Spelling suggestions: "subject:"query optimization"" "subject:"guery optimization""
61 |
Algorithms for XML stream processing : massive data, external memory and scalable performance / Algorithmes de traitement de flux XML : masses de données, mémoire externe et performances extensiblesAlrammal, Muath 16 May 2011 (has links)
Plusieurs applications modernes nécessitent un traitement de flux massifs de données XML, cela crée de défis techniques. Parmi ces derniers, il y a la conception et la mise en ouvre d'outils pour optimiser le traitement des requêtes XPath et fournir une estimation précise des coûts de ces requêtes traitées sur un flux massif de données XML. Dans cette thèse, nous proposons un nouveau modèle de prédiction de performance qui estime a priori le coût (en termes d'espace utilisé et de temps écoulé) pour les requêtes structurelles de Forward XPath. Ce faisant, nous réalisons une étude expérimentale pour confirmer la relation linéaire entre le traitement de flux, et les ressources d'accès aux données. Par conséquent, nous présentons un modèle mathématique (fonctions de régression linéaire) pour prévoir le coût d'une requête XPath donnée. En outre, nous présentons une technique nouvelle d'estimation de sélectivité. Elle se compose de deux éléments. Le premier est le résumé path tree: une présentation concise et précise de la structure d'un document XML. Le second est l'algorithme d'estimation de sélectivité: un algorithme efficace de flux pour traverser le synopsis path tree pour estimer les valeurs des paramètres de coût. Ces paramètres sont utilisés par le modèle mathématique pour déterminer le coût d'une requête XPath donnée. Nous comparons les performances de notre modèle avec les approches existantes. De plus, nous présentons un cas d'utilisation d'un système en ligne appelé "online stream-querying system". Le système utilise notre modèle de prédiction de performance pour estimer le coût (en termes de temps / mémoire) d'une requête XPath donnée. En outre, il fournit une réponse précise à l'auteur de la requête. Ce cas d'utilisation illustre les avantages pratiques de gestion de performance avec nos techniques / Many modern applications require processing of massive streams of XML data, creating difficult technical challenges. Among these, there is the design and implementation of applications to optimize the processing of XPath queries and to provide an accurate cost estimation for these queries processed on a massive steam of XML data. In this thesis, we propose a novel performance prediction model which a priori estimates the cost (in terms of space used and time spent) for any structural query belonging to Forward XPath. In doing so, we perform an experimental study to confirm the linear relationship between stream-processing and data-access resources. Therefore, we introduce a mathematical model (linear regression functions) to predict the cost for a given XPath query. Moreover, we introduce a new selectivity estimation technique. It consists of two elements. The first one is the path tree structure synopsis: a concise, accurate, and convenient summary of the structure of an XML document. The second one is the selectivity estimation algorithm: an efficient stream-querying algorithm to traverse the path tree synopsis for estimating the values of cost-parameters. Those parameters are used by the mathematical model to determine the cost of a given XPath query. We compare the performance of our model with existing approaches. Furthermore, we present a use case for an online stream-querying system. The system uses our performance predicate model to estimate the cost for a given XPath query in terms of time/memory. Moreover, it provides an accurate answer for the query's sender. This use case illustrates the practical advantages of performance management with our techniques
|
62 |
ADI : A NoSQL system for bi-temporal databases / ADI : Un système NoSQL pour les bases de données bi-temporellesAit Ouassarah, Azhar 23 May 2016 (has links)
La complexité et la dynamique de l'environnement dans lequel évolue chaque entreprise requiert de la part de ses managers la capacité de prendre des décisions pertinentes dans un laps de temps très court afin de s'accroître. Pour cela, l'analyse des données générées par l'activité de l'entreprise peut être une précieuse source d'information. L'Intelligence Opérationnelle (IO) est une classe de systèmes d'aide à la décision permettant aux managers d'avoir une très bonne compréhension de la situation de l'entreprise, à travers l'analyse de l'activité passée et présente. Dans ce contexte, les notions de temps et de traçabilité sont primordiales dans la compréhension de l'évolution de l'activité de l'entreprise à travers le temps. Dans cette thèse, nous présentons Axway Decision Insight (ADI), une solution d'IO développée par Axway. Son composant clé est un SGBD orienté-colonnes et bi-temporel développé en interne par l'entreprise pour répondre aux besoins spécifiques de l'IO. Ses capacités bi-temporelles lui permettent de gérer nativement aussi bien l'évolution des données dans la réalité modélisée (temps de validité) que l'évolution des données dans la base de données (temps de transaction). Nous commencerons par présenter la solution ADI en nous focalisant sur deux éléments importants: 1) l'interface graphique qui permet la conception et l'utilisation d'ADI sans écrire la moindre ligne de code. 2) L'approche adoptée pour modéliser les données bi-temporelles. Ensuite, nous présenterons un benchmark bi-temporel destiné ADI.Après cela, nous présenterons deux optimisations pour ADI. La première permet de pré-calculer et matérialiser les opérations d'agrégation, ce qui permet de réduire le temps nécessaire à la mise à jour de interface graphique d'ADI. La deuxième optimisation ordonne l'exécution des opérateurs de jointure des plans de requêtes en utilisant un modèle coût basé sur des statistiques sur des données bi-temporelles. Pour ces optimisations, nous avons effectué des expérimentations en utilisant notre benchmark, et qui ont démontré leurs intérêts. / Nowadays, every company is operating in very dynamic and complex environments which require from its managers to have a deep understanding of its business in order to take rapid and relevant decisions, and thus maintain or improve their company's activities. They can rely on analyzing the data deluge generated by the company's activities. A new class of systems has emerged in the decision support system galaxy called "Operational Intelligence" (OI) to meet this challenge. The objective is to enable operational managers to understand what happened in the past as well as what is currently happening in their business. In this context, the notions of time and traceability turns out to play a crucial role to understand what happened in the company and what is currently happening in the company. In this thesis, we present "Axway Decision Insight" (ADI), an "Operational Intelligence" solution developed by Axway. ADI's key component is a proprietary bi-temporal and column-oriented DBMS that has specially been designed to meet OI requirements. Its bi-temporal capabilities enable to catch both data evolution in the modeled reality (valid time) and in the database (transaction time).We first introduce ADI by focusing on two topics: 1) the GUI that makes the platform "code-free". 2) The adopted bi-temporal modeling approaches. Then we propose a performance benchmark that meets ADI's requirements. Next, we present two bi-temporal query optimizations for ADI. The first one consists in redefining a complex bi-temporal query into: 1) a set of continuous queries in charge of computing aggregation operations as data is collected. 2) A bi-temporal query that accesses the continuous queries' results and feeds the GUI. The second one is a cost-based optimization that uses statistics on bi-temporal data to determine an "optimal" query plan. For these two optimizations, we conducted some experiments, using our benchmark, which show their interests.
|
63 |
Optimizing similarity queries in metric spaces meeting user\'s expectation / Otimização de operações de busca por similaridade em espaços métricosFerreira, Mônica Ribeiro Porto 22 October 2012 (has links)
The complexity of data stored in large databases has increased at very fast paces. Hence, operations more elaborated than traditional queries are essential in order to extract all required information from the database. Therefore, the interest of the database community in similarity search has increased significantly. Two of the well-known types of similarity search are the Range (\'R IND. q\') and the k-Nearest Neighbor (\'kNN IND. q\') queries, which, as any of the traditional ones, can be sped up by indexing structures of the Database Management System (DBMS). Another way of speeding up queries is to perform query optimization. In this process, metrics about data are collected and employed to adjust the parameters of the search algorithms in each query execution. However, although the integration of similarity search into DBMS has begun to be deeply studied more recently, the query optimization has been developed and employed just to answer traditional queries. The execution of similarity queries, even using efficient indexing structures, tends to present higher computational cost than the execution of traditional ones. Two strategies can be applied to speed up the execution of any query, and thus they are worth to employ to answer also similarity queries. The first strategy is query rewriting based on algebraic properties and cost functions. The second technique is when external query factors are applied, such as employing the semantic expected by the user, to prune the answer space. This thesis aims at contributing to the development of novel techniques to improve the similarity-based query optimization processing, exploiting both algebraic properties and semantic restrictions as query refinements / A complexidade dos dados armazenados em grandes bases de dados tem aumentado sempre, criando a necessidade de novas operações de consulta. Uma classe de operações de crescente interesse são as consultas por similaridade, das quais as mais conhecidas são as consultas por abrangência (\'R IND. q\') e por k-vizinhos mais próximos (\'kNN IND. q\'). Qualquer consulta e agilizada pelas estruturas de indexação dos Sistemas de Gerenciamento de Bases de Dados (SGBDs). Outro modo de agilizar as operações de busca e a manutenção de métricas sobre os dados, que são utilizadas para ajustar parâmetros dos algoritmos de busca em cada consulta, num processo conhecido como otimização de consultas. Como as buscas por similaridade começaram a ser estudadas seriamente para integração em SGBDs muito mais recentemente do que as buscas tradicionais, a otimização de consultas, por enquanto, e um recurso que tem sido utilizado para responder apenas a consultas tradicionais. Mesmo utilizando as melhores estruturas existentes, a execução de consultas por similaridade tende a ser mais custosa do que as operações tradicionais. Assim, duas estratégias podem ser utilizadas para agilizar a execução de qualquer consulta e, assim, podem ser empregadas também para responder às consultas por similaridade. A primeira estratégia e a reescrita de consultas baseada em propriedades algébricas e em funções de custo. A segunda técnica faz uso de fatores externos à consulta, tais como a semântica esperada pelo usuário, para restringir o espaço das respostas. Esta tese pretende contribuir para o desenvolvimento de técnicas que melhorem o processo de otimização de consultas por similaridade, explorando propriedades algebricas e restrições semânticas como refinamento de consultas
|
64 |
AQuESStillger, Michael 21 January 2000 (has links)
Die parallele Anfragebearbeitung für relationale Datenbankmanagementsysteme (RDBMS) ist wegen ihrer unterschiedlichen Arten der Ausführungsparallelität und den Eigenschaften der zugrunde liegenden parallelen Architektur ein äusserst komplexes Problem. Systemänderungen zur Laufzeit der Anfrage können zusätzlich ein dynamisches Verhalten der ausführenden Komponenten erfordern, um eine nahezu optimale Antwortzeit zu gewährleisten. Diese Arbeit stellt einen neuen, flexiblen Ansatz für die Optimierung und Abarbeitung von komplexen Anfragen vor, der besonders die dynamische Optimierung berücksichtigt. Insbesondere werden in der Arbeit folgende Teile präsentiert: 1. die Architektur eines neuen, verteilt-kooperierenden Komponentensystems beeinflusst von agenten-orientierten Konzepten; 2. der Entwurf und die Realisierung einer neuen Kommunikationsinfrastruktur für die identifizierten Systemkomponenten; 3. der Entwurf und die Implementierung eines flexiblen Anfrageoptimierers mit einem neuen, zufallsbasierten Algorithmus; und 4. der Entwurf und die Realisierung einer parallel arbeitenden Ausführungskomponente unter besonderer Berücksichtigung der dynamischen Anfrageoptimierung. Bei der Entwicklung der Konzepte standen neben den spezifischen Anforderungen für RDBMS besonders die Konfigurierbarkeit und die Erweiterbarkeit des verteilten Systems im Vordergrund. / Parallel query evaluation for relational database management systems (RDBSM) still remains a challenging problem. Modern systems must show near optimal performance in spite of running in a heterogeneous hardware environment, exploiting different ways of parallelism and dealing with unpredictable system load. This thesis paper presents a dynamic and flexible system addressing the issues of optimization and evaluation of relational queries for a distributed and dynamic environment. In particular, this work consists of: 1) the architecture of a distributed system which was inspired by the concepts of software agents, 2) the architecture and the implementation of a communication infrastructure for the system components, 3) the architecture and the implementation of a new query optimization algorithm, and 4) the concept and the implementation of a new query evaluation engine for parallel execution, which enables runtime optimization of queries. Furthermore, the design supports the extension and the configuration of the system and its components.
|
65 |
A Declarative Approach to Modeling and Solving the View Selection Problem / Une approche déclarative pour la modélisation et la résolution du problème de la sélection de vues à matérialiserMami, Imene 15 November 2012 (has links)
La matérialisation de vues est une technique très utilisée dans les systèmes de gestion bases de données ainsi que dans les entrepôts de données pour améliorer les performances des requêtes. Elle permet de réduire de manière considérable le temps de réponse des requêtes en pré-calculant des requêtes coûteuses et en stockant leurs résultats. De ce fait, l'exécution de certaines requêtes nécessite seulement un accès aux vues matérialisées au lieu des données sources. En contrepartie, la matérialisation entraîne un surcoût de maintenance des vues. En effet, les vues matérialisées doivent être mises à jour lorsque les données sources changent afin de conserver la cohérence et l'intégrité des données. De plus, chaque vue matérialisée nécessite également un espace de stockage supplémentaire qui doit être pris en compte au moment de la sélection. Le problème de choisir quelles sont les vues à matérialiser de manière à réduire les coûts de traitement des requêtes étant donné certaines contraintes tel que l'espace de stockage et le coût de maintenance, est connu dans la littérature sous le nom du problème de la sélection de vues. Trouver la solution optimale satisfaisant toutes les contraintes est un problème NP-complet. Dans un contexte distribué constitué d'un ensemble de noeuds ayant des contraintes de ressources différentes (CPU, IO, capacité de l'espace de stockage, bande passante réseau, etc.), le problème de la sélection des vues est celui de choisir un ensemble de vues à matérialiser ainsi que les noeuds du réseau sur lesquels celles-ci doivent être matérialisées de manière à optimiser les coût de maintenance et de traitement des requêtes.Notre étude traite le problème de la sélection de vues dans un environnement centralisé ainsi que dans un contexte distribué. Notre objectif est de fournir une approche efficace dans ces contextes. Ainsi, nous proposons une solution basée sur la programmation par contraintes, connue pour être efficace dans la résolution des problèmes NP-complets et une méthode puissante pour la modélisation et la résolution des problèmes d'optimisation combinatoire. L'originalité de notre approche est qu'elle permet une séparation claire entre la formulation et la résolution du problème. A cet effet, le problème de la sélection de vues est modélisé comme un problème de satisfaction de contraintes de manière simple et déclarative. Puis, sa résolution est effectuée automatiquement par le solveur de contraintes. De plus, notre approche est flexible et extensible, en ce sens que nous pouvons facilement modéliser et gérer de nouvelles contraintes et mettre au point des heuristiques pour un objectif d'optimisation.Les principales contributions de cette thèse sont les suivantes. Tout d'abord, nous définissons un cadre qui permet d'avoir une meilleure compréhension des problèmes que nous abordons dans cette thèse. Nous analysons également l'état de l'art des méthodes de sélection des vues à matérialiser en en identifiant leurs points forts ainsi que leurs limites. Ensuite, nous proposons une solution utilisant la programmation par contraintes pour résoudre le problème de la sélection de vues dans un contexte centralisé. Nos résultats expérimentaux montrent notre approche fournit de bonnes performances. Elle permet en effet d'avoir le meilleur compromis entre le temps de calcul nécessaire pour la sélection des vues à matérialiser et le gain de temps de traitement des requêtes à réaliser en matérialisant ces vues. Enfin, nous étendons notre approche pour résoudre le problème de la sélection de vues à matérialiser lorsque celui-ci est étudié sous contraintes de ressources multiples dans un contexte distribué. A l'aide d'une évaluation de performances extensive, nous montrons que notre approche fournit des résultats de qualité et fiable. / View selection is important in many data-intensive systems e.g., commercial database and data warehousing systems to improve query performance. View selection can be defined as the process of selecting a set of views to be materialized in order to optimize query evaluation. To support this process, different related issues have to be considered. Whenever a data source is changed, the materialized views built on it have to be maintained in order to compute up-to-date query results. Besides the view maintenance issue, each materialized view also requires additional storage space which must be taken into account when deciding which and how many views to materialize.The problem of choosing which views to materialize that speed up incoming queries constrained by an additional storage overhead and/or maintenance costs, is known as the view selection problem. This is one of the most challenging problems in data warehousing and it is known to be a NP-complete problem. In a distributed environment, the view selection problem becomes more challenging. Indeed, it includes another issue which is to decide on which computer nodes the selected views should be materialized. The view selection problem in a distributed context is now additionally constrained by storage space capacities per computer node, maximum global maintenance costs and the communications cost between the computer nodes of the network.In this work, we deal with the view selection problem in a centralized context as well as in a distributed setting. Our goal is to provide a novel and efficient approach in these contexts. For this purpose, we designed a solution using constraint programming which is known to be efficient for the resolution of NP-complete problems and a powerful method for modeling and solving combinatorial optimization problems. The originality of our approach is that it provides a clear separation between formulation and resolution of the problem. Indeed, the view selection problem is modeled as a constraint satisfaction problem in an easy and declarative way. Then, its resolution is performed automatically by the constraint solver. Furthermore, our approach is flexible and extensible, in that it can easily model and handle new constraints and new heuristic search strategies for optimization purpose. The main contributions of this thesis are as follows. First, we define a framework that enables to have a better understanding of the problems we address in this thesis. We also analyze the state of the art in materialized view selection to review the existing methods by identifying respective potentials and limits. We then design a solution using constraint programming to address the view selection problem in a centralized context. Our performance experimentation results show that our approach has the ability to provide the best balance between the computing time to be required for finding the materialized views and the gain to be realized in query processing by materializing these views. Our approach will also guarantee to pick the optimal set of materialized views where no time limit is imposed. Finally, we extend our approach to provide a solution to the view selection problem when the latter is studied under multiple resource constraints in a distributed context. Based on our extensive performance evaluation, we show that our approach outperforms the genetic algorithm that has been designed for a distributed setting.
|
66 |
Optimizing similarity queries in metric spaces meeting user\'s expectation / Otimização de operações de busca por similaridade em espaços métricosMônica Ribeiro Porto Ferreira 22 October 2012 (has links)
The complexity of data stored in large databases has increased at very fast paces. Hence, operations more elaborated than traditional queries are essential in order to extract all required information from the database. Therefore, the interest of the database community in similarity search has increased significantly. Two of the well-known types of similarity search are the Range (\'R IND. q\') and the k-Nearest Neighbor (\'kNN IND. q\') queries, which, as any of the traditional ones, can be sped up by indexing structures of the Database Management System (DBMS). Another way of speeding up queries is to perform query optimization. In this process, metrics about data are collected and employed to adjust the parameters of the search algorithms in each query execution. However, although the integration of similarity search into DBMS has begun to be deeply studied more recently, the query optimization has been developed and employed just to answer traditional queries. The execution of similarity queries, even using efficient indexing structures, tends to present higher computational cost than the execution of traditional ones. Two strategies can be applied to speed up the execution of any query, and thus they are worth to employ to answer also similarity queries. The first strategy is query rewriting based on algebraic properties and cost functions. The second technique is when external query factors are applied, such as employing the semantic expected by the user, to prune the answer space. This thesis aims at contributing to the development of novel techniques to improve the similarity-based query optimization processing, exploiting both algebraic properties and semantic restrictions as query refinements / A complexidade dos dados armazenados em grandes bases de dados tem aumentado sempre, criando a necessidade de novas operações de consulta. Uma classe de operações de crescente interesse são as consultas por similaridade, das quais as mais conhecidas são as consultas por abrangência (\'R IND. q\') e por k-vizinhos mais próximos (\'kNN IND. q\'). Qualquer consulta e agilizada pelas estruturas de indexação dos Sistemas de Gerenciamento de Bases de Dados (SGBDs). Outro modo de agilizar as operações de busca e a manutenção de métricas sobre os dados, que são utilizadas para ajustar parâmetros dos algoritmos de busca em cada consulta, num processo conhecido como otimização de consultas. Como as buscas por similaridade começaram a ser estudadas seriamente para integração em SGBDs muito mais recentemente do que as buscas tradicionais, a otimização de consultas, por enquanto, e um recurso que tem sido utilizado para responder apenas a consultas tradicionais. Mesmo utilizando as melhores estruturas existentes, a execução de consultas por similaridade tende a ser mais custosa do que as operações tradicionais. Assim, duas estratégias podem ser utilizadas para agilizar a execução de qualquer consulta e, assim, podem ser empregadas também para responder às consultas por similaridade. A primeira estratégia e a reescrita de consultas baseada em propriedades algébricas e em funções de custo. A segunda técnica faz uso de fatores externos à consulta, tais como a semântica esperada pelo usuário, para restringir o espaço das respostas. Esta tese pretende contribuir para o desenvolvimento de técnicas que melhorem o processo de otimização de consultas por similaridade, explorando propriedades algebricas e restrições semânticas como refinamento de consultas
|
67 |
Cost-based optimization of graph queries in relational database management systemsTrissl, Silke 14 June 2012 (has links)
Graphen sind in vielen Bereichen des Lebens zu finden, wobei wir speziell an Graphen in der Biologie interessiert sind. Knoten in solchen Graphen sind chemische Komponenten, Enzyme, Reaktionen oder Interaktionen, die durch Kanten miteinander verbunden sind. Eine effiziente Ausführung von Graphanfragen ist eine Herausforderung. In dieser Arbeit präsentieren wir GRIcano, ein System, das die effiziente Ausführung von Graphanfragen erlaubt. Wir nehmen an, dass Graphen in relationalen Datenbankmanagementsystemen (RDBMS) gespeichert sind. Als Graphanfragesprache schlagen wir eine erweiterte Version der Pathway Query Language (PQL) vor. Der Hauptbestandteil von GRIcano ist ein kostenbasierter Anfrageoptimierer. Diese Arbeit enthält Beiträge zu allen drei benötigten Komponenten des Optimierers, der relationalen Algebra, Implementierungen und Kostenmodellen. Die Operatoren der relationalen Algebra sind nicht ausreichend, um Graphanfragen auszudrücken. Daher stellen wir zuerst neue Operatoren vor. Wir schlagen den Erreichbarkeits-, Distanz-, Pfadlängen- und Pfadoperator vor. Zusätzlich geben wir Regeln für die Umformung von Ausdrücken an. Des Weiteren präsentieren wir Implementierungen für jeden vorgeschlagenen Operator. Der Hauptbeitrag ist GRIPP, eine Indexstruktur, die die effiziente Ausführung von Erreichbarkeitsanfragen auf sehr großen Graphen erlaubt. Wir zeigen, wie GRIPP und die rekursive Anfragestrategie genutzt werden können, um Implementierungen für alle Operatoren bereitzustellen. Die dritte Komponente von GRIcano ist das Kostenmodell, das Kardinalitätsabschätzungen der Operatoren und Kostenfunktionen für die Implementierungen benötigt. Basierend auf umfangreichen Experimenten schlagen wir in dieser Arbeit Funktionen dafür vor. Der neue Ansatz unserer Kostenmodelle ist, dass die Funktionen nur Kennzahlen der Graphen verwenden. Abschließend zeigen wir die Wirkungsweise von GRIcano durch Beispielanfragen auf echten biologischen Graphen. / Graphs occur in many areas of life. We are interested in graphs in biology, where nodes are chemical compounds, enzymes, reactions, or interactions that are connected by edges. Efficiently querying these graphs is a challenging task. In this thesis we present GRIcano, a system that efficiently executes graph queries. For GRIcano we assume that graphs are stored and queried using relational database management systems (RDBMS). We propose an extended version of the Pathway Query Language PQL to express graph queries. The core of GRIcano is a cost-based query optimizer. This thesis makes contributions to all three required components of the optimizer, the relational algebra, implementations, and cost model. Relational algebra operators alone are not sufficient to express graph queries. Thus, we first present new operators to rewrite PQL queries to algebra expressions. We propose the reachability, distance, path length, and path operator. In addition, we provide rewrite rules for the newly proposed operators in combination with standard relational algebra operators. Secondly, we present implementations for each proposed operator. The main contribution is GRIPP, an index structure that allows us to answer reachability queries on very large graphs. GRIPP has advantages over other existing index structures, which we review in this work. In addition, we show how to employ GRIPP and the recursive query strategy as implementation for all four proposed operators. The third component of GRIcano is the cost model, which requires cardinality estimates for operators and cost functions for implementations. Based on extensive experimental evaluation of our proposed algorithms we present functions to estimate the cardinality of operators and the cost of executing a query. The novelty of our approach is that these functions only use key figures of the graph. We finally present the effectiveness of GRIcano using exemplary graph queries on real biological networks.
|
68 |
The Ginga Approach to Adaptive Query Processing in Large Distributed SystemsPaques, Henrique Wiermann 24 November 2003 (has links)
Processing and optimizing ad-hoc and continual queries in an open environment with distributed, autonomous, and heterogeneous data servers (e.g., the Internet) pose several technical challenges. First, it is well known that optimized query execution plans constructed at compile time make some assumptions about the environment (e.g., network speed, data sources' availability). When such assumptions no longer hold at runtime, how can I guarantee the optimized execution of the query? Second, it is widely recognized that runtime adaptation is a complex and difficult task in terms of cost and benefit. How to develop an adaptation methodology that makes the runtime adaptation beneficial at an affordable cost? Last, but not the least, are there any viable performance metrics and performance evaluation techniques for measuring the cost and validating the benefits of runtime adaptation methods?
To address the new challenges posed by Internet query and search systems, several areas of computer science (e.g., database and operating systems) are exploring the design of systems that are adaptive to their environment. However, despite the large number of adaptive systems proposed in the literature up to now, most of them present a solution for adapting the system to a specific change to the runtime environment. Typically, these solutions are not easily ``extendable' to allow the system to adapt to other runtime changes not predicted in their approach.
In this dissertation, I study the problem of how to construct a framework where I can catalog the known solutions to query processing adaptation and how to develop an application that makes use of this framework. I call the solution to these two problems the Ginga approach.
I provide in this dissertation three main contributions: The first contribution is the adoption of the Adaptation Space concept combined with feedback-based control mechanisms for coordinating and integrating different kinds of query adaptations to different runtime changes. The second contribution is the development of a systematic approach, called Ginga, to integrate the adaptation space with feedback control that allows me to combine the generation of predefined query plans (at compile-time) with reactive adaptive query processing (at runtime), including policies and mechanisms for determining when to adapt, what to adapt, and how to adapt. The third contribution is a detailed study on how to adapt to two important runtime changes, and their combination, encountered during the execution of distributed queries: memory constraints and end-to-end delays.
|
69 |
Reduction Of Query Optimizer Plan DiagramsDarera, Pooja N 12 1900 (has links)
Modern database systems use a query optimizer to identify the most efficient strategy, called "plan", to execute declarative SQL queries. Optimization is a mandatory exercise since the difference between the cost of best plan and a random choice could be in orders of magnitude. The role of query optimization is especially critical for the decision support queries featured in data warehousing and data mining applications.
For a query on a given database and system configuration, the optimizer's plan choice is primarily a function of the selectivities of the base relations participating in the query. A pictorial enumeration of the execution plan choices of a database query optimizer over this relational selectivity space is called a "plan diagram". It has been shown recently that these diagrams are often remarkably complex and dense, with a large number of plans covering the space. An interesting research problem that immediately arises is whether complex plan diagrams can be reduced to a significantly smaller number of plans, without materially compromising the query processing quality. The motivation is that reduced plan diagrams provide several benefits, including quantifying the redundancy in the plan search space, enhancing the applicability of parametric query optimization, identifying error-resistant and least-expected-cost plans, and minimizing the overhead of multi-plan approaches.
In this thesis, we investigate the plan diagram reduction issue from theoretical, statistical and empirical perspectives. Our analysis shows that optimal plan diagram reduction, w.r.t. minimizing the number of plans in the reduced diagram, is an NP-hard problem, and remains so even for a storage-constrained variation. We then present CostGreedy, a greedy reduction algorithm that has tight and optimal performance guarantees, and whose complexity scales linearly with the number of plans in the diagram. Next, we construct an extremely fast estimator, AmmEst, for identifying the location of the best tradeoff between the reduction in plan cardinality and the impact on query processing quality. Both CostGreedy and AmmEst have been incorporated in the publicly-available Picasso optimizer visualization tool.
Through extensive experimentation with benchmark query templates on industrial-strength database optimizers, we demonstrate that with only a marginal increase in query processing costs, CostGreedy reduces even complex plan diagrams running to hundreds of plans to "anorexic" levels (small absolute number of plans). While these results are produced using a highly conservative upper-bounding of plan costs based on a cost monotonicity constraint, when the costing is done on "actuals" using remote plan costing, the reduction obtained is even greater - in fact, often resulting in a single plan in the reduced diagram. We also highlight how anorexic reduction provides enhanced resistance to selectivity estimate errors, a long-standing bane of good plan selection.
In summary, this thesis demonstrates that complex plan diagrams can be efficiently converted to anorexic reduced diagrams, a result with useful implications for the design and use of next-generation database query optimizers.
|
70 |
View-Based techniques for the efficient management of web data.Karanasos, Konstantinos 29 June 2012 (has links) (PDF)
Data is being published in digital formats at very high rates nowadays. A large share of this data has complex structure, typically organized as trees (Web documents such as HTML and XML being the most representative) or graphs (in particular, graph-structured Semantic Web databases, expressed in RDF). There is great interest in exploiting such complex data, whether in an Open Data access model or within companies owning it, and efficiently doing so for large data volumes remains challenging. Materialized views have long been used to obtain significant performance improvements when processing queries. The principle is that a view stores pre-computed results that can be used to evaluate (possibly part of) a query. Adapting materialized view techniques to the Web data setting we consider is particularly challenging due to the structural and semantic complexity of the data. This thesis tackles two problems in the broad context of materialized view-based management of Web data. First, we focus on the problem of view selection for RDF query workloads. We present a novel algorithm, which, based on a query workload, proposes the most appropriate views to be materialized in the database, in order to minimize the combined cost of query evaluation, view maintenance and view storage. Although RDF query workloads typically feature many joins, hampering the view selection process, our algorithm scales to hundreds of queries, a number unattained by existing approaches. Furthermore, we propose new techniques to account for the implicit data that can be derived by the RDF Schemas and which further complicate the view selection process. The second contribution of our work concerns query rewriting based on materialized XML views. We start by identifying an expressive dialect of XQuery, corresponding to tree patterns with value joins, and study some important properties for these queries, such as containment and minimization. Based on these notions, we consider the problem of finding minimal equivalent rewritings of a query expressed in this dialect, using materialized views expressed in the same dialect, and provide a sound and complete algorithm for that purpose. Our work extends the state of the art by allowing each pattern node to return a set of attributes, supporting value joins in the patterns, and considering rewritings which combine many views. Finally, we show how our view-based query rewriting algorithm can be applied in a distributed setting, in order to efficiently disseminate corpora of XML documents carrying RDF annotations.
|
Page generated in 0.1159 seconds