• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 46
  • 41
  • 35
  • 14
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 452
  • 452
  • 78
  • 77
  • 67
  • 65
  • 62
  • 60
  • 54
  • 53
  • 45
  • 45
  • 42
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Wake: A Novel

LeMaster, Liane 13 April 2009 (has links)
This imaginative work of fiction depicts the lives of the Foley family. After a brutal car accident, Kate Foley has lived for the past fourteen years at Gregg Catastrophic Care Center in a persistent vegetative state, leaving her daughter Grace and husband Tom to reconstruct their lives around her. Aside from her mother’s condition, life is relatively normal for Grace; she worries about school, boys, her friends. Then her mother slowly regains consciousness. The family gathers around Kate’s bedside. Grandmother Helen arrives along with Aunt Liz, family that Grace cannot remember, and their stories of her mother’s past are vastly different from the ones her father has told her. Over the next emotional months, secrets are revealed, new alliances forged and others broken as each member of the family grapples with their own issues of memory, self and what it means to be fully present.
142

Parsimony and Quantum Mechanics: An Analysis of the Copenhagen and Bohmian Interpretations

Voorhis, Jhenna 20 April 2012 (has links)
Parsimony, sometime referred to as simplicity, is an effective criterion of theory choice in the case of Quantum Mechanics. The Copenhagen and Bohmian interpretations are rival theories, with the Bohmian interpretation being more parsimonious. More parsimonious theories have a higher probability of being true than less parsimonious rivals. The Bohmian interpretation should thus be preferred on these grounds.
143

Negative Quasi-Probability in the Context of Quantum Computation

Veitch, Victor January 2013 (has links)
This thesis deals with the question of what resources are necessary and sufficient for quantum computational speedup. In particular, we study what resources are required to promote fault tolerant stabilizer computation to universal quantum computation. In this context we discover a remarkable connection between the possibility of quantum computational speedup and negativity in the discrete Wigner function, which is a particular distinguished quasi-probability representation for quantum theory. This connection allows us to establish a number of important results related to magic state computation, an important model for fault tolerant quantum computation using stabilizer operations supplemented by the ability to prepare noisy non-stabilizer ancilla states. In particular, we resolve in the negative the open problem of whether every non-stabilizer resource suffices to promote computation with stabilizer operations to universal quantum computation. Moreover, by casting magic state computation as resource theory we are able to quantify how useful ancilla resource states are for quantum computation, which allows us to give bounds on the required resources. In this context we discover that the sum of the negative entries of the discrete Wigner representation of a state is a measure of its usefulness for quantum computation. This gives a precise, quantitative meaning to the negativity of a quasi-probability representation, thereby resolving the 80 year debate as to whether this quantity is a meaningful indicator of quantum behaviour. We believe that the techniques we develop here will be widely applicable in quantum theory, particularly in the context of resource theories.
144

Vers un réseau Quantique de Communication

Tanzilli, Sébastien 27 September 2012 (has links) (PDF)
Mon activité s'inscrit dans le cadre de l'information et de l'optique quantiques fondamentales et appliquées. L'axe principal concerne la réalisation des briques photoniques élémentaires utiles aux réseaux quantiques, qui permettent à la fois la communication longue portée et le traitement de l'information quantique. Ces briques, à base d'optique intégrée, permettent d'exploiter efficacement les interactions non−linéaires optique−optique et électro−optique induites par le fort confinement des champs optiques au sein des structures guidantes. L'apport de cette technologie représente un atout essentiel lorsqu'il s'agit d'implémenter une véritable ingénierie de l'intrication, qui est l'une des ressources fondamentales de l'information quantique. J'entreprends également une recherche exploratoire visant le stockage quantique au sein d'ensembles d'atomes froids via le transfert de l'information quantique portée par des photons sur une onde de spin imprimée sur les atomes.
145

Spin Imbalanced Quasi-Two-Dimensional Fermi Gases

Ong, Willie Chuin Hong January 2015 (has links)
<p>Spin-imbalanced Fermi gases serve as a testbed for fundamental notions and are efficient table-top emulators of a variety of quantum matter ranging from neutron stars, the quark-gluon plasma, to high critical temperature superconductors. A macroscopic quantum phenomenon which occurs in spin-imbalanced Fermi gases is that of phase separation; in three dimensions, a spin-balanced, fully-paired superfluid core is surrounded by an imbalanced normal-fluid shell, followed by a fully polarized shell. In one-dimension, the behavior is reversed; a balanced phase appears outside a spin-imbalanced core. This thesis details the first density profile measurements and studies on spin-imbalanced quasi-2D Fermi gases, accomplished with high-resolution, rapid sequential spin-imaging. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a 2D system. Data for normal-fluid mixtures are well fit by a simple 2D polaron model of the free energy. Not predicted by the model is an observed phase transition to a spin-balanced central core above a critical polarization.</p> / Dissertation
146

Queer bodies and settlements : the pertinence of queer theory in the fields of queer history and trans politics, disability and 'curative education', quantum physics and experimental art : an interdisciplinary and transnational account of three socio-cultural and filmic research projects

Garel, Stefan Jack January 2008 (has links)
What is queer? What is queer? What is queer theory? Where can it go from here? This thesis sets out to explore the origins and influences of queer theory before investigating the present and the future spaces (ie, bodies and settlements) it can potentially move into. Three distinct experiments of fieldwork and ethnographic filmmaking test the truths and potentialities of queer theory when relating to queer bodies and settlements. That is to say that each chapter balances a film and its supporting text by embracing the value and urgency of practice led research. The first chapter questions queer history and details the importance of emerging trans politics in the post-gender, leftist, avant-garde, queer activist and militant space of Bologna. Queer bodies, case one: transgender and transsexual perspectives. Settlements, case one: Bologna and Lido di Classe (Italy). The second chapter considers the interface between disability theory and queer theory with particular attention paid to the practical theory of ‘curative education’. Defined by Rudolf Steiner in 1922 and further developed by Karl König with the foundation of the Camphill movement in 1944, curative education privileges the social model over the medical model in the field of disability so that disability is in fact ability. Queer bodies, case two: learning differences and disabilities perspectives. Settlements, case two: Berlin (Germany), Chatou and La Rochelle (France), Barry and Glasallt Fawr (Wales, United Kingdom). The third chapter uses queer perspectives to promote the relevance of quantum physics to the human body, thus involving contemporary dance, physical theatre and the arts more generally to address and redress the chiasm between science and technology on the one hand, and arts, humanities and socio-cultural sciences on the other. Queer bodies, case three: the inescapably queer reality of the physical world. Settlements, case three: multiple locations in Tuscany (Italy), and Thamesmead, London (England, United Kingdom). This thesis brings notions of queer and otherness deceptively close to notions of the self. Otherness and queerness become mirrors in which our own queerness comes into view.
147

Interferometer-Based Studies of Quantum Hall Phenomena

McClure, Douglas 19 November 2012 (has links)
The fractional quantum Hall (FQH) effect harbors a wealth of unique phenomena, many of which remain mysterious. Of particular interest is the predicted existence of quasi-particles with unusual topological properties, especially in light of recent proposals to observe these properties using electronic interferometers. An introduction to quantum Hall physics and electronic interferometry is given in Chapter 1 of this thesis. The remaining chapters, summarized below, describe a set of experiments in which FQH systems are studied using electronic Fabry-Perot interferometry and related techniques. Since prior studies of electronic Fabry-Perot interferometers revealed unexpected behavior even in the integer quantum Hall (IQH) regime, we began our measurements there. Our initial experiment, presented in Chapter 2, disentangles signatures of Coulomb interaction effects from those of Aharonov-Bohm (AB) interference and provides the first measurement of pure AB interference in these devices. In our next experiment, presented in Chapter 3, we measure AB interference oscillations as a function of an applied dc bias, use their period to study the velocity of the interfering electrons, and study how the oscillations decay as a function of bias and magnetic field. Moving to the FQH regime, applying a similar-sized bias to a quantum point contact leads to long-lasting changes in the strengths and positions of FQH plateaus. The involvement of lattice nuclear spins in this effect, suggested by the long persistence times, is confirmed using NMR-type measurements. Although the exact physical process responsible for the effect remains unclear, its filling-factor dependence provides a striking illustration of composite fermion physics. These measurements are described in Chapter 4. In certain devices, interference oscillations associated with several FQH states are observed. Interpretation of their magnetic-field and gate-voltage periods provides a measurement of quasi-particle charge, and temperature dependence measurements suggest differences between the edge structure of IQH and FQH states. These measurements are described in Chapter 5. Finally, Chapter 6 presents some recent, not-yet-published observations that may shed light on ways to improve the visibility of existing oscillations and potentially observe interference at additional FQH states. This chapter concludes with a discussion of possible next steps toward achieving these goals. / Physics
148

Topics in Nanophotonic Devices for Nitrogen-Vacancy Color Centers in Diamond

Babinec, Thomas Michael January 2012 (has links)
Recently, developments in novel and high-purity materials allow for the presence of a single, solitary crystalline defect to define the electronic, magnetic, and optical functionality of a device. The discrete nature of the active dopant, whose properties are defined by a quantum mechanical description of its structure, enables radically new quantum investigations and applications in these arenas. Finally,there has been significant development in large-scale device engineering due to mature semiconductor manufacturing techniques. The diverse set of photonic device architectures offering light confinement, guiding, and extraction is a prime example. These three paradigms – solitary dopant photonics and optoelectronics (solotronics), quantum science and technology, and device engineering – merge in the development of novel quantum photonic devices for the next generation of information processing systems. We present in this thesis a series of investigations of optical nanostructures for single optically active spins in single crystal diamond. Chapter 1 introduces the Nitrogen-Vacancy (NV) color center, summarizes its applications, and motivates the need for their integration into photonic structures. Chapter 2 describes two prototype nanobeam photonic crystal cavities for generating strong light-matter interactions with NV centers. The first device consists of a silicon nitride photonic crystal nanobeam cavity with high quality factor \(Q \sim 10^5\) and small mode volume \(V \sim 0.5*(\lambda/n)^3\). The second device consists of a monolithic diamond nanobeam cavity fabricated with the focused ion beam (FIB) directly in a single crystal diamond sample. Chapter 3 presents a high-efficiency source of single photons consisting of a single NV center in a photonic diamond nanowire. Early FIB prototypes are described, as is the first successful realization of the device achieved via reactive ion etching nanowires in a single crystal diamond containing NV centers, and finally a variation of this approach based on incorporation of NV centers in pure diamond via ion implantation. In chapter 4 we consider the optimal design of photonic devices offering both collection efficiency and cavity-enhancements and extend the model of the NV center to include photonic effects. In chapter 5 we briefly introduce a novel optically active spin discovered in a diamond nanowire. Finally, in chapter 6 we conclude with several proposals to extend this research program. / Engineering and Applied Sciences
149

Nanoscale Magnetic Imaging with a Single Nitrogen-Vacancy Center in Diamond

Hong, Sungkun 18 March 2013 (has links)
Magnetic imaging has been playing central roles not only in fundamental sciences but also in engineering and industry. Their numerous applications can be found in various areas, ranging from chemical analysis and biomedical imaging to magnetic data storage technology. An outstanding problem is to develope new magnetic imaging techniques with improved spatial resolutions down to nanoscale, while maintaining their magnetic sensitivities. For instance, if detecting individual electron or nuclear spins with nanomter spatial resolution is possible, it would allow for direct imaging of chemical structures of complex molecules, which then could bring termendous impacts on biological sciences. While realization of such nanoscale magnetic imaging still remains challenging, nitrogen-vacancy (NV) defects in diamond have recently considered as promising magnetic field sensors, as their electron spins show exceptionally long coherence even at room temperature. This thesis presents experimental progress in realizing a nanoscale magnetic imaging apparatus with a single nitrogen-vacancy (NV) color center diamond. We first fabricated diamond nanopillar devices hosting single NV centers at their ends, and incorporated them to a custom-built atomic force microscope (AFM). Our devices showed unprecedented combination of magnetic field sensitivity and spatial resolution for scanning NV systems. We then used these devices to magnetically image a single isolated electronic spin with nanometer resolution, for the first time under ambient condition. We also extended our study to improve and generalize the application of the scanning NV magnetometer we developed. We first introduced magnetic field gradients from a strongly magnetized tip, and demonstrated that the spatial resolution can be further improved by spectrally distinguishing identical spins at different locations. In addition, we developed a method to synchronize the periodic motion of an AFM tip and pulsed microwave sequences controlling an NV spin. This scheme enabled employment of 'AC magnetic field sensing scheme' in imaging samples with static and spatially varying magnetizations. / Engineering and Applied Sciences
150

Coherent control of diamond defects for quantum information science and quantum sensing

Maurer, Peter 06 June 2014 (has links)
Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. / Physics

Page generated in 0.0947 seconds