• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 28
  • 16
  • 9
  • 9
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 185
  • 185
  • 47
  • 31
  • 29
  • 24
  • 21
  • 20
  • 20
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Effects Of Spin Polarization And Spatial Confinement On Optical Properties Of Bulk Semiconductors And Doped Quantum Wells

Joshua, Arjun 02 1900 (has links)
We correlated experimental results with theoretical estimations of the dielectric function ε(ω) in two contexts: the effect of an electric field in quantum wells and that of the spin polarization of an interacting electron-hole plasma in bulk semiconductors. In the first part, we recorded photoreflectance spectra from Ge/GeSi quantum wells of different widths but having comparable builtin electric fields caused by doping. The reason why the spectra differed in overall shape was difficult to understand by conventional methods, for example, by calculating the allowed transition energies or by fitting the data with lineshape functions at each transition energy. Instead, we computed the photoreflectance spectra from first-principles by using the confined electron and hole wavefunctions. This method showed that the spectra differ in overall shape because of the experimentally hitherto unobserved trend in quantum well electro-optical properties, from the quantum confined Franz-Keldysh effect to the bulk Franz-Keldysh effect, as the well width is increased. The second part develops a threeband microscopic theory for the optical properties due to spin-polarized carriers in quasiequilibrium. We show that calculations based on this theory reproduce all the trends observed in a recent circularly polarized pump-probe experiment reported in the literature. To make the computation less intensive, we proposed a simplified, two-band version of this theory which captured the main experimental features. Besides, we constructed a cw diode laser-based pump-probe setup for our own optical studies of spin-polarized carriers by Kerr rotation. We achieved a sensitivity of detection of Kerr rotation of 3 x 10¯ 8 rad, corresponding to an order of magnitude improvement over the best reports in the literature. The efficacy of our setup allowed for the demonstration of a pumpinduced spin polarization in bulk GaAs, under the unfavorable conditions of steady-state and room temperature.
142

Dynamique de recombinaison dans les puits quantiques InGaN/GaN

Brosseau, Colin N. 08 1900 (has links)
Nous étudions la recombinaison radiative des porteurs de charges photogénérés dans les puits quantiques InGaN/GaN étroits (2 nm). Nous caractérisons le comportement de la photoluminescence face aux différentes conditions expérimentales telles la température, l'énergie et la puissance de l'excitation et la tension électrique appliquée. Ces mesures montrent que l'émission provient d'états localisés. De plus, les champs électriques, présents nativement dans ces matériaux, n'ont pas une influence dominante sur la recombinaison des porteurs. Nous avons montré que le spectre d'émission se modifie significativement et subitement lorsque la puissance de l'excitation passe sous un certain seuil. L'émission possède donc deux ``phases'' dont nous avons déterminé le diagramme. La phase adoptée dépend à la fois de la puissance, de la température et de la tension électrique appliquée. Nous proposons que la phase à basse puissance soit associée à un état électriquement chargé dans le matériau. Ensuite, nous avons caractérisé la dynamique temporelle de notre échantillon. Le taux de répétition de l'excitation a une influence importante sur la dynamique mesurée. Nous concluons qu'elle ne suit pas une exponentielle étirée comme on le pensait précédemment. Elle est exponentielle à court temps et suit une loi de puissance à grand temps. Ces deux régimes sont lié à un seul et même mécanisme de recombinaison. Nous avons développé un modèle de recombinaison à trois niveaux afin d'expliquer le comportement temporel de la luminescence. Ce modèle suppose l'existence de centres de localisation où les porteurs peuvent se piéger, indépendamment ou non. L'électron peut donc se trouver sur un même centre que le trou ou sur n'importe quel autre centre. En supposant le transfert des porteurs entre centres par saut tunnel on détermine, en fonction de la distribution spatiale des centres, la dynamique de recombinaison. Ce modèle indique que la recombinaison dans les puits InGaN/GaN minces est liée à des agglomérats de centre de localisation. / We study the radiative recombination of optically generated charges in thin (2 nm) InGaN quantum wells. We characterise the behaviour of the photoluminescence with varying experimental conditions such as temperature, energy and power of the excitation and externally applied voltage. These measurements show that emission comes from localised states. We also show that electric fields, natively present in these materials, do not have a dominating effect on charge carrier dynamics. We have shown that the emission spectrum changes significantly and rapidly when the excitation power drops below a certain level. The emission has two phases of which we have measured the diagram. The phase of the emission depends on the power of the excitation, the temperature and the electric field. We propose that the low power phase is associated with an electrically charged state in the material. Decay dynamics was then characterised. We find that the excitation repetition rate has an influence on the measured dynamics. We conclude that the dynamics are not stretched-exponential as it was originally thought. The dynamics are exponential at short time and follow a power law at long time. This byphasic character results from a single recombination process. We have developped a three-level recombination model to describe experimental dynamics. It supposes the existence of localisation states where carriers can localise, independently or not. This means that the electron can be localised on the same state as the hole or on any other state. If we suppose that inter-state transitions occurs by a tunnel effect, one can determine the decay dynamics as a function of the localisation states' spatial distribution. Henceforth, we then show that radiative recombination in thin InGaN/GaN quantum wells is dominated by localisation and charge separation.
143

Polarization Effects in Group III-Nitride Materials and Devices

January 2012 (has links)
abstract: Group III-nitride semiconductors have wide application in optoelectronic devices. Spontaneous and piezoelectric polarization effects have been found to be critical for electric and optical properties of group III-nitrides. In this dissertation, firstly, the crystal orientation dependence of the polarization is calculated and in-plane polarization is revealed. The in-plane polarization is sensitive to the lateral characteristic dimension determined by the microstructure. Specific semi-polar plane growth is suggested for reducing quantum-confined Stark effect. The macroscopic electrostatic field from the polarization discontinuity in the heterostructures is discussed, b ased on that, the band diagram of InGaN/GaN quantum well/barrier and AlGaN/GaN heterojunction is obtained from the self-consistent solution of Schrodinger and Poisson equations. New device design such as triangular quantum well with the quenched polarization field is proposed. Electron holography in the transmission electron microscopy is used to examine the electrostatic potential under polarization effects. The measured potential energy profiles of heterostructure are compared with the band simulation, and evidences of two-dimensional hole gas (2DHG) in a wurtzite AlGaN/ AlN/ GaN superlattice, as well as quasi two-dimensional electron gas (2DEG) in a zinc-blende AlGaN/GaN are found. The large polarization discontinuity of AlN/GaN is the main source of the 2DHG of wurtzite nitrides, while the impurity introduced during the growth of AlGaN layer provides the donor states that to a great extent balance the free electrons in zinc-blende nitrides. It is also found that the quasi-2DEG concentration in zinc-blende AlGaN/GaN is about one order of magnitude lower than the wurtzite AlGaN/GaN, due to the absence of polarization. Finally, the InAlN/GaN lattice-matched epitaxy, which ideally has a zero piezoelectric polarization and strong spontaneous polarization, is experimentally studied. The breakdown in compositional homogeneity is triggered by threading dislocations with a screw component propagating from the GaN underlayer, which tend to open up into V-grooves at a certain thickness of the InxAl1-xN layer. The V-grooves coalesce at 200 nm and are filled with material that exhibits a significant drop in indium content and a broad luminescence peak. The structural breakdown is due to heterogeneous nucleation and growth at the facets of the V-grooves. / Dissertation/Thesis / Ph.D. Physics 2012
144

Laser induced quantum well intermixing : reproducibility study and fabrication of superluminescent diodes / Interdiffusion de puits quantiques induite par laser : étude de la reproductibilité et fabrication de diodes superluminescentes

Béal, Romain January 2015 (has links)
Abstract : Photonic Integrated Circuits (PIC) are of tremendous interest for photonics system in order to reduce their power consumption, size, fabrication cost and improve their reliability of fiber optics linked discrete component architecture. However, unlike for microelectronics, in photonics different heterostructures are required depending on the type of device (laser sources, detectors, modulators, passive waveguides…). Therefore photonics integration needs a technology able to produce multiple bandgap energy wafers with a suitable final material quality in a reproducible manner and at a competitive cost: a technological challenge that has not been completely solved yet. Quantum Well Intermixing (QWI) is a post growth bandgap tuning process based on the localized and controlled modification of quantum well composition profile that aims to address these matters. UV laser induced QWI (UV-Laser-QWI) relies on high power excimer laser to introduce point defects near the heterostructure surface. By adjusting the laser beam shape, position, fluence and the number of pulse delivered, the different regions to be intermixed can be defined prior to a rapid thermal annealing step that will activate the point defects diffusion across the heterostructure and generate quantum well intermixing. UV-LaserQWI presents the consequent advantage of allowing the patterning of multiple bandgap regions without relying on photolithographic means, thus offering potentially larger versatility and time efficiency than other QWI processes. UV-Laser-QWI reproducibility was studied by processing samples from an InGaAs/InGaAsP/InP 5 quantum well heterostructure emitting at 1.55 µm. 217 different sites on 12 samples were processed with various laser doses. The quantum well intermixing generated was then characterized by room temperature photoluminescence (PL) mapping. Under those experimental conditions, UV-Laser-QWI was able to deliver heterostructures with a PL peak wavelength blue shift controlled within a +/- 15 % range up to 101.5nm. The annealing temperature proved to be the most critical parameter as the PL peak wavelength in the laser irradiated areas varied at the rate of 1.8 nm per degree Celsius. When processing a single wafer, thus limiting the annealing temperature variations, the bandgap tuned regions proved to be deliverable within ± 7.9%, hence establishing the potential of UV-Laser-QWI as a reproducible bandgap tuning solution. The UV-Laser-QWI was used to produce multiple bandgap wafers for the fabrication of broad spectrum superluminescent diodes (SLD). Multiple bandgap energy profiles were tested and their influence on the SLDs’ performances was measured. The most favorable bandgap modifications for the delivery of a very broadband emitting SLD were analyzed, as well as the ones to be considered for producing devices with a flat top shaped spectrum. The intermixed SLDs spectra reached full width at half maximum values of 100 nm for a relatively flattop spectrum which compare favorably with the ≈ 40nm of reference devices at equal power. The light-intensity characteristics of intermixed material made devices were very close to the ones of reference SLD made from as-grown material which let us think that the alteration of material quality by the intermixing process was extremely limited. These results demonstrated that the suitability of UV-Laser-QWI for concrete application to photonic devices fabrication. Finally, an alternative laser QWI technique was evaluated for SLD fabrication and compared to the UV laser based one. IR-RTA relies on the simultaneous use of two IR laser to anneal local region of a wafer: a 980 nm laser diode coupled to a pigtailed fiber for the wafer background heating and a 500 µm large beam TEM 00 Nd:YAG laser emitting at 1064 nm to anneal up to intermixing temperature a localized region of the wafer. The processed samples exhibited a 33 % spectral width increase of the spectrum compare to reference device at equal power of 1.5 mW. However, the PL intensity was decreased by up to 60 % in the intermixed regions and the experiments proved the difficulty to avoid these material degradations of material quality with IR-RTA. / Résumé : L’intégration de circuit photonique vise à réduire la consommation énergétique, la taille, le coût et les risques de panne des systèmes photoniques traditionnels faits de composants distincts connectés par fibre optique. Cependant, contrairement à la microélectronique, des hétérostructures spécifiques sont requises pour chaque composant : lasers, détecteurs, modulateurs, guides d’ondes… De cette constatation découle le besoin d’une technologie capable de produire des gaufres d’hétérostructures III/V de qualité à plusieurs énergies de gap, et ce de façon reproductible pour un coût compétitif. Aucune des techniques actuelles ne répond pour l’instant pleinement à tous ces impératifs. L’interdiffusion de puits quantique (IPQ) est un procédé post épitaxie basé sur la modification locale de la composition des puits quantiques. L’IPQ induite par laser UV (IPQ-UV) est basée sur l’utilisation de laser excimer (Argon-Fluor émettant à 193 nm ou Krypton-Fluor à 248 nm) pour introduire des défauts ponctuels à la surface de l’hétérostructure. En ajustant la taille du faisceau, sa position, son énergie ainsi que le nombre d’impulsions laser délivrées à la surface du matériau, on peut définir les régions à interdiffuser ainsi que leur futur degré d’interdiffusion. Un recuit de la gaufre active ensuite la diffusion des défauts et par conséquent l’interdiffusion du puits. L’IPQ-UV présente l’avantage considérable de se passer de photolithographie pour définir les zones de différentes énergies de gap, diminuant ainsi la durée et potentiellement le coût du procédé. La reproductibilité de l’IPQ-UV a été étudiée pour l’interdiffusion d’une structure à 5 puits quantiques d’InGaAs/InGaAsP/InP émettant à 1.55 µm. 217 régions sur 12 échantillons ont été irradiés par un laser KrF avec des nombres d’impulsion variables selon les sites et avec une densité d’énergie constante de 155 mJ/cm². Les modifications de la structure générée par ce traitement furent ensuite mesurées par cartographie en photoluminescence (PL) à température ambiante. L’analyse des données montra que l’IPQ-UV permet un contrôle du décalage vers le bleu du pic de PL à +/- 15 % jusqu’à 101.5nm. La température du recuit est apparue comme le paramètre crucial du procédé, puisque la longueur d’onde du pic de PL des zones interdiffusées varie de 1.8 nm par degré Celsius. En considérant les sites irradiés sur une seule gaufre, c’est à dire en s’affranchissant des variations de température entre deux recuits de notre système, la variation du pic de PL est contrôlable dans une plage de ± 7.9%. Ces résultats démontrent le potentiel de l’IPQ-UV en tant que procédé reproductible de production de gaufre à plusieurs énergies de gap. L’IPQ-UV a été utilisé pour la fabrication de diodes superluminescentes (DSLs). Différents type de structure à énergie de gap multiple ont été testés et leurs influences sur les performances spectrales des diodes évalués. Les spectres des DSLs faites de matériau interdiffusé ont atteint des largeurs à mi-hauteur dépassant les 100 nm (jusqu’à 132 nm), ce qui est une amélioration conséquente des ≈ 40nm des DSLs de référence à puissance égale. Les caractéristiques intensité–courant des DSLs interdiffusés furent mesurées comme étant très proches de celle des dispositifs de référence faits de matériau brut, ce qui suggère que l’IPQ-UV n’a pas ou très peu altéré la qualité du matériau initial. Ces résultats prouvent la capacité de l’IPQ-UV à être utilisé pour la fabrication de dispositifs photoniques. Une technique alternative d’IPQ par laser a été évaluée et comparée à l’IPQ-UV pour la fabrication de DSL. Le recuit rapide par laser IR est basé sur l’utilisation simultanée de deux lasers IR pour chauffer localement l’hétérostructure jusqu’à une température suffisante pour provoquer l’interdiffusion: une diode laser haute puissante émettant à 980 nanomètre couplée dans une fibre chauffe la face arrière de la gaufre sur une large surface à une température restant inférieure à celle requise pour provoquer l’interdiffusion et un laser Nd:YAG TEM 00 émettant à 1064 nm un faisceau de 500 µm de large provoque une élévation de température additionnelle localisée à la surface de l’échantillon, permettant ainsi l’interdiffusion de l’hétérostructure. Les dispositifs fabriqués ont montré une augmentation de 33 % de la largeur à mi-hauteur du spectre émis à puissance égale de 1.5 mW. Cependant, l’intensité du pic de PL dans les zones interdiffusées est diminuée de 60 %, suggérant une dégradation du matériau et la difficulté à produire un matériau de qualité satisfaisante.
145

Magneto-transporte e ferromagnetismo Hall em heteroestruturas semicondutoras magnéticas / Magnetotransport and Hall ferromagnetism in magnetic semiconductor heterostructures

Henrique Jota de Paula Freire 29 June 2004 (has links)
Heteroestruturas digitais magnéticas (DMHs) são estruturas semicondutoras em que a distribuição de impurezas magnéticas (Mn) restringe-se a alguns arranjos bidimensionais (monocamadas) regularmente espaçados entre si. Na presença de um campo magnético, a interação de troca sp-d entre os momentos magnéticos localizados e os portadores itinerantes é responsável por um desdobramento de spin gigante, da ordem ou até superior que a separação cíclotron dos níveis de Landau. Aqui eu calculo a estrutura eletrônica de poços quânticos digitais magnéticos do grupo II-VI. Resolvo as equações de Kohn-Sham da teoria do funcional da densidade dependente de spin na aproximação de massa efetiva. Eu então calculo diversas propriedades magnetoópticas e de transporte relevantes experimentalmente. Em particular, eu investigo a física dependente de spin presente nestes sistemas sob dois diferentes pontos de vista. Primeiramente o enfoque é no efeito do magnetismo do Mn sobre o potencial dependente de spin da interação de troca sp-d, em particular nos efeitos da aglomeração antiferromagnética e da diluição do seu perfil de concentração (segregação e interdifusão). Ao considerar estes efeitos eu reproduzo resultados experimentais para desdobramento de spin $Delta_E$ e tempos de espalhamento de spin $tau_$ [S. A. Crooker et al., Phys. Rev. Lett. 75, 505 (1995); Phys. Rev. B 61, 1736 (2000)]. Na segunda parte eu mudo o enfoque para a física de gases de elétrons bidimensionais (2DEGs) altamente polarizados e mostro a importância da forte dependência de spin das contribuições de muitos corpos (troca e correlação) presentes nestes sistemas. Em particular, estes efeitos são relevantes para o surgimento de fases de ferromagnetismo de efeito Hall quântico. Eu calculo o magnetotransporte no regime de efeito Hall quântico para DMHs baseadas em ZnSe e CdTe. Meus resultados reproduzem resultados experimentais [R. Knobel et al., Phys. Rev. B 65, 235327 (2002); J. Jaroszynski et al., Phys. Rev. Lett. 89, 266802 (2002)] para a dependência com o campo magnético, com a temperatura, o aparecimento de picos anômalos e o surgimento de curvas de histerese em várias propriedades físicas. / Digital magnetic heterostructures (DMHs) are semiconductor structures with magnetic impurities (Mn) restricted to some planar arrangements (monolayers) regularly spaced. In the presence of an external magnetic field, the sp-d exchange interaction between the localized magnetic moments and the itinerant carriers is responsible for a giant spin splitting, of the order of, or even greater than, the cyclotron separation between Landau levels. Here I calculate the electronic structure of group II-VI digital magnetic quantum wells. I solve the Kohn-Sham equations of the spin-density functional theory within the effective mass approximation. Then I calculate some magneto-optical and transport properties which are experimentally relevant. In particular, I investigate the spin dependent physics of these systems from two different points of view. First, I focus on effects of the Mn magnetism on the sp-d exchange spin dependent potential, particularly the effect of antiferromagnetic clustering and the effect of dilution (segregation and interdiusion) of the Mn content prole. By considering these effects I reproduce experimental results for the spin splitting $Delta_E$ and spin scattering times $tau_$ [S. A. Crooker et al., Phys. Rev. Lett. 75, 505 (1995); Phys. Rev. B 61, 1736 (2000)]. In the second part I move on to the physics of spin-polarized two-dimensional electron gases (2DEGs), and show the relevance of the strong dependence of the many-body contributions (exchange and correlation) with the spin polarization. In particular, these effects are relevant for the development of quantum Hall ferromagnetic phases. I calculate magneto- transport in the quantum Hall eect regime for DMHs consisting of ZnSe and CdTe. My results reproduce experimental results [R. Knobel et al., Phys. Rev. B 65, 235327 (2002); J. Jaroszynski et al., Phys. Rev. Lett. 89, 266802 (2002)] for the dependence with magnetic eld, temperature, development of anomalous resistivities spikes and hysteretic behaviors in many physical properties.
146

Impact of carrier localization on recombination in InGaN quantum wells with nonbasal crystallographic orientations

Ivanov, Ruslan January 2017 (has links)
The modern InGaN technology demonstrates high efficiencies only in the blue spectral region and low current operation modes. The growth of InGaN quantum wells (QWs) on nonbasal crystallographic planes (NBP) has potential to deliver high-power blue and green light emitting diodes and lasers. The emission properties of these QWs are largely determined by the localization of carriers in the minima of spatially inhomogeneous band potential, which affects the recombination dynamics, spectral characteristics of the emission, its optical polarization and carrier transport. Understanding it is crucial for increasing the efficiency of NBP structures to their theoretical limit. In this thesis, the influence of carrier localization on the critical aspects of light emission has been investigated in semipolar  and nonpolar  InGaN QWs. For this purpose, novel multimode scanning near-field optical microscopy configurations have been developed, allowing mapping of the spectrally-, time-, and polarization-resolved emission. In the nonpolar QW structures the sub-micrometer band gap fluctuations could be assigned to the selective incorporation of indium on different slopes of the undulations, while in the smoother semipolar QWs – to the nonuniformity of QW growth. The nanoscale band potential fluctuations and the carrier localization were found to increase with increasing indium percentage in the InGaN alloy. In spite to the large depth of the potential minima, the localized valence band states were found to retain properties of the corresponding bands. The reduced carrier transfer between localization sites has been suggested as a reason for the long recombination times in the green-emitting semipolar QWs. Sharp increase of the radiative lifetimes has been assigned to the effect of nanoscale electric fields resulting from nonplanar QW interfaces. Lastly, the ambipolar carrier diffusion has been measured, revealing ~100 nm diffusion length and high anisotropy. / <p>QC 20170919</p>
147

Design, Fabrication And Characterization Of Corrugated-Quantum Well Infrared Photodetector

Balakrishnam Raju, J 04 1900 (has links) (PDF)
No description available.
148

Magneto-transporte e ferromagnetismo Hall em heteroestruturas semicondutoras magnéticas / Magnetotransport and Hall ferromagnetism in magnetic semiconductor heterostructures

Freire, Henrique Jota de Paula 29 June 2004 (has links)
Heteroestruturas digitais magnéticas (DMHs) são estruturas semicondutoras em que a distribuição de impurezas magnéticas (Mn) restringe-se a alguns arranjos bidimensionais (monocamadas) regularmente espaçados entre si. Na presença de um campo magnético, a interação de troca sp-d entre os momentos magnéticos localizados e os portadores itinerantes é responsável por um desdobramento de spin gigante, da ordem ou até superior que a separação cíclotron dos níveis de Landau. Aqui eu calculo a estrutura eletrônica de poços quânticos digitais magnéticos do grupo II-VI. Resolvo as equações de Kohn-Sham da teoria do funcional da densidade dependente de spin na aproximação de massa efetiva. Eu então calculo diversas propriedades magnetoópticas e de transporte relevantes experimentalmente. Em particular, eu investigo a física dependente de spin presente nestes sistemas sob dois diferentes pontos de vista. Primeiramente o enfoque é no efeito do magnetismo do Mn sobre o potencial dependente de spin da interação de troca sp-d, em particular nos efeitos da aglomeração antiferromagnética e da diluição do seu perfil de concentração (segregação e interdifusão). Ao considerar estes efeitos eu reproduzo resultados experimentais para desdobramento de spin $Delta_E$ e tempos de espalhamento de spin $tau_$ [S. A. Crooker et al., Phys. Rev. Lett. 75, 505 (1995); Phys. Rev. B 61, 1736 (2000)]. Na segunda parte eu mudo o enfoque para a física de gases de elétrons bidimensionais (2DEGs) altamente polarizados e mostro a importância da forte dependência de spin das contribuições de muitos corpos (troca e correlação) presentes nestes sistemas. Em particular, estes efeitos são relevantes para o surgimento de fases de ferromagnetismo de efeito Hall quântico. Eu calculo o magnetotransporte no regime de efeito Hall quântico para DMHs baseadas em ZnSe e CdTe. Meus resultados reproduzem resultados experimentais [R. Knobel et al., Phys. Rev. B 65, 235327 (2002); J. Jaroszynski et al., Phys. Rev. Lett. 89, 266802 (2002)] para a dependência com o campo magnético, com a temperatura, o aparecimento de picos anômalos e o surgimento de curvas de histerese em várias propriedades físicas. / Digital magnetic heterostructures (DMHs) are semiconductor structures with magnetic impurities (Mn) restricted to some planar arrangements (monolayers) regularly spaced. In the presence of an external magnetic field, the sp-d exchange interaction between the localized magnetic moments and the itinerant carriers is responsible for a giant spin splitting, of the order of, or even greater than, the cyclotron separation between Landau levels. Here I calculate the electronic structure of group II-VI digital magnetic quantum wells. I solve the Kohn-Sham equations of the spin-density functional theory within the effective mass approximation. Then I calculate some magneto-optical and transport properties which are experimentally relevant. In particular, I investigate the spin dependent physics of these systems from two different points of view. First, I focus on effects of the Mn magnetism on the sp-d exchange spin dependent potential, particularly the effect of antiferromagnetic clustering and the effect of dilution (segregation and interdiusion) of the Mn content prole. By considering these effects I reproduce experimental results for the spin splitting $Delta_E$ and spin scattering times $tau_$ [S. A. Crooker et al., Phys. Rev. Lett. 75, 505 (1995); Phys. Rev. B 61, 1736 (2000)]. In the second part I move on to the physics of spin-polarized two-dimensional electron gases (2DEGs), and show the relevance of the strong dependence of the many-body contributions (exchange and correlation) with the spin polarization. In particular, these effects are relevant for the development of quantum Hall ferromagnetic phases. I calculate magneto- transport in the quantum Hall eect regime for DMHs consisting of ZnSe and CdTe. My results reproduce experimental results [R. Knobel et al., Phys. Rev. B 65, 235327 (2002); J. Jaroszynski et al., Phys. Rev. Lett. 89, 266802 (2002)] for the dependence with magnetic eld, temperature, development of anomalous resistivities spikes and hysteretic behaviors in many physical properties.
149

Relaxation dynamics in photoexcited semiconductor quantum wells studied by time-resolved photoluminescence

Zybell, Sabine 28 August 2015 (has links)
Gegenstand der vorliegenden Arbeit ist die Untersuchung der Photoluminenzenzdynamik von Halbleiter-Quantentöpfen (Quantum Wells), die durch Anregung von Intraband-Übergängen mittels resonanter Laserpulse im mittleren Infrarot- und Terahertz-Spektralbereich verändert wird. Diese Zweifarbenexperimente wurden mit Hilfe eines optischen Aufbaus für zeitaufgelöste Photolumineszenzspektroskopie am Großgerät Freie-Elektronen Laser FELBE am Helmholtz-Zentrum Dresden-Rossendorf realisiert. Zeitlich verzögert zur gepulsten optischen Anregung über die Bandlücke wurden Intersubband- oder Intraexziton-Übergänge in den Quantum Wells resonant angeregt. Die dadurch erreichte Ladungsträgerumverteilung zeigt sich in einer deutlichen Verringerung der Photolumineszenzintensität zum Zeitpunkt des zweiten Anregepulses, die im Folgenden als Photolumineszenz-Quenching bezeichnet wird. Zunächst wird die Stärke des Photolumineszenz-Quenchings in Abhängigkeit der Polarisationsrichtung des midinfraroten Laserstrahls ausgewertet. Während die Absorption durch freie Ladungsträger für beide Polarisationsrichtungen nachweisbar ist, wird experimentell gezeigt, dass Intersubbandabsorption nur möglich ist, wenn ein Anteil der anregenden Strahlung senkrecht zur Quantum-Well-Ebene polarisiert ist. Das Photolumineszenzsignal ist überwiegend an der energetischen Position der 1s-Exzitonresonanz unterhalb der Bandkante messbar. Die intraexzitonischen Übergangsenergien in Quantum Wells liegen typischerweise im Terahertzbereich. Unter intraexzitonischer 1s-2p Anregung erscheint auch auf dieser Energieskala ein abrupter Intensitätsverlust in der langsam abklingenden Photolumineszenztransiente. Erstmalig wurde im Photolumineszenzspektrum bei höheren Energien im Abstand der Terahertz-Photonenenergie ein zusätzliches 2s-Photolumineszenzsignal detektiert. Eine detaillierte theoretische Beschreibung dieses Problems durch unsere Kooperationspartner Koch et al. von der Phillips-Universität Marburg zeigt, dass unter intraexzitonischer 1s-2p Anregung eine effziente Coulombstreuung zwischen den nahezu entarteten exzitonischen 2p- und 2s-Zuständen stattfindet. Während der 2p-Zustand optisch dunkel ist, kann die 2s-Population strahlend rekombinieren, was zu dem besagten 2s-Photolumineszenzsignal führt. Die Zeitkonstanten der untersuchten Ladungsträgerdynamik werden durch ein phänomenologisches Modell bestimmt, das die experimentellen Kurven sehr gut abbildet. Es wird ein Ratengleichungsmodell eingeführt, bei dem die involvierten Zustände auf optisch helle und optisch dunkle Besetzungsdichten reduziert werden. Darüber hinaus werden mit einem modifizierten Versuchsaufbau die Terahertz-induzierten Photolumineszenzsignaturen von Magnetoexzitonen untersucht. Die Stärke des 1s-Photolumineszenz-Quenchings ändert sich dabei entsprechend der magnetoexzitonischen Übergänge, die im betrachteten Feldstärkebereich zwischen 0T und 7T liegen. Für Magnetfelder größer als 3T sind keine 2s-Photolumineszenzsignale mehr messbar, da durch das externe magnetische Feld die Entartung der 2p- und 2s-Zustände aufgehoben wird.
150

Growth of axial and core-shell (In,Ga)N/GaN heterostructures on GaN nanowires on TiN

van Treeck, David 10 May 2022 (has links)
In dieser Arbeit werden das Wachstum und die optischen Eigenschaften von selbstorganisierten GaN Nanodrähten auf TiN und nanodrahtbasierten (In,Ga)N/GaN Heterostrukturen für LED Anwendungen untersucht. Zu diesem Zweck wird das selbstorganisierte Wachstum von langen, dünnen und nicht koaleszierten GaN Nanodrähten auf TiN mittels Molekularstrahlepitaxie demonstriert. In weiteren Untersuchungen werden diese gut separierten und nicht koaleszierten GaN Nanodrähte auf TiN als Basis für die Herstellung von axialen und radialen Heterostrukturen verwendet. Trotz der definierten Morphologie der aktiven Zonen ist die Lichtausbeute der axialen (In,Ga)N Quantentöpfen eher gering. Um das Potenzial der Molekularstrahlepitaxie für das Wachstum von Kern-Hüllen-Strukturen im Allgemeinen besser zu verstehen, wird der Aspekt, dass die Seitenfacetten der Nanodrähte nur sequentiell den verschiedenen Materialstrahlen ausgesetzt werden, durch Modellierung des Wachstums von GaN Hüllen auf GaN Nanodrähten untersucht. Es wird gezeigt, dass Ga Adatomdiffusionsprozesse zwischen verschiedenen Facetten das Wachstum auf den Seitenfacetten stark beeinflussen. Neben der Untersuchung von radialsymmetrischen (In,Ga)N Hüllen wird ein neuer Wachstumsansatz vorgestellt, der die kontrollierte Abscheidung von III-Nitridhüllen auf verschiedenen Seiten des Nanodrahtes ermöglicht. Unter Ausnutzung der Richtungsabhängigkeit der Materialstrahlen in einer Molekularstrahlepitaxieanlage ermöglicht der neuartige Ansatz die sequentielle Abscheidung verschiedener Verbundstoffmaterialien auf einer bestimmten Seite der Nanodrähte, um eine einseitige Schale zu wachsen. Diese sequentielle gerichtete Abscheidungsmethode ermöglicht prinzipiell die Kombination mehrerer aktiver Zonen mit unterschiedlichen Eigenschaften auf verschiedenen lateralen Seiten ein und derselben Nano- oder Mikrostruktur. Solche Architekturen könnten beispielsweise für die Realisierung von mehrfarbigen Pixeln für Mikro-LED-Displays interessant sein. / In this thesis, the growth and the optical characteristics of self-assembled GaN nanowires on TiN and nanowire-based (In,Ga)N/GaN heterostructures for LED applications is investigated. To this end, the self-assembled growth of long, thin and uncoalesced GaN nanowires on TiN by molecular beam epitaxy is demonstrated. Subsequently, these well-separated and uncoalesced GaN nanowires on TiN are used as a basis for the fabrication of axial and radial heterostructures. Despite the well-defined morphology of the active regions, the luminous efficiency of axial (In,Ga)N quantum wells is found to be rather low. To better understand the potential of molecular beam epitaxy for the growth of core-shell structures in general, the aspect of the side facets of the nanowires being only sequentially exposed to the different material beams is studied by modeling the shell growth of GaN shells on GaN nanowires. It is shown that Ga adatom diffusion processes between different facets strongly affect the growth on the side facets. Besides the fundamental investigation of the growth of radially symmetric (In,Ga)N shells, a new growth approach which allows the controlled deposition of III-nitride shells on different sides of the nanowire is presented. Using the directionality of the material beams in an molecular beam epitaxy system, the novel approach facilitates the sequential deposition of different compound materials on a specific side of the nanowires to grow a one-sided shell. This sequential directional deposition method may in principle allow the combination of multiple active regions with different properties on different lateral sides of one and the same nano- or microstructure. Such architectures, for instance, might be interesting for the realization of multi-color pixels for micro-LED displays.

Page generated in 0.0923 seconds