Spelling suggestions: "subject:"quantumwell"" "subject:"quantumwells""
131 |
Quantum well state of cubic inclusions in hexagonal silicon carbide studied with ballistic electron emission microscopyDing, Yi 17 June 2004 (has links)
No description available.
|
132 |
Electronic properties of stacking-fault induced heterostructures in silicon carbide studied with ballistic electron emission microscopyPark, Kibog 08 August 2006 (has links)
No description available.
|
133 |
Electron Bragg Reflectors for Improved Temperature Stability of InGaAsP Quantum Well Lasers / Electron Bragg Reflector LasersAdams, David 10 1900 (has links)
This thesis describes the incorporation within a semiconductor laser of a multiple quantum well InGaAsP/InP Electron Bragg Reflector (EBR). The EBR is intended to improve laser performance by inhibiting the escape of hot electrons from the laser active region by quantum mechanical Bragg reflection. To the author's knowledge, this investigation represents the first attempt to realize an EBR in the InGaAsP/InP material system. Computer models based on a transfer matrix method for the solution of Schrodinger's equation were written to obtain the EBR design. The transfer matrix method is described. Extensions to the transfer matrix method for optics are presented and are demonstrated to provide more than an order of magnitude improvement in computational efficiency for the calculation of the complex TE-mode propagation constant for planar graded-index waveguides with absorption or gain. The EBR designed for this work incorporates several new features. Deleterious band bending in the vicinity of the EBR is minimized by exploiting material strain to reduce the density of hole states in the EBR quantum wells. To maximize reflection bandwidth and relax fabrication tolerances, the EBR design used well widths that decreased with increasing depth into the p-type InP cladding. By the placement of the EBR adjacent to the separate confinement region, a return path was provided for electrons that scattered inelastically within the EBR. Moreover, the EBR structure was designed to support no bound electron states, so that the recombination of electrons with holes in the EBR would be minimal. To the author's knowledge, the EBR-equipped laser fabricated for this work represents the first attempt to exploit electron state exclusion. To explore the effectiveness of EBRs in the InGaAsP/InP material system, two nearly identical ridge waveguide lasers (one with an EBR, and one without) were designed, fabricated, and tested. The EBR-equipped lasers exhibited an anomalous threshold current temperature dependence which featured a "negative-To" regime (in which the threshold current decreases with increasing temperature), attaining a minimum in threshold current between T=150 K and T=200 K. These lasers had a threshold current temperature stability superior to that of standard lasers within a ~70 K window around the minimum threshold temperature. Experimental evidence suggests that the improved stability is not due to quantum mechanical Bragg reflection provided by the EBR, but is attributable to the temperature-dependent rate of hole escape from the EBR quantum wells into the separate confinement region. The proposed mechanism is described in detail and is supported by theoretical and experimental evidence. The results have implications for device design, because the mechanism by which the superior temperature stability is achieved does not rely on the electron coherence effects; the mathematical model suggests that the mechanism can be exploited to provide superior temperature stability in semiconductor lasers at 300 K or above. / Thesis / Master of Engineering (ME)
|
134 |
Ultrafast dynamics in InAs quantum dot and GaInNAs quantum well semiconductor heterostructuresMalins, David B. January 2008 (has links)
The quantum confined Stark effect (QCSE) and ultrafast absorption dynamics near the bandedge have been investigated in p-i-n waveguides comprising quantum confined heterostructures grown on GaAs substrates, for emission at 1.3um. The materials are; isolated InAs/InGaAs dot-in-a-well (DWELL) quantum dots (QD), bilayer InAs quantum dots and GaInNAs multiple quantum wells (MQW). The focus was to investigate these dynamics in a planar waveguide geometry, for the purpose of large scale integration in optical systems. Initial measurements of the QCSE using photocurrent measurements showed a small shift for isolated QDs whilst a significant shift of 40nm (at 1340nm) was demonstrated for bilayer dots, comparable to that of GaInNAs MWQ (30nm at 1300nm). These are comparable to InP based quaternary multiple quantum wells used in modulator devices. With the use of a broadband continuum source the isolated quantum dots exhibit both a small QCSE (15nm at 1280nm) and minimal broadening which is desirable for saturable absorbers used in monolithic modelocked semiconductor lasers (MMSL). A robust experimental set-up was developed for characterising waveguide modulators whilst the electroabsorption and electro-refraction was calculated (dn=1.5x10⠻³) using the Kramers-Kronig dispersion relation. Pump probe measurements were performed at room temperature using 250fs pulses from an optical parametric oscillator (OPO) on the three waveguide samples. For the isolated QDs ultrafast absorption recovery was recorded from 62ps (0V) to 700fs (-10V and the shortest times shown to be due to tunneling. Additionally we have shown good agreement of the temperature dependence of these dots and the pulse width durations from a modelocked semiconductor laser using the same material. Bilayer QDs are shown to exhibit ultrafast absorption recovery from 119ps (0V) to 5ps (-10V) offering potential for applications as modelocking elements. The GaInNAs multiple quantum wells show absorption recovery of 55ps (0V), however under applied reverse bias they exhibit long lived field screening transients. These results are explained qualitatively by the spatial separation of electrons and holes at heterobarrier interfaces.
|
135 |
Dynamique de recombinaison dans les puits quantiques InGaN/GaNBrosseau, Colin N. 08 1900 (has links)
Nous étudions la recombinaison radiative des porteurs de charges photogénérés dans les puits quantiques InGaN/GaN étroits (2 nm). Nous caractérisons le comportement de la photoluminescence face aux différentes conditions expérimentales telles la température, l'énergie et la puissance de l'excitation et la tension électrique appliquée.
Ces mesures montrent que l'émission provient d'états localisés.
De plus, les champs électriques, présents nativement dans ces matériaux, n'ont pas une influence dominante sur la recombinaison des porteurs.
Nous avons montré que le spectre d'émission se modifie significativement et subitement lorsque la puissance de l'excitation passe sous un certain seuil.
L'émission possède donc deux ``phases'' dont nous avons déterminé le diagramme.
La phase adoptée dépend à la fois de la puissance, de la température et de la tension électrique appliquée.
Nous proposons que la phase à basse puissance soit associée à un état électriquement chargé dans le matériau.
Ensuite, nous avons caractérisé la dynamique temporelle de notre échantillon.
Le taux de répétition de l'excitation a une influence importante sur la dynamique mesurée.
Nous concluons qu'elle ne suit pas une exponentielle étirée comme on le pensait précédemment.
Elle est exponentielle à court temps et suit une loi de puissance à grand temps.
Ces deux régimes sont lié à un seul et même mécanisme de recombinaison.
Nous avons développé un modèle de recombinaison à trois niveaux afin d'expliquer le comportement temporel de la luminescence.
Ce modèle suppose l'existence de centres de localisation où les porteurs peuvent se piéger, indépendamment ou non.
L'électron peut donc se trouver sur un même centre que le trou ou sur n'importe quel autre centre.
En supposant le transfert des porteurs entre centres par saut tunnel on détermine, en fonction de la distribution spatiale des centres, la dynamique de recombinaison.
Ce modèle indique que la recombinaison dans les puits InGaN/GaN minces est liée à des agglomérats de centre de localisation. / We study the radiative recombination of optically generated charges in thin (2 nm) InGaN quantum wells.
We characterise the behaviour of the photoluminescence with varying experimental conditions such as temperature, energy and power of the excitation and externally applied voltage.
These measurements show that emission comes from localised states.
We also show that electric fields, natively present in these materials, do not have a dominating effect on charge carrier dynamics.
We have shown that the emission spectrum changes significantly and rapidly when the excitation power drops below a certain level.
The emission has two phases of which we have measured the diagram.
The phase of the emission depends on the power of the excitation, the temperature and the electric field.
We propose that the low power phase is associated with an electrically charged state in the material.
Decay dynamics was then characterised.
We find that the excitation repetition rate has an influence on the measured dynamics.
We conclude that the dynamics are not stretched-exponential as it was originally thought.
The dynamics are exponential at short time and follow a power law at long time.
This byphasic character results from a single recombination process.
We have developped a three-level recombination model to describe experimental dynamics.
It supposes the existence of localisation states where carriers can localise, independently or not.
This means that the electron can be localised on the same state as the hole or on any other state.
If we suppose that inter-state transitions occurs by a tunnel effect, one can determine the decay dynamics as a function of the localisation states' spatial distribution.
Henceforth, we then show that radiative recombination in thin InGaN/GaN quantum wells is dominated by localisation and charge separation.
|
136 |
Field Dependence of Optical Properties in Quantum Well Heterostructures Within the Wentzel, Kramers, and Brillouin ApproximationWallace, Andrew B. 08 1900 (has links)
This dissertation is a theoretical treatment of the electric field dependence of optical properties such as Quantum Confined Stark (QCS) shifts, Photoluminescence Quenching (PLQ), and Excitonic Mixing in quantum well heterostructures. The reduced spatial dimensionality in heterostructures greatly enhances these optical properties, more than in three dimensional semiconductors. Charge presence in the quantum well from doping causes the potential to bend and deviate from the ideal square well potential. A potential bending that varies as the square of distance measured from the heterostructure interfaces is derived self-consistently. This potential is used to solve the time-independent Schrodinger equation for bound state energies and wave functions within the framework of the Wentzel, Kramers, and Brillouin (WKB) approximation.
The theoretical results obtained from the WKB approximation are limited to wide gap semiconductors with large split off bands such as gallium arsenide-gallium aluminum arsenide and indium gallium arsenide—indium phosphide. Quantum wells with finite confinement heights give rise to an energy dependent WKB phase. External electric and magnetic fields are incorporated into the theory for two different geometries. For electric fields applied perpendicular to the heterostructure multilayers, QCS shifts and PLQ are found to be in excellent agreement with the WKB calculations. Orthogonality between electrons and holes gives rise to interband mixing in the presence of an external electric field. On the contrary, intraband mixing between light and heavy holes is not sufficiently accounted for in the WKB approximation.
|
137 |
Spectroscopie optique de l'oxyde de zinc / Zinc oxide optical spectroscpyMarotel, Pascal 10 June 2011 (has links)
Ce travail porte sur l'étude des propriétés optiques de l'oxyde de zinc (ZnO), matériau semi-conducteur à grand gap. La technique de caractérisation principale de ce travail est la spectroscopie par photoluminescence, technique non destructive permettant d'obtenir des informations relatives à la structure électronique d'un matériau. Après avoir présenté les propriétés du ZnO, de ses alliages, et rappelé quelques principes de base associés à la luminescence des matériaux semi-conducteurs., nous comparerons dans un premier temps les propriétés optiques de différents types de ZnO monocristallin, selon leur mode d'élaboration : matériaux massifs de différentes origines, couches épitaxiées et nanofils. Ces comparaisons ainsi que l'étude des effets sur les spectres de photoluminescence des traitements tels que recuit et passivation nous permettront d'avancer différentes hypothèses quant à l'origine de la luminescence visible dans ce matériau grand gap, sujet encore controversé dans la littérature. Dans un deuxième temps, nous présenterons notre contribution à l'étude du dopage p du matériau, qui est encore aujourd'hui le verrou pour l'obtention de diodes électroluminescentes à base de ZnO. Nous examinerons le problème du dopage intrinsèque de type n et de la compensation, préalable indispensable avant d'aborder le dopage de type p. Le dopage p est traité ici principalement au travers des études optiques d'échantillons implantés et recuits. Plusieurs variantes liées à l'implantation d'azote seront présentées et l'obtention de paires donneur accepteurs clairement mise en évidence pour des conditions de recuit optimisées. La nature des accepteurs présents est discutée par référence aux travaux antérieurs. . / We have studied the optical properties of Zinc Oxide (ZnO), a wide band gap semiconductor material. The main characterization technique used in this work is the photoluminescence spectroscopy, a non destructive technique which gives information about the electronic structure of the material. After presenting the properties of ZnO, its alloys, and reminding some basic principles relative to the luminescence in semiconductor materials, we will compare the optical properties of ZnO single-crystals from different growth methods: bulk material from different origins, epitaxial layers and nanowires. These comparisons and the effects of different treatments (annealing, passivation...) on the PL spectra unable us to emit hypothesis about the origin of the visible luminescence, which is a controversial subject in the literature. Secondly, we will present our contribution to the study of the p doping of ZnO, which is indispensable for device applications based on the p–n junction. We will take a look at the n type intrinsic doping problem before examining the p type doping. We investigate here p type doping through optical studies of implanted and annealed samples. We present here some variants of nitrogen implantation and the presence of donor acceptor pairs has been proven, leading to the optimization of the annealing conditions. Nature of the acceptors is discussed with the literature.
|
138 |
Radical-source molecular beam epitaxy of ZnO-based heterostructuresSadofiev, Sergey 01 December 2009 (has links)
Im Rahmen der Dissertation wurden molekularstrahlepitaktische Verfahren zur Züchtung von Hetero-und Quantenstrukturen auf der Basis der Gruppe II-Oxide entwickelt. Insbesondere wurde ein Wachstumsregime weit entfernt vom thermischen Gleichgewicht etabliert, welches die Mischung von CdO und MgO mit ZnO in phasenreiner Wurtzitstruktur ermöglicht, wobei die Gleichgewichtslöslichkeitsgrenzen dramatisch überschritten werden. In den Mischkristallen kann die Bandlücke kontinuierlich von 2.2 bis 4.4 eV eingestellt werden. Das Wachstum verläuft in einem zweidimensionalen Modus und resultiert in atomar glatten Ober- und Grenzflächen. Ausgeprägte RHEED- Intensitätsoszillationen erlauben die atomlagengenaue Kontrolle der Schichtdicken und somit die Realisierung wohl-defi- nierter Einzel- und Mehrfachquantengrabenstrukturen. Diese zeichnen sich durch eine hohe Photolumineszenzquantenausbeute im gesamten sichtbaren Spektralbereich aus. Laseraktivität kann vom UV bis zum grünen Wellenlängenbereich bei Zimmertemperatur erzielt werden. Das Potenzial dieser Quantenstrukturen in Hinblick auf ihre Anwendung in opto-elektronischen Bauelementen wird diskutiert. / This work focuses on the development of the novel growth approaches for the fabrication of Group II-oxide materials in the form of epitaxial films and heterostructures. It is shown that molecular-beam epitaxial growth far from thermal equilibrium allows one to overcome the standard solubility limit and to alloy ZnO with MgO or CdO in strict wurtzite phase up to mole fractions of several 10 %. In this way, a band-gap range from 2.2 to 4.4 eV can be covered. A clear layerby- layer growth mode controlled by oscillations in reflection high-energy electron diffraction makes it possible to fabricate atomically smooth heterointerfaces and well-defined quantum well structures exhibiting prominent band-gap related light emission in the whole composition range. On appropriately designed structures, laser action from the ultraviolet down to green wavelengths and up to room temperature is achieved. The properties and potential of the "state-of-the-art" materials are discussed in relation to the advantages for their applications in various optoelectronic devices.
|
139 |
Electronic Properties of Nanostructures from Hydrostatics and HydrodynamicsLe, Hung Manh, n/a January 1997 (has links)
The behaviour of electrons in nanostructures such as quantum wells is of interest for the design of new electronic and electro-optic devices, and also for exploration of basic many-body physics. This thesis develops and tests improved methods for describing such electronic behaviour. The system used for this work was the parabolic quantum well (PQW), an important special system which has recently attracted much experimental and theoretical attention. We firstly report self-consistent nonlinear groundstate solutions of the Poisson equation together with the Thomas-Fermi (TF) hydrostatic equations. In contrast to most previous solutions, all the electron density profiles were inhomogeneous and continuous. We also added a von Weizsacker term with and without the exchange/exchange-correlation to the above treatment, using a novel numerical approach allowing for wider electron gases than previously possible. We also report for the first time the effects of spatially varying effective mass and dielectric function in theories of this type. To investigate infrared response of these systems, we apply new hydrodynamic theories recently proposed by Dobson. By using this type of theory, we simultaneously satisfy the Harmonic Potential Theorem (extended generalized Kohn theorem) and obtain the correct 2D plasmon dispersion, as well as obtaining the correct spacing of standing plasmons. Other inhomogeneous hydrodynamic theories do not achieve this. We also showed analytically an exact solution for a plasmon mode at the Kohn frequency in addition to one found in the Harmonic Potential Theorem. An open hydrodynamic theory was then developed based on this type of mode. Numerical application of Kohn Frequency Theorem theory was shown and the results were compared with other existing hydrodynamic theories.
|
140 |
Herstellung und Charakterisierung von planaren und drahtförmigen Heterostrukturen mit ZnO- und ZnCdO-QuantengräbenLange, Martin 04 February 2013 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurden planare und drahtförmige Heterostrukturen (HS) mit ZnO- und ZnCdO-Quantengräben bezüglich ihrer Lumineszenz untersucht. Die Proben wurden mit der gepulsten Laserabscheidung (PLD) hergestellt. Bei ZnO-basierten drahtförmigen HS mit Durchmessern im Mikro- und Nanometer-Bereich handelt es sich um vielversprechende Kandidaten für miniaturisierte optoelektronische Bauelemente.
Da es für viele Anwendungen notwendig ist, dass die Emission des Quantengrabens (QW) in einem breiten Spektralbereich eingestellt werden kann, muss die ZnO-Bandlücke möglichst stark verändert werden können. Durch ZnCdO und MgZnO ist dies möglich. Durch eine Optimierung der Abscheideparameter wurde der für PLD erreichte maximale Cd-Gehalt signifikant auf 0,25 erhöht. Große Mg-Gehalte konnten schon vor der Forschung zur vorliegenden Arbeit mit der PLD realisiert werden.
Die planaren HS mit ZnO-Quantengräben wurden vorrangig bezüglich Ihrer Lumines-zenzeigenschaften untersucht. Aufgrund der Orientierung der QW sollten diese zusätzlich zum Quantum-Confinement Effekt den Quantum-Confined Stark Effect (QCSE) zeigen. Der QCSE wurde durch zeitabhängige und anregungsabhängige Lumineszenzmessungen nachgewiesen. In den Mikrodraht (µW)- bzw. Nanodraht (NW)-HS mit ZnO-QW wurde die Emission zwischen 3,4 eV und 3,6 eV bzw. 3,4 eV und 3,7 eV eingestellt.
Um HS mit ZnCdO-QW herstellen zu können, war es notwendig, die strukturellen und optischen Eigenschaften sowie die elektronische Struktur von ZnCdO-Dünnfilmen zu untersuchen. Durch einen hohen Cd-Gehalt von 0,25 war es möglich, die Bandlücken-energie um 0,8 eV zu verringern. In planaren HS wurde ZnO bzw. MgZnO als Barriere verwendet und die QW-Emission zwischen 2,5 eV und 3,1 eV bzw. 2,5 eV und 3,65 eV eingestellt. Es wurde untersucht, ob für HS mit ZnCdO-QW ein QCSE auftritt. Die experimentellen Energien wurden dazu mit berechneten Werten verglichen, die mithilfe einer Effektiv-Masse-Näherung und dem Modell eines endlich tiefen Potentialtopfes bestimmt wurden. In entsprechenden µW- bzw. NW-HS wurde die QW-Emission infolge des Quantum-Confinement Effektes zwischen 2,7 eV und 3,1 eV bzw. 2,5 eV und 3,4 eV variiert.
Da es für die Anwendung von µW- und NW-HS wichtig ist, dass diese eine homogene QW-Emission zeigen, wurde deren spektrale Position entlang der Struktur und für die verschiedenen Facetten der hexagonalen Drähte untersucht. Die Homogenität der Emission
ist für die µW-HS kleiner als für die NW-HS.
|
Page generated in 0.0804 seconds