstymą tarp kraujo plazmos ir audinių. Ląstelinių pernašos barjerų pralaidumas buvo modeliuojamas netiesinėmis lygtimis, siejančiomis paprastos difuzijos greitį su vaistų fizikocheminėmis savybėmis, tokiomis kaip lipofiliškumas, jonizacija, vandenilinių ryšių sudarymo potencialas ir molekulių dydis. Nustatyta, kad smegenų endotelyje ir žarnyno epitelyje stebima panašaus pobūdžio difuzijos greičio priklausomybė nuo jonizacijos – katijonai ir anijonai difunduoja atitinkamai 2 ir 3 eilėmis lėčiau už neutralias molekules. Pademonstruota, kad analizuojant vaistų pasiskirstymo tarp audinių ir kraujo duomenis, būtina paversti pradines eksperimentines vertes kitais dydžiais, atspindinčiais vaistų jungimosi prie plazmos ir audinių komponentų stiprumą. Vaistų giminingumas audiniams gali būti aprašytas jų lipofiliškumu, o neigiama jonizacijos įtaka stebima tik rūgštiniams junginiams. Taip pat parodyta, kad vaistų pernašos per hematoencefalinę užtvarą kiekybinių parametrų tiesinė kombinacija leidžia 94% tikslumu klasifikuoti vaistus pagal jų prieinamumą centrinei nervų sistemai. / The objective of this work was to develop mechanistic quantitative structure activity relationship models that would facilitate the assessment of drug properties related to their absorption and distribution in the body. The analysis involved several parameters reflecting the rate of passive diffusion across brain endothelium and intestinal epithelium, and thermodynamic constants related to drug distribution between plasma and tissues. Permeation through cellular transport barriers was modeled by nonlinear equations relating the passive diffusion rate to physicochemical properties of drugs: lipophilicity, ionization, hydrogen bonding potential and molecular size. It was demonstrated that brain endothelium and intestinal epithelium exhibit a quantitatively similar pattern of permeability-ionization dependence – ionized species permeate 2-3 orders of magnitude slower than neutral molecules. Analysis of tissue to plasma partitioning data revealed the necessity to split original experimental values into separate terms reflecting plasma and tissue binding strength. Drugs’ affinity to tissues could then be described by their lipophilicity, whereas detrimental effect of ionization was only observed for acidic drugs. Finally, it was shown that a linear combination of quantitative blood-brain barrier transport parameters allows classifying drugs according to their access to central nervous system with 94% overall accuracy.
|
63 |
Absorption and Tissue Distribution of Drug-Like Compounds: Quantitative Structure-Activity Relationship Analysis / Vaistinių junginių absorbcija ir pasiskirstymas audiniuose: kiekybinio struktūros ir aktyvumo ryšio analizėLanevskij, Kiril 03 October 2011 (has links)
The objective of this work was to develop mechanistic quantitative structure activity relationship models that would facilitate the assessment of drug properties related to their absorption and distribution in the body. The analysis involved several parameters reflecting the rate of passive diffusion across brain endothelium and intestinal epithelium, and thermodynamic constants related to drug distribution between plasma and tissues. Permeation through cellular transport barriers was modeled by nonlinear equations relating the passive diffusion rate to physicochemical properties of drugs: lipophilicity, ionization, hydrogen bonding potential and molecular size. It was demonstrated that brain endothelium and intestinal epithelium exhibit a quantitatively similar pattern of permeability-ionization dependence – ionized species permeate 2-3 orders of magnitude slower than neutral molecules. Analysis of tissue to plasma partitioning data revealed the necessity to split original experimental values into separate terms reflecting plasma and tissue binding strength. Drugs’ affinity to tissues could then be described by their lipophilicity, whereas detrimental effect of ionization was only observed for acidic drugs. Finally, it was shown that a linear combination of quantitative blood-brain barrier transport parameters allows classifying drugs according to their access to central nervous system with 94% overall accuracy. / Šiame darbe pristatomi mechanistiniai kiekybinio struktūros ir aktyvumo ryšio modeliai, skirti vaistinių junginių savybių, charakterizuojančių jų absorbciją ir pasiskirstymą organizme prognozavimui. Nagrinėjama keletas parametrų, apibūdinančių paprastos difuzijos per biologines membranas greitį, taip pat termodinaminės konstantos, aprašančios vaistų pasiskirstymą tarp kraujo plazmos ir audinių. Ląstelinių pernašos barjerų pralaidumas buvo modeliuojamas netiesinėmis lygtimis, siejančiomis paprastos difuzijos greitį su vaistų fizikocheminėmis savybėmis, tokiomis kaip lipofiliškumas, jonizacija, vandenilinių ryšių sudarymo potencialas ir molekulių dydis. Nustatyta, kad smegenų endotelyje ir žarnyno epitelyje stebima panašaus pobūdžio difuzijos greičio priklausomybė nuo jonizacijos – katijonai ir anijonai difunduoja atitinkamai 2 ir 3 eilėmis lėčiau už neutralias molekules. Pademonstruota, kad analizuojant vaistų pasiskirstymo tarp audinių ir kraujo duomenis, būtina paversti pradines eksperimentines vertes kitais dydžiais, atspindinčiais vaistų jungimosi prie plazmos ir audinių komponentų stiprumą. Vaistų giminingumas audiniams gali būti aprašytas jų lipofiliškumu, o neigiama jonizacijos įtaka stebima tik rūgštiniams junginiams. Taip pat parodyta, kad vaistų pernašos per hematoencefalinę užtvarą kiekybinių parametrų tiesinė kombinacija leidžia 94% tikslumu klasifikuoti vaistus pagal jų prieinamumą centrinei nervų sistemai.
|
64 |
Estudo in silico de inibidores de lanosterol 14alfa-desmetilase de Trypanosoma cruziMelo, Francielle Martins de 18 May 2012 (has links)
Submitted by Pós graduação Farmácia (ppgfar@ufba.br) on 2017-05-25T21:30:27Z
No. of bitstreams: 1
Dissertação_Francielle_Martins_de_Melo.pdf: 8569126 bytes, checksum: 689445a6dfb52e31c7a720c2f317cd6c (MD5) / Approved for entry into archive by Patricia Barroso (pbarroso@ufba.br) on 2017-05-29T17:24:11Z (GMT) No. of bitstreams: 1
Dissertação_Francielle_Martins_de_Melo.pdf: 8569126 bytes, checksum: 689445a6dfb52e31c7a720c2f317cd6c (MD5) / Made available in DSpace on 2017-05-29T17:24:11Z (GMT). No. of bitstreams: 1
Dissertação_Francielle_Martins_de_Melo.pdf: 8569126 bytes, checksum: 689445a6dfb52e31c7a720c2f317cd6c (MD5) / CNPq / A doença de Chagas é uma doença negligenciada de grande impacto sobre a população da América Latina. No Brasil estima-se que aproximadamente 50.000 novos casos de doença de Chagas ocorram anualmente e que cerca de 2.500.000 indivíduos estejam infectados. Apesar disso, o arsenal terapêutico disponível para o tratamento da doença (nifurtimox e benzonidazol) apresenta pouca ação sobre a fase crônica e sérios efeitos colaterais. Além disso já foi relatado o aparecimento de cepas resistentes aos medicamentos disponíveis. Diante desses fatos, torna-se importante a identificação de novos protótipos a fármacos ativos contra a fase crônica da doença. Sabe-se que antifúngicos azólicos (posaconazol, ravuconazol, itraconazol e cetoconazol) inibem a enzima lanosterol 14 alfa-desmetilase do Trypanosoma cruzi e por essa razão impedem a síntese do ergosterol, o principal esterol de membrana do parasita. Moléculas com esse perfil de atividade são ativas contra a forma amastigota do parasito, apresentando resultados positivos no tratamento da fase crônica da doença de Chagas. Esses dados sugerem que o desenvolvimento de novos inibidores da via do ergosterol é uma alternativa interessante para o tratamento da doença de Chagas. Visando contribuir para esse objetivo foram desenvolvidos modelos de QSAR 2D e 3D para um conjunto de 155 moléculas ativas contra T. cruzi. Modelos de QSAR 2D, baseado, em descritores bidimensionais (r2= 0,86, q2=0,9, r2pred=0,84, com 4PCs) e Holograma moleculares (r2= 0,85, q2=0,91, r2pred=0,82, com 6PCs) apresentam parâmetros estatísticos satisfatórios e sugerem que propriedades estéreas da amina ligada a anel aromático estão relacionadas com aumento na atividade dos compostos, enquanto que ramificações estruturais tem o efeito contrário. Visando complementar o estudo das exigências estéreas e eletrônicas que determinam a atividade biológica dos derivados azólicos estudados, foram desenvolvidos modelos de QSAR 3D pela técnica de análise comparativa de campos moleculares (CoMFA). O modelo do alinhamento realizado pelo acoplamento molecular propiciou poder preditivo satisfatório (q2 = 0,74, r2 = 0,92, r2pred = 0,70, com 5 PCs). O modelo realizado pelo alinhamento por similaridade morfológica dos 5 ligantes de maior atividade proporcionou maior poder preditivo (q2= 0,75, r2=0,91, r2pred=0,77, com 6PCs). A análise dos mapas de contorno sugere que a amina primária ligada ao anel aromático tem contribuição estérea e eletrônica importante, assim como substituintes na posição meta do anel p-anilina. O anel fenil na posição meta, assim como o anel imidazol podem diminuir a atividade dos compostos. As informações obtidas através dos modelos quimiométricos descritos acima são de suma importância para guiar o planejamento de moléculas mais potentes contra T. cruzi. / Chagas´ disease has a major impact over the population of Latin America. This neglected disease affects 2,500.000 patients and approximately new 50,000 cases are identified annually. Despite that, there are few drugs available to treat this ailment (nifurtimox and benznidazole), which are not effective against the chronic phase and show many side-effects. In addition, drug-resistant strains have been reported. These facts underscore the importance of discovering lead compounds that are active against the chronic phase of Chagas´ disease. Antifungal compounds such as posaconazole, revuconazole and cetoconazole also inhibit the lanosterol 14- demethylase from Trypanosoma cruzi, thus blocking the ergosterol pathway. Moreover, such compounds are active against amastigote T. cruzi and show promising results for chronic Chagas´ disease treatment. Therefore, developing new ergosterol biosynthesis inhibitors has been considered as a good strategy to improve Chagas´ disease treatment. Aiming at this goal, 2D and 3D QSAR models were built for a dataset of 155 compounds that had been assayed against T. cruzi. 2D-QSAR models built with topological descriptors (r2= 0.86, q2=0.9, r2pred=0.84, with 4PCs) or molecular hologram (r2= 0.85, q2=0.91, r2pred=0.82, with 6PCs) show reasonable statistics parameters and suggest that steric properties from the NH2 bound to phenyl ring increase potency, whereas moieties branching has the opposite effect. In order to further investigate the steric and electronic requirements for biological activity, 3D-QSAR models were developed by Comparative Molecular Field Analysis (CoMFA). The model of alignment by docking presented good predictive model (q2 = 0,74, r2 = 0,92, r2pred = 0,70, com 5 PCs). The model of alignment by morphological similarity towards the 5 most activity compounds presented most predictive model (r2= 0.75, q2=0.91, r2pred=0.77, with 6PCs). Contour map analysis not only supports the hypothesis that NH2 bound to phenyl has a positive steric or eletronic contribution to activity but also meta substitute on p-aniline. The ring phenil in the position meta as well as the ring imidazole would reduce the activity. The information gathered from all these models shall be useful to guide the development of second generation molecules with increased potency against T. cruzi.
|
65 |
Relations structure-activité pour le métabolisme et la toxicité / Structure-activity relationships for metabolism and toxicityMuller, Christophe 24 January 2013 (has links)
Prédire à l’avance quels composés seront toxiques chez l’homme ou non représente un réel challenge dans le monde pharmaceutique. En effet, les mécanismes à l’origine de la toxicité ne sont pas toujours bien connus, et à cela s’ajoute le fait qu’un composé peut devenir néfaste seulement après qu’il ait été métabolisé. Nous proposons ici une approche originale utilisant les graphes condensés de réactions afin de modéliser les réactions métaboliques et prédire le devenir des xénobiotiques dans l’organisme humain. Différentes formes de toxicité sont aussi prédites : la mutagénicité et l’hépatotoxicité. Pour cette seconde toxicité, l’approche utilisée est la première à notre connaissance à prédire avec succès les molécules toxiques décrites par des données autres que résultant d’observations in vivo. / Predict in advance which compounds will be toxic in humans or not is a real challenge in the pharmaceutical world. Indeed, the mechanisms responsible for toxicity are not always well known, and in some case a compound become toxic only after it has been metabolized. We propose here a novel approach using condensed graphs of reactions to model and predict the metabolic fate of xenobiotics in the human body. Various forms of toxicity are also predicted : mutagenicity and hepatotoxicity. For this second toxicity, the approach proposed is the first to our knowledge to successfully predict the toxic molecules described by data other than resulting from observations in vivo.
|
66 |
Desenvolvimento de modelos in silico de propriedades de ADME para a triagem de novos candidatos a fármacos / In Silico Models Development of ADME Properties to Screening New Chemical EntitiesTiago Luiz Moda 27 February 2007 (has links)
As ferramentas de modelagem molecular e de estudos das relações quantitativas entre a estrutura e atividade (QSAR) ou estrutura e propriedade (QSPR) estão integradas ao processo de planejamento de fármacos, sendo de extremo valor na busca por novas moléculas bioativas com propriedades farmacocinéticas e farmacodinâmicas otimizadas. O trabalho em Química Medicinal realizado nesta dissertação de mestrado teve como objetivo estudar as relações quantitativas entre a estrutura e as propriedades farmacocinéticas biodisponibilidade oral e ligação às proteínas plasmáticas. Para a realização deste trabalho, conjuntos padrões de dados foram organizados para as propriedades biodisponibilidade e ligação às proteínas plasmáticas contendo a informação qualificada sobre a estrutura química e a propriedade alvo correspondente. Os conjuntos de dados criados formaram as bases científicas para o desenvolvimento dos modelos preditivos empregando os métodos holograma QSAR e VolSurf. Os modelos finais de HQSAR e VolSurf gerados neste trabalho possuem elevada consistência interna e externa, apresentando bom poder de correlação e predição das propriedades alvo. Devido à simplicidade, robustez e consistência, estes modelos são guias úteis em Química Medicinal nos estágios iniciais do processo de descoberta e desenvolvimento de fármacos. / Molecular modeling tools and quantitative structure-activity relantionships (QSAR) or structure-property (QSPR) are integrated into the drug design process in the search for new bioactive molecules with good pharmacokinetic and pharmacodynamic properties. The Medicinal Chemistry work carried out in this Masters dissertation concerned studies of the quantitative relationshisps between chemical structure and the pharmacokinetic properties oral bioavailability and plasma protein binding. In the present work, standard data sets for bioavailability and plasma protein binding were organized encompassing the structural information and corresponding pharmacokinetic data. The created data sets established the scientific basis for the development of predictive models using the hologram QSAR and VolSurf methods. The final HQSAR and VolSurf models posses high internal and external consistency with good correlative and predictive power. Due to the simplicity, robustness and effectivess, these models are useful guides in Medicinal Chemistry in the early stages of the drug discovery and development process.
|
67 |
Estudos de modelagem molecular para uma série de derivados piridínicos com ação antichagásica / Molecular modeling studies for a series of pyridine derivatives with antichagasic actionCésar Maschio Fioravanti 24 February 2015 (has links)
A doença de Chagas é uma doença tropical negligenciada de alta prioridade nos programas de pesquisa e desenvolvimento da Organização Mundial da Saúde (OMS). Endêmica em 21 países da América Latina, a doença tem recentemente se tornado uma preocupação de saúde em outras regiões do planeta, como a América do Norte, Europa, Oceania e Ásia. Causada pelo parasita Trypanosoma cruzi, a doença de Chagas atinge 8-10 milhões de pessoas, de acordo com estimativas da OMS. Os únicos dois medicamentos disponíveis para o tratamento da doença são ineficazes e causam graves efeitos adversos. Este panorama tem evidenciado a urgência por novos agentes terapêuticos. O objetivo desta dissertação de mestrado é o desenvolvimento de modelos de relações quantitativas entre a estrutura e atividade (QSAR, na sigla inglesa para quantitative structure-activity relationships) para uma série de derivados piridínicos inspirados em um composto líder com potente ação anti-T. cruzi. Os modelos de QSAR foram gerados com os métodos holograma QSAR (HQSAR, na sigla inglesa para hologram QSAR); análise comparativa dos campos moleculares (CoMFA, na sigla inglesa comparative molecular field analysis); e análise comparativa dos índices de similaridade estrutural (CoMSIA, na sigla inglesa para comparative molecular similarity indices analysis). Os modelos identificaram as principais características estruturais que determinam a potência biológica destes compostos. Além disso, os modelos possuem alta consistência estatística e elevada capacidade de predição para novas moléculas. Os resultados apresentados revelam a utilidade dos modelos de QSAR no planejamento de novos antichagásicos mais potentes dentro da diversidade química explorada. / Chagas disease is a neglected tropical disease of high priority for the World Health Organization (WHO) drug discovery and development programs. Endemic in 21 countries in Latin America, the disease has recently become a public health problem in other regions of the planet, such as North America, Europe, Oceania and Asia. Caused by the parasite Trypanosoma cruzi, Chagas disease affects 8-10 million people worldwide, according to WHO. The only two available drugs are ineffective and cause serious side effects. These drawbacks have demonstrated the urgency for novel therapeutic agents. The main goal of this masters dissertation is the development of quantitative structure-activity relationships models (QSAR) for a series of pyridine derivatives having prominent activity against T. cruzi. The compounds were inspired in the structure of a lead compound with potent anti-T. cruzi action. The QSAR models were created using the methods hologram QSAR (HQSAR); comparative molecular field analysis (CoMFA); and comparative molecular similarity indices analysis (CoMSIA). The resulting models have identified key molecular features that determine the biological potency of the compounds. Furthermore, these models possess high statistical consistency and distinct ability to predict the potency of new molecules. The results reported reveal the usefulness of the developed QSAR models in the design of new antichagasic agents within this structural diversity.
|
68 |
Relações quantitativas entre a estrutura e atividade para uma série de antichagásicos derivados do fenarimol / Quantitative structure-activity relationships for a series of antichagasic fenarimol derivativesAnacleto Silva de Souza 26 February 2015 (has links)
A doença de Chagas é uma das doenças tropicais negligenciadas prioritárias para a Organização Mundial da Saúde (OMS). Endêmica na América Latina, é considerada atualmente um problema de saúde mundial, afetando diversos países na América do Norte, Europa, Ásia e Oceania. Estima-se que 8-10 milhões de pessoas estejam infectadas com o protozoário Trypanosoma cruzi. O tratamento disponível é limitado a dois fármacos que apresentam baixa eficácia e sérios efeitos adversos, o que torna evidente a urgência por novas alternativas terapêuticas. Esta dissertação de mestrado tem como objetivo o desenvolvimento de estudos das relações quantitativas entre a estrutura e atividade (QSAR, na sigla inglesa para quantitative structure-activity relationships) para duas séries de derivados do fenarimol com atividade anti-T. cruzi. Os compostos selecionados possuem considerável potência in vitro contra o parasita, além de atividade in vivo em modelos experimentais da doença, o que caracteriza o seu potencial para estudos em química medicinal. Neste contexto, estratégias de planejamento de fármacos foram utilizadas para a geração de modelos de QSAR preditivos. Foram utilizados os métodos holograma QSAR (HQSAR, na sigla inglesa para hologram QSAR); análise comparativa dos campos moleculares (CoMFA, na sigla inglesa para comparative molecular field analysis); e análise comparativa dos índices de similaridade estrutural (CoMSIA, na sigla inglesa para comparative molecular similarity indices). Os modelos gerados possuem alta capacidade de correlação interna e de predição externa, indicando também um conjunto de características estruturais responsáveis pela atividade anti-T. cruzi. Os resultados apresentados neste trabalho são úteis no planejamento de novos derivados do fenarimol com propriedades antichagásicas. / Chagas\' disease is considered by the World Health Organization (WHO) as one of the top neglected tropical diseases. Endemic in Latin America, it is currently a global public health problem, affecting several countries in North America, Europe, Asia and Oceania. The disease, caused by the protozoan parasite Trypanosoma cruzi, affects around 8-10 million people worldwide. The available treatment is limited to two drugs that present low efficacy and severe side effects, highlighting the urgent need for new therapeutic options. This masters dissertation focuses on the development of quantitative structure-activity relationships (QSAR) models for two series of fenarimol derivatives with activity against T. cruzi. The selected compounds exhibit substantial in vitro potency against the parasite, as well as in vivo activity in experimental models of the disease, which point out their potential for further studies in medicinal chemistry. In this context, drug design strategies were applied for the generation of predictive QSAR models. The methods employed were hologram QSAR (HQSAR); comparative molecular field analysis (CoMFA); and comparative molecular similarity indices (CoMSIA). The models possess high internal and external consistency, also indicating a set of structural features related to their anti-T. cruzi activity. The results reported herein are useful for the design of new fenarimol derivatives as new antichagasic agents.
|
69 |
Identificação de novos inibidores da enzima aldolase de Trypanosoma brucei / Identification of novel inhibitors of aldolase from Trypanosoma bruceiLeonardo Luiz Gomes Ferreira 23 April 2013 (has links)
As doenças tropicais negligenciadas, que atingem as populações mais carentes do mundo, representam em termos humanitários e socioeconômicos uma grande preocupação global. As tripanossomíases estão entre as doenças parasitárias mais importantes, e, particularmente, a tripanossomíase africana, ou doença do sono, destaca-se como uma grave condição de saúde, causada pelo parasita unicelular Trypanosoma brucei. Dentre os principais alvos metabólicos considerados para o desenvolvimento de novos fármacos para o tratamento das tripanossomíases, a glicólise recebe especial atenção em função de seu papel vital no processo de produção de ATP para o parasita que vive na corrente sanguínea. Esta tese de doutorado tem como objetivo identificar novos candidatos a inibidores da enzima aldolase (EC 4.1.2.13) da via glicolítica de T. brucei. Considerando-se que o alvo macromolecular em questão é validado para o planejamento de fármacos, inibidores desta enzima são candidatos a novos agentes quimioterápicos. Este trabalho explora a integração de métodos experimentais e computacionais através de estratégias de planejamento de fármacos baseado na estrutura do receptor (SBDD, na sigla inglesa para structure-based drug design) e na estrutura do ligante (LBDD, na sigla inglesa para ligand-based drug design) para a identificação de inibidores da enzima alvo. Foram produzidos resultados significativos, tais como a identificação através de triagens virtuais em larga escala de novas moléculas capazes de inibir a atividade da aldolase. Adicionalmente, destaca-se a obtenção de protocolos de expressão, purificação e cristalização para a enzima alvo. Como parte da estratégia de identificação de novos inibidores da aldolase, foram desenvolvidos modelos de QSAR 2D e 3D e estudos de dinâmica molecular. / Neglected tropical diseases, which affect the poorest populations across the developing world, are a major global concern. The trypanosomiases are amongst the most serious neglected tropical diseases, and particularly, African trypanosomiasis (sleeping sickness), caused by the unicellular parasite Trypanosoma brucei, appears as a fatal condition. The glycolytic pathway emerges as a promising target among the metabolic pathways for the development of new drugs, due to its essential role in the ATP generating process in the bloodstream form of the parasite. The goal of this work is to identify new inhibitors for the glycolytic enzyme aldolase (EC 4.1.2.13) from Trypanosoma brucei. Inhibitors of this enzyme are drug candidates with high potential for clinical development, as the respective target enzyme was validated as a molecular target for the therapy of trypanosomiasis. The strategy employed in this study includes the integration of SBDD (structure-based drug design) and LBDD, (ligand-based drug design) for the identification of inhibitors of the target enzyme, through the combination of computational and experimental methodologies. Significant results were obtained, such as the identification of new small molecule inhibitors of the aldolase enzyme through high-throughput virtual screening. Additionally, it is highlighted the standardization of expression, purification and crystallization protocols for the target enzyme. As a component of the strategy for the identification of novel aldolase inhibitors, 2D and 3D QSAR models were developed, as well as molecular dynamics studies.
|
70 |
Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais / Design and identification in silico of new anticancer prototypes candidatesSilva, Arthur de Carvalho e 04 December 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-25T11:32:45Z
No. of bitstreams: 2
Dissertação - Arthur de Carvalho e Silva - 2015.pdf: 4860571 bytes, checksum: 89e248888020f7d914c855c172812411 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-25T11:33:41Z (GMT) No. of bitstreams: 2
Dissertação - Arthur de Carvalho e Silva - 2015.pdf: 4860571 bytes, checksum: 89e248888020f7d914c855c172812411 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-08-25T11:33:41Z (GMT). No. of bitstreams: 2
Dissertação - Arthur de Carvalho e Silva - 2015.pdf: 4860571 bytes, checksum: 89e248888020f7d914c855c172812411 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2015-12-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Cancer is a group of diseases characterized by uncontrolled cell proliferation as a result of epigenetic changes, genetic mutations and accumulated mutations over the time. Tumor cells can invade other tissues in the body in a process called metastasis, significantly worsening the patient's prognosis. In Brazil, for the biennium 2014/2015 are expected 576,000 new cases and around the world, according to WHO, 27 million new cancer cases are expected in 2030 and 17 million deaths from the disease. The antiapoptotic proteins, members of Bcl-2 family proteins, are essential for the survival of tumor cells, even when there are cell death stimuli. In this study were compiled, integrated and prepared the largest publicly available data sets containing biological activity data against the antiapoptotic protein Bcl-xL. Robust and predictive pharmacophore models and QSAR models in line with the OECD recommendations were generated. The pharmacophore models discriminated active and inactive structures with a rate of 0.68-0.92 of success and QSAR models discriminated active and inactive structures at a rate of 0.89-0.93 of success. NCI 2014 dataset was carefully prepared to be submitted to the virtual screening process in which the best pharmacophore model was used as molecular filter. Among the 280 thousand compounds in NCI dataset, 1407 compounds passed to the next stage in which the best consensus QSAR model was used to predict their activity. In the end, the top 50 compounds were selected for purchase and proceed to experimental evaluation as potential candidates for antiapoptotic protein Bcl-xL inhibitors. / Câncer é um grupo de doenças caracterizadas pela proliferação celular descontrolada como
resultado de alterações epigenéticas, genéticas e mutações acumuladas ao longo do tempo. Células tumorais podem invadir outros tecidos no organismo em um processo chamado metástase, agravando consideravelmente o prognóstico do paciente. No Brasil, para o biênio de 2014/2015 são esperados 576 mil novos casos e, em todo o mundo, segundo a OMS, são esperados 27 milhões de novos casos de câncer no ano de 2030 e 17 milhões de mortes pela doença. As proteínas antiapoptóticas da família Bcl-2 são fundamentais para a sobrevida das células tumorais, uma vez que as mantém funcionais mesmo frente a estímulos de morte celular. Neste estudo foram compilados, integrados e preparados os maiores conjuntos de dados disponíveis publicamente contendo registros de atividade biológica contra a proteína antiapoptótica Bcl-xL. Modelos farmacofóricos robustos e preditivos bem como modelos de QSAR em consonância com as recomendações da OECD foram gerados. As taxas de acerto dos modelos farmacofóricos discriminaram estruturas ativas de inativas com taxa de 0,68-0,92 de sucesso e os modelos de QSAR discriminaram estruturas ativas e inativas com taxa de 0,89-0,93 de sucesso. A série de dados NCI 2014 foi preparada cuidadosamente para ser submetida ao processo de triagem virtual, no qual foi usado o melhor modelo farmacofórico como filtro molecular. Dentre os 280 mil compostos presentes na série de dados do NCI, 1407 compostos passaram para a etapa seguinte, na qual o melhor modelo consenso de QSAR foi usado para predizer as atividades dos compostos. Ao final, os 50 melhores compostos foram selecionados para serem adquiridos e prosseguirão para avaliação experimental como potenciais candidatos a inibidores da proteína antiapoptótica Bcl-xL.
|
Page generated in 0.0379 seconds