Spelling suggestions: "subject:"kuantum"" "subject:"auantum""
331 |
Semiconductor Quantum Structures for Ultraviolet-to-Infrared Multi-Band Radiation DetectionAriyawansa, Gamini 06 August 2007 (has links)
In this work, multi-band (multi-color) detector structures considering different semiconductor device concepts and architectures are presented. Results on detectors operating in ultraviolet-to-infrared regions (UV-to-IR) are discussed. Multi-band detectors are based on quantum dot (QD) structures; which include quantum-dots-in-a-well (DWELL), tunneling quantum dot infrared photodetectors (T-QDIPs), and bi-layer quantum dot infrared photodetectors (Bi-QDIPs); and homo-/heterojunction interfacial workfunction internal photoemission (HIWIP/HEIWIP) structures. QD-based detectors show multi-color characteristics in mid- and far-infrared (MIR/FIR) regions, where as HIWIP/HEIWIP detectors show responses in UV or near-infrared (NIR) regions, and MIR-to-FIR regions. In DWELL structures, InAs QDs are placed in an InGaAs/GaAs quantum well (QW) to introduce photon induced electronic transitions from energy states in the QD to that in QW, leading to multi-color response peaks. One of the DWELL detectors shows response peaks at ∼ 6.25, ∼ 10.5 and ∼ 23.3 µm. In T-QDIP structures, photoexcited carriers are selectively collected from InGaAs QDs through resonant tunneling, while the dark current is blocked using AlGaAs/InGaAsAlGaAs/ blocking barriers placed in the structure. A two-color T-QDIP with photoresponse peaks at 6 and 17 µm operating at room temperature and a 6 THz detector operating at 150 K are presented. Bi-QDIPs consist of two layers of InAs QDs with different QD sizes. The detector exhibits three distinct peaks at 5.6, 8.0, and 23.0 µm. A typical HIWIP/HEIWIP detector structure consists of a single (or series of) doped emitter(s) and undoped barrier(s), which are placed between two highly doped contact layers. The dual-band response arises from interband transitions of carriers in the undoped barrier and intraband transitions in the doped emitter. Two HIWIP detectors, p-GaAs/GaAs and p-Si/Si, showing interband responses with wavelength thresholds at 0.82 and 1.05 µm, and intraband responses with zero response thresholds at 70 and 32 µm, respectively, are presented. HEIWIP detectors based on n-GaN/AlGaN show an interband response in the UV region and intraband response in the 2-14 µm region. A GaN/AlGaN detector structure consisting of three electrical contacts for separate UV and IR active regions is proposed for simultaneous measurements of the two components of the photocurrent generated by UV and IR radiation.
|
332 |
Structural, electronic and optical properties of cadmium sulfide nanoparticles / Strukturelle, elektronische und optische Eigenschaften von Cadmiumsulfid NanoteilchenFrenzel, Johannes 08 March 2007 (has links) (PDF)
In this work, the structural, electronic, and optical properties of CdS nanoparticles with sizes up to 4nm have been calculated using density-functional theory (DFT). Inaccuracies in the description of the unoccupied states of the applied density-functional based tight-binding method (DFTB) are overcome by a new SCF-DFTB method. Density-functional-based calculations employing linear-response theory have been performed on cadmium sulfide nanoparticles considering different stoichiometries, underlying crystal structures (zincblende, wurtzite, rocksalt), particle shapes (spherical, cuboctahedral, tetrahedral), and saturations (unsaturated, partly saturated, completely saturated). For saturated particles, the calculated onset excitations are strong excitonic. The quantum-confinement effect in the lowest excitation is visible as the excitation energy decreases towards the bulk band gap with increasing particle size. Dangling bonds at unsaturated surface atoms introduce trapped surface states which lie below the lowest excitations of the completely saturated particles. The molecular orbitals (MOs), that are participating in the excitonic excitations, show the shape of the angular momenta of a hydrogen atom (s, p). Zincblende- and wurtzite-derived particles show very similar spectra, whereas the spectra of rocksalt-derived particles are rather featureless. Particle shapes that confine the orbital wavefunctions strongly (tetrahedron) give rise to less pronounced spectra with lower oscillator strengths. Finally, a very good agreement of the calculated data to experimentally available spectra and excitation energies is found.
|
333 |
Modelling and simulation of surface morphology driven by ion bombardment / Modellieren und Simulation der Oberflächenmorphologie gefahren durch IonenbombardierungYewande, Emmanuel Oluwole 02 May 2006 (has links)
No description available.
|
334 |
Control of electronic and optical properties of single and double quantum dots via electroelastic fieldsZallo, Eugenio 23 March 2015 (has links) (PDF)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies.
In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface.
By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources.
A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system.
For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
|
335 |
Transport phenomena in quasi-one-dimensional heterostructuresDias, Mariama Rebello de Sousa 21 February 2014 (has links)
Made available in DSpace on 2016-06-02T20:15:31Z (GMT). No. of bitstreams: 1
5844.pdf: 11430873 bytes, checksum: b80a5790a9ebf6ae63ff48e52968ae60 (MD5)
Previous issue date: 2014-02-21 / Universidade Federal de Sao Carlos / O crescimento e caracterização de sistemas de heteroestruturas semicondutoras quasi-unidimensionais têm atraído grande interesse devido à sua potencial de aplicação tecnológica, como foto-detectores, dispositivos opto-eletrônicos assim como seu para o processamento de informação quântica e aplicações em fotônica. O objetivo desta tese é o estudo das propriedades de transporte eletrônico e de spin em sistemas semicondutores quasi-unidimensionais, especificamente trataremos de nanofios (NWs) homogêneos, NWs acoplados, NWs do tipo plano-geminado (TP), diodos de tunelamento ressonante (ETD) e cadeias de pontos quânticos (QDCS). Escolhemos o método k-p, particularmente o Hamiltoniano de Luttinger, para descrever os efeitos de confinamento e tensão biaxial. Este sugeriu uma modulação do caráter do estado fundamental que, complementada com a dinâmica fônons fornecidas pelas simulações da Dinâmica Molecular (MD), permitiu a descrição da modulação da mobilidade de buracos por emissão ou absorção de fônons. Em relação ao sistema de NWs acoplado,estudamos, através do método da matriz de transferência (TMM), as propriedades de transporte de elétrons e spin sob a interação de spin-órbita (SOI) de Eashba, localizada na região de acoplamento entre fios. Foram consideradas várias configurações de tensões de gate (Vg) aplicadas nos fios. Desse modo, compreendemos a modulação do transporte de spin quando esse é projetado no direção-z através da combinação do SOI e das dimensionalidades do sistema. Da mesma forma, a combinação de SOI e da Vg aplicada deu origem a modulação da polarização, quando o spin medido é projetado na mesma direção em que o SOI de Eashba atua, a direção y. Usando o TMM, exploramos as propriedades de transporte de um DBS e o efeito de uma resistência em série com o intuito de provar a natureza da biestabilidade das curvas características I V bem como o aumento de sua área com temperatura, resultados fornecidos por experimentos. O modelo indicou que aumentando da resistência pela diminuição sa temperatura aumenta a área biestável. A presença de uma hetero-junção adicional ao sistema induz uma densidade de carga nas suas interfaces. De acordo com esta configuração, a queda de tensão total do ETDS muda, podendo ser confirmada experimentalmente. A formação dos peculiares campos de deformação e sua influência sobre a estrutura eletrônicas e propriedades de transporte em superredes de TP foi estudada sistematicamente. Assim, as propriedades de transporte, de ambos os elétrons e buracos, pode ser sintonizada eficientemente, mesmo no caso de elétrons r em sistemas de blenda de zinco, contrastando com a prevista transparência de elétrons r em superredes de semicondutores III-V heteroestruturados. Além disso, constatamos que a probabilidade de transmissão para buracos da banda de valência também poderia ser efetivamente modificada através de uma tensão externa.Por fim, colaboradores sintetizaram com sucesso sistemas de QDCs de InGaAs através da epitaxia de feixe molecular e engenharia de tensão. Um comportamento anisotrópico da condutância com a temperatura foi observado em QDCs com diferentes concentrações de dopagem, medida realizada ao longo e entre os QDCs. O modelo teórico 1D de hoppíng desenvolvido mostrou que a presença de estados OD modela a resposta anisotrópica da condutância neste sistemas. / The growth and characterization of semiconductor quasi-one-dimensional heterostructure systems have attracted increasing interest due to their potential technological application, like photo-detectors, optoelectronic devices and their promising features for quantum information processing and photonic applications. The goal of this thesis is the study of electronic and spin transport properties on quasi-one-dimensional semiconductor systems; specifically, homogenous nanowires (NWs), coupled NW s, twin-plane (TP) NWs, resonant tunneling diodes (RTDs), and quantum dot chains (QDCs). The k-p method, in particular the Luttinger Hamiltonian, was chosen to describe the effects of biaxial confinement and strain. This suggested a modulation of the ground state character that, complemented with the phonon dynamics provided by Molecular Dynamics (MD) simulations, allowed the description of the hole mobility modulation by either phonon emission or absorption. Regarding the coupled NW s system, the electron and spin transport properties affected by a Rashba spin-orbit interaction (SOI) at the joined region were unveiled through the Transfer Matrix Method (TMM). Various configurations of gate voltages (Vg), applied on the wire structure, were considered. We were able to understand the modulation of the spin transport projected in the z-direction trough the combination of the SOI and the system dimensionalities. Likewise, the combination of SOI and applied Vg gave rise to a modulation of the polarization, when the measured spin is projected in the same direction where the Rashba SOI acts, the y-direction. The transport properties of a DBS and the effect of a resistance in series was explored within the TMM to prove the nature of a bistability of the I V characteristics and its enhanced area with temperature provided by the experiment. The model indicates that increasing the resistente by decreasing the temperature, the bistable area enhances. The presence of an additional heterojunction induces a sheet charge at its interfaces. Under this configuration, the total voltage drop of the RTD changes and can be confirmed experimentally.The formation of the peculiar strain fields and their influence on the electronic structure and transport properties of a TP superlattice was systematically studied. Hence, the transport properties of both electrons and holes could be effectively tuned even in the case of T-electrons of zincblende systems, contrasting to the predicted transparency of T-electrons in heterolayered III-V semiconductor superlattices. Also, the transmission probability for holes at valence band could also be effectively modified by applying an external stress. Finally, using molecular-beam-epitaxy and skillful strain engineering, systems of In-GaAs QDCs were successfully synthesized by collaborators. The QDCs with different doping concentrations showed an anisotropic behavior of the conductance, measured along and across the QDCs, with temperature. The theoretical ID hopping model developed found that the presence of OD states shapes the anisotropic response of the conductance in this system.
|
336 |
A quantum dot in a photonic wire : spectroscopy and optomechanics / Une boite quantique dans un fil photonique : spectroscopie et optomécaniqueYeo, Inah 24 October 2012 (has links)
Dans cette thèse, nous avons étudié les propriétés optiques de boîtes quantiques InAs/GaAs contenues dans un fil photonique. Des résultats antérieurs à cette thèse ont montré que ces fils photoniques permettent d’extraire les photons avec une efficacité très élevée.Le premier résultat original de ce travail est l’observation de la dérive temporelle de la raie d’émission de la photoluminescence d’une boîte quantique. Cet effet a été attribué à la lente modification de la charge de surface du fil due à l’absorption des molécules d’oxygène présentes dans le vide résiduel du cryostat. Nous avons montré qu’une fine couche de Si3N4 permettait de supprimer cette dérive. La dérive temporelle pouvant être différente pour différentes boites quantiques, nous avons pu tirer partie de cet effet pour mettre en résonance deux boites quantiques contenues dans le même fil.Le deuxième résultat original est la mise en évidence de la modification de l’énergie d’émission d’une boîte quantique soumise à une contrainte mécanique induite par la vibration du fil. Nous avons observé que le spectre de la raie d’émission d’une boîte quantique s’élargit considérablement lorsque le fil est mécaniquement excité à sa fréquence de résonance. A l’aide d’une illumination stroboscopique synchronisée avec l’excitation mécanique, nous avons pu reconstruire l’évolution du spectre d’une boîte quantique au cours d’une période de la vibration mécanique. L’amplitude de l’oscillation spectrale de la raie de luminescence dépend de la position de la boîte dans le fil à cause d’un très fort gradient de contrainte. En utilisant deux modes d’oscillation mécanique de polarisations linéaires et orthogonales, nous pouvons extraire une cartographie complète de la position des boîtes quantiques à l’intérieur du fil. Enfin, grâce à ce gradient, on peut, dans certains cas, trouver une position du fil pour laquelle deux boites quantiques peuvent être amenées en résonance. / In the framework of this thesis, single InAs/GaAs quantum dot devices were studied by optical means. Starting with a general description of self-assembled InAs QDs, two types of single QD devices were presented. The first approach was a tapered GaAs photonic wire embedding single InAs QDs whose efficiency as a single photon source was previously shown to be 90%. We investigated several optical properties of the single QDs. The charged and neutral states of the QD were identified and selectively excited using quasi-resonant excitation.The first original result of this thesis is the observation of a continuous temporal blue-drift of the QD emission energy. We attributed this blue drift to oxygen adsorption onto the sidewall of the wire, which modified the surface charge and hence the electric field seen by the QD. Moreover, we demonstrated that a proper coating of the GaAs photonic nanowire surface suppressed the drift. The temperature effect on this phenomenon revealed an adsorption peak around 20K, which corresponds to the adsorption of oxygen on GaAs. This observation is in good agreement with previous temperature studies with a tapered photonic wire. This was the first study of the spectral stability of photonic wires embedding QDs, crucial for resonant quantum optics experiments. As an alternative, we took advantage of this temporal drift to tune QD emission energies. In a controlled way, we tuned into resonance two different QDs which were embedded in the same photonic nanowire. In the last part of this work, we studied the influence of the stress on single QDs contained in a trumpet-like GaAs photonic wire. The main effect of stress is to shift the luminescence lines of a QD. We applied the stress by exciting mechanical vibration modes of the wire. When the wire is driven at its the mechanical resonance the time-integrated photoluminescence spectrum is broaden up to 1 meV owing to the oscillating stress, The measured spectral modulation is a first signature of strain-mediated coupling between a mechanical resonator and embedded QD single light emitter. With a stroboscopic technique, we isolated a certain phase of the oscillating wire and thereby selected a value of QD emission energies. As a highlight of our study, we managed to bring two different QDs contained in the same wire into resonance by controlling their relative phase. In addition, we could extract the 2D spatial positioning of embedded QDs from the spectral shifts observed for two orthogonal mechanical polarizations.. The investigation of the strain-mediated tuning of QDs can, therefore, be an effective tool to explore the QD positions without destroying the sample.
|
337 |
Control of electronic and optical properties of single and double quantum dots via electroelastic fieldsZallo, Eugenio 12 March 2015 (has links)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies.
In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface.
By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources.
A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system.
For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
|
338 |
Kondo Physics and Many-Body Effects in Quantum Dots and Molecular JunctionsRuiz-Tijerina, David A. January 2013 (has links)
No description available.
|
339 |
Tunable Optical Phenomena and Carrier Recombination Dynamics in III-V Semiconductor NanostructuresThota, Venkata Ramana Kumar 22 July 2016 (has links)
No description available.
|
340 |
Coherent Exciton Phenomena in Quantum Dot MoleculesRolon Soto, Juan Enrique January 2011 (has links)
No description available.
|
Page generated in 0.0422 seconds