• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 61
  • 17
  • 9
  • 9
  • 8
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 232
  • 94
  • 33
  • 32
  • 30
  • 30
  • 29
  • 27
  • 26
  • 21
  • 21
  • 20
  • 20
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Diverzita fotobiontů ve stélkách lišejníku Psora decipiens / Photobiont diversity in lichen thallus Psora decipiens

Jadrná, Iva January 2017 (has links)
Psora decipiens is a characteristic species of the terricolous lichen community Toninio-Psoretum decipientis distributed mostly on calcareous or basic substrates. The community consists in various modifications of lichens Placidium squamulosum, Toninia sedifolia, T. opuntioides, Fulgensia fulgens, F. bracteata and others. Photobionts of the lichen Psora decipiens were determined. Psora decipiens shared with Placidium sp. the single photobiont species, a common terrestrial alga Myrmecia israeliensis. Cloning of ITS rDNA revealed high intrathalline variability in M. israeliensis within a single lichen thallus. Several genotypes were often found in a thallus, uncovering either a high mutation rate of the algae or constant relichenization processes. Saxicolous Psora species (P. testacea, P. himalayana, P. valesiaca and P. rubiformis) had M. biatorellae as a photobiont, indicating a possible photobiont influence on substrate specifity of Psora lichens. Finally, the proper methodology used for identification of lichen photobionts is discussed. For a correct photobiont identification, morphological investigations of intrathaline diversity combined with coherent molecular techniques are needed. Such procedure was not applied in the former studies of Psora decipiens, resulting in a poor characterization of...
132

Characterization and identification of some indigenous Rhizobia using 16S rDNA sequence analysis

Kock, Martha Magdalena 06 December 2006 (has links)
ENGLISH : The use of different characteristics (the polyphasic approach) to describe bacterial taxa is a prerequisite for a stable classification. The taxonomy of root- and stem-nodulating rhizobia is in a state of transition. As more legumes are studied, new species and genera of rhizobia are described. It is important to study the indigenous South African rhizobia, as without them a complete rhizobial taxonomy is not possible. Furthermore, strains with superior nitrogen fixation abilities may be discovered. Indigenous strains better adapted to the harsh South African environment are possible candidates for commercial inoculants for cropped legumes.Only two local studies have been done on the diversity of the indigenous rhizobia. These studies revealed the diversity of rhizobia existing in the South African context. As part of a polyphasic approach used to identify and determine the diversity of the indigenous rhizobia, 16S rDNA sequencing analysis was performed on some selected rhizobial and putative rhizobial isolates. The aim of the study was to characterise and identify the indigenous isolates by 16S rDNA sequencing analysis and compare our data with those available in the GenBank database. Results showed that most of the indigenous isolates were slow-growers belonging to the genus Bradyrhizobium. Two isolates from supposedly non-nodulating legume genera (Cassia and Senna) were found to belong to the genus Bradyrhizobium. Some of the isolates were shown to belong to the genera Mesorhizobium, Rhizobium and Sinorhizobium. The identity of five isolates was not clear and further studies need to be performed to unequivocally determine their taxonomic position. Partial sequence analysis of 16S rDNA proved a valuable tool to characterise and identify the indigenous isolates. However, the method was unable to clearly distinguish between closely related species and strains. AFRIKAANS : 'n Stabiele klassifikasiesisteem vir die beskrywing van bakteriese taksa is slegs moontlik deur verskillende eienskappe (die poli-fasiese benadering) te gebruik. Die taksonomie van die wortel- en stamnodulerende rhizobiums verander gedurig. 'n Volledige rhizobiumtaksonomie is slegs moontlik indien die inheemse Suid-Afrikaanse rhizobiums bestudeer word. Geharde inheemse rasse met voortreflike stikstofbindende vermoens kan ontdek word. Hierdie rasse is kandidate vir kommersiele inokulums vir verboude peulplante. Net twee plaaslike studies is gedoen om die diversiteit van die inheemse rhizobiums te bepaal. Die studies het bewys dat die inheemse rhizobiums baie divers is. As deel van die polifasiese benadering om die diversiteit van die inheemse rhizobiums te identifiseer en te bepaal, is 16S rDNS volgordebepaling gedoen op uitgesoekte rhizobia en sogenaamde rhizobia isolate. Die doel van die studie was die karakterisering en identifisering van die inheemse isolate deur 16S rDNS volgordebepaling en die vergelyking van die data met die beskikbaar in die GenBank databasis. Die resultate wys dat die meeste inheemse isolate stadige groeiers is en dus behoort aan die genus Bradyrhizobium. Twee isolate vanaf sogenaamde nie-nodulerende peulplantgenusse (Cassia en Senna) behoort ook tot die genus Bradyrhizobium. Sommige isolate behoort tot die genusse Mesorhizobium, Rhizobium en Sinorhizobium. Die identiteit van vyf isolate was nie duidelik nie en verdere studies is nodig om hul taksonomiese posisie ondubbelsinnig te bepaal. Die gedeeltelike volgordebepaling van die 16S rDNS was 'n waardevolle hulpmiddel om die inheemse isolate mee te karakteriseer en te identifiseer, alhoewel die metode nie tussen nabyverwante spesies en rasse kon onderskei nie. Copyright / Dissertation (MSc (Microbiology))--University of Pretoria, 1999. / Microbiology and Plant Pathology / unrestricted
133

Genetická a morfologická variabilita evropského rodu Cochlodina (Mollusca: Gastropoda: Clausiliidae) se zaměřením na druh C. laminata (Montagu, 1803) / Genetic and Morphological Variability of the European Genus Cochlodina (Mollusca: Gastropoda: Clausiliidae) with Focus on Species C. laminata (Montagu, 1803)

Szalontayová, Veronika January 2013 (has links)
This thesis focuses on the genetical and morphological diversity of plaited door snail (Cochlodina laminata). While small distribution ranges are typical for most species belonging to genus Cochlodina, the distribution range of C. laminata covers most of the European continent, except for its coolest and warmest parts. It has been previously suggested that this species might in fact be a complex of several species and large genetical as well as morphological diversity has been mentioned - however, yet undescribed - in previous studies. Sequences of two mitochondrial genes were used (16S rDNA, COI) and thirteen morphological characteritics have been assessed to investigate this diversity. I discovered that the current concept of C. laminata as a species is not in accordance with the discovered genetical nor morphological variability. The original species C. laminata/C. dubiosa form a common species complex and also interpretation of C. fimbriata will need to be assessed in more detail in the future. Other Central European species are valid species.
134

Isolation and characterization of bacterial endophytes for growth promotion of Phaseolus vulgaris under salinity stress

Thompson, Biosha January 2020 (has links)
>Magister Scientiae - MSc / As the global human population grows, so does the demand for faster food production rates. Owing to this, agricultural practices have had to expand and move into semi-arid and arid regions, too, where frequent irrigation is essential. However, irrigated ground water contains many salt ions (mainly Na+ and Cl-) which contribute to soil salinization on croplands. Soil salinity negatively impacts crop growth and yield and thus, strategies for the alleviation of salt stress on crop plants have had to be developed. This study assessed the use of plant growth promoting bacteria (PGPB). The aim of this study was to isolate, identify and characterize bacterial endophytes isolated from the halophyte, Arctotheca calendula. Endophytes were identified using 16S rDNA and were screened for plant growth promoting properties including nitrogen fixation, phosphate and zinc solubilization, siderophore, ammonia and indole-3-acetic acid (IAA) when exposed to 0 mM, 300 mM and 600 mM NaCl. The endophytes had been identified as Erwinia persicina NBRC 102418T, Bacillus marisflavi JCM 11544T, Ochrobactrum rhizosphaerae PR17T, Microbacterium gubbeenense DSM 15944T and Bacillus zhangzhouensis DW5-4T and all of which had demonstrated some plant growth promoting characteristics. Thereafter, we aimed to demonstrate plant growth promotion of P. vulgaris cv. Star 2000 inoculated with PGPB under salinity stress. P. vulgaris cv. Star 2000 seeds were inoculated with the PGPB and exposed to 0 mM and 100 mM NaCl. Post-harvest, plants were assessed for their dry mass, cell death, superoxide concentration and nutrient content. It was discovered that salinity negatively impacted P. vulgaris cv. Star 2000’s dry mass, NaCl-induced cell death, and differentially influenced superoxide concentration, nutrient uptake and content of the leaf and root material in the inoculated and control treatments. However, the isolated PGPB had been able to mitigate the negative effects of soil salinity on P. vulgaris cv. Star 2000.
135

Utveckling och validering av en qPCR metod för detektion av DNA från tarmbakterier i blod/plasma

Johansson, Kajsa January 2020 (has links)
Enligt "Leaky gut”-hypotesen är ökad translokation av gramnegativa bakterier genom tarmslemhinnan förknippad med neuroimmuna störningar. Denna ökning av permeabiliteten i tarmslemhinnan kan orsakas av störning i tarmfloran efter antibiotikabruk eller sjukdom, vilket kan leda till inflammatoriska processer. Inflammation har sedan tidigare blivit förknippad med allvarlig depressiv störning och självmordsbeteende. Studiens syfte var att utveckla och validera en qPCR-baserad metod för att kunna detektera DNA från tarmbakterier i blod/plasma, som ett tecken på translokering av bakterier. Två primerpar för amplifiering av 16S rDNA utreddes genom observation av PCR-reaktioner med humant och bakteriellt DNA. Det mest optimala primerparets PCR effektiviteten och linjäriteten testades. Metodens funktion kontrollerades sedan med helblod och plasma med tillsats av exogent DNA från E.coli. Den utvecklade qPCR metoden detekterar bakterie DNA i prov med 10 kopior/µl, vilket gör den tillräckligt känslig för detektion av tarmbakterier i blod. / According to the "Leaky gut" hypothesis, increased translocation of gram-negative bacteria through the intestinal mucosa is associated with neuroimmune disorders. The increase of permeability of the intestinal mucosa may be caused by disturbance of the intestinal flora after antibiotic use or disease, which can lead to inflammatory processes. Inflammation has previously been associated with major depressive disorder and suicidal behavior. The purpose of the study was to develop and validate a qPCR-based method for detecting DNA from intestinal bacteria in blod/plasma, as a sign of decreased mucosal integrity. Two different primer pairs, targeting 16S rDNA, were investigated by observing their PCR reactivity with human and bacterial DNA. PCR efficiency and linearity were tested on the most optimal primer pair. The function of the method was then verified with whole blood and plasma with the addition of exogenous DNA from E.coli. The developed qPCR method detects bacterial DNA in samples at 10 copies/µl, making it sufficiently sensitive for detection of intestinal bacterial DNA in blood.
136

Evolutionary patterns of Amoebozoa revealed by gene content and phylogenomics

Kang, Seungho 07 August 2020 (has links)
Amoebozoa is the eukaryotic supergroup sister to Obazoa, the lineage that contains the animals (including us humans) and Fungi. Amoebozoa is extraordinarily diverse, encompassing important model organisms and significant pathogens. Although amoebozoans are integral to global nutrient cycles and present in nearly all environments, they remain vastly understudied. Here we have isolated a naked eukaryotic amoeba with filose subpseudopodia, and a simple life cycle consisting of a trophic amoeba and a cyst stage. Using a wholistic approach including light, electron, fluorescence microscopy and SSU rDNA, we find that this amoeboid organism fails to match any previously described eukaryote genus. Our isolate amoebae are most similar to some variosean amoebae which also possess acutely pointed filose subpseudopodia. Maximum likelihood and Bayesian tree of the SSU-rDNA gene places our isolate in Variosea of Amoebozoa as a novel lineage with high statistical support closely related to the highly diverse protosteloid amoebae Protostelium. This novel variosean is herein named “Hodorica filosa” n. g. n. sp. We present a robust phylogeny of Amoebozoa based on a broad representative set of taxa in a phylogenomic framework (325 genes). By sampling 61 taxa using culture-based and single-cell transcriptomics, our analyses show two major clades of Amoebozoa, Discosea and Tevosa. Overall, the main macroevolutionary patterns in Amoebozoa appear to result from the parallel losses of homologous characters of a multiphase life cycle that included flagella, sex, and sporocarps rather than independent acquisition of convergent features Integrins are transmembrane receptors that activate signal transduction pathways upon extracellular matrix binding. The Integrin Mediated Adhesion Complex (IMAC), mediates various cell physiological processes and are key elements that are associated animal multicellularity. The IMAC was thought to be specific to animals. Over the last decade however, the IMAC complexes were discovered throughout Obazoa. We show the presence of an ancestral complex of integrin adhesion proteins that predate the evolution of the Amoebozoa. Co-option of an ancient protein complex was key to the emergence of animal multicellularity. The role of the IMAC in a unicellular context is unknown but must also play a critical role for at least some unicellular organisms.
137

SMN-deficient cells exhibit increased ribosomal DNA damage.

Karyka, E., Ramirez, N.B., Webster, C.P., Marchi, P.M., Graves, E.J., Godena, V.K., Marrone, L., Bhargava, A., Ray, S., Ning, K., Crane, H., Hautbergue, G.M., El-Khamisy, Sherif, Azzouz, M. 01 November 2023 (has links)
Yes / Spinal muscular atrophy, the leading genetic cause of infant mortality, is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. SMN is a multifunctional protein that is implicated in numerous cytoplasmic and nuclear processes. Recently, increasing attention is being paid to the role of SMN in the maintenance of DNA integrity. DNA damage and genome instability have been linked to a range of neurodegenerative diseases. The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. Instability in rDNA has been associated with cancer, premature ageing syndromes, and a number of neurodegenerative disorders. Here, we report that SMN-deficient cells exhibit increased rDNA damage leading to impaired ribosomal RNA synthesis and translation. We also unravel an interaction between SMN and RNA polymerase I. Moreover, we uncover an spinal muscular atrophy motor neuron-specific deficiency of DDX21 protein, which is required for resolving R-loops in the nucleolus. Taken together, our findings suggest a new role of SMN in rDNA integrity.
138

Effect of Soil Amendments from Antibiotic Treated Cows on Antibiotic Resistant Bacteria and Genes Recovered from the Surfaces of Lettuce and Radishes: Field Study

Fogler, Kendall Wilson 06 February 2018 (has links)
Cattle are commonly treated with antibiotics that may survive digestion and promote antibiotic resistance when manure or composted manure is used as a soil amendment for crop production. This study was conducted to determine the effects of antibiotic administration and soil amendment practices on microbial diversity and antibiotic resistance of bacteria recovered from the surfaces of lettuce and radishes grown using recommended application rates. Vegetables were planted in field plots amended with raw manure from antibiotic-treated dairy cows, composted-manure from cows with different histories of antibiotic administration, or a chemical fertilizer control (12 plots, n=3). Culture-based methods, 16SrDNA amplicon sequencing, qPCR and shot-gun metagenomics were utilized to profile bacteria and characterize the different gene markers for antibiotic resistance. Culture-based methodologies revealed that lettuce grown in soils amended with BSAs had significantly larger clindamycin resistant populations compared to control conditions. Growth in BSAs was associated with significant changes to the bacterial community composition of radish and lettuce. Total sul1 copies were 160X more abundant on lettuce grown in manure and total tet(W) copies were 30X more abundant on radishes grown in manure. Analysis of shotgun metagenomic data revealed that lettuce grown in manure-amended soils possessed resistance genes for three additional antibiotic classes compared to other treatments. This study demonstrates that raw, antibiotic-exposed manure may alter microbiota and the antibiotic resistance genes present on vegetables. Proper composting of BSAs as recommended by the U.S. Department of Agriculture and Environmental Protection Agency is recommended to mitigate the spread of resistance to vegetable surfaces. / MSLFS / Antibiotics are drugs responsible for killing infectious diseases in both humans and animals. In cows, antibiotics are frequently used when they get infections in their udders. These drugs can be excreted through manure and urine and end up in the environment. Manure or composted manure is often applied as a soil amendment for crop production. The presence of antibiotics in soil may promote antibiotic resistance, meaning bacteria that carry antibiotic resistance genes (ARGs) are capable of surviving exposure to drugs that would normally kill them. Such bacteria may eventually pass their ARGs to pathogens, which then could no longer be treated effectively by antibiotics when there is an infection. Thus, there is concern that overuse of antibiotics in agriculture can contribute to reduced effectiveness of antibiotics and the growing global antibiotic resistance health crisis. This study sought to determine if prior antibiotic administration affected the antibiotic resistance of bacteria found on the surfaces of vegetables grown in soil amended with manure or compost from dairy cows. Lettuce and radishes were grown in the field in plots amended with raw manure from antibiotic-treated dairy cows, compost from cows with different histories of antibiotic administration, or a chemical fertilizer control. Mature vegetables were harvested and used to enumerate antibiotic-resistant bacterial colonies. Additionally, the 16S rRNA gene, which is a ubiquitous gene found in all bacteria, was sequenced to identify the kinds of microbes that colonized the radish and lettuce surfaces when grown under the different conditions. DNA was extracted from the bacteria collected from the vegetable surfaces to and different methods were used to identify the kinds of ARGs present and to which kinds of antibiotics they encode resistance. The results of the study indicated that raw, antibiotic-exposed manure may increase the bacteria found on vegetables in addition to their ARGs. Proper composting of manure, as recommended by the U.S. Department of Agriculture (USDA) and the Environmental Protection Agency (EPA), is recommended to mitigate resistance and control microbial populations on fresh vegetables.
139

Zelené řasy dominující ve fytoplanktonu dvou kyselých jezer: taxonomické postavení, fylogenetické vztahy a odolnost vůči kovům / Taxonomic position, phylogenetic relationships and metal resistance of green algae dominating in phytoplankton of two acid lakes

Barcyte, Dovile January 2015 (has links)
The aim of this diploma thesis was to reveal the taxonomic position and phylogenetic relationships of the dominant planktonic algae in two acid metal-rich lakes (Hromnice Lake and Plešné Lake, Czech Republic) and to compare these isolates with other closely related strains with the focus on the tolerance to various toxic metals (Cr, Al, Cu, Mn, Zn, Hg). The phylogenetic analyses showed that both strains belong to species Coccomyxa simplex. It was the first evidence that specifically this species is capable to become the dominant phytoplankton alga in the extreme environment of acid lakes with increased supply of phosphorus. Based on 18S rDNA analysis, four independent phylogenetic lineages were revealed within the genus Coccomyxa with three of them containing isolates from acid freshwaters. Furthermore, new strains of the recently described species Coccomyxa polymorpha were found growing in various chemical solutions. The toxicity test revealed that Coccomyxa simplex strains isolated from Hromnice and Plešné lakes did not show any peculiar resistance to increased metal concentrations. A significantly strain-specific response was recorded in case of aluminum, however, it was not related to the concentration of this metal in the original habitat. The ability to thrive in extreme habitats is probably...
140

Ursprung, Zusammensetzung und Transkriptionsaktivität der B-Chromosomen von Brachycome dichromosomatica

Marschner, Sylvia 25 July 2007 (has links)
Zusammenfassung Die Asteraceae Brachycome dichromosomatica ist eine besonders geeignete Spezies, um B-Chromosomen zu analysieren. Die auf den B-Chromosomen-lokalisierte 45S rDNA wurde auf Ursprung und Funktion untersucht. Die Mikrodissektion von B-Chromosomen und PCR-Amplifikation ermöglichte es, B-Chromosomen-spezifische ITS2-Sequenzen der 45S rDNA zu erhalten. Auffallend bei dieser Analyse waren zwei beständige Differenzen zwischen den Sequenzen von A- und B-Chromosomen. Phylogenetische Untersuchungen identifizierten keine Spezies, die eine ITS2-Sequenz hatte, die ähnlicher zu der B-Chromosomen-ITS2-Sequenz war als die A-Chromosomen-ITS2-Sequenz von B. dichromosomatica. Es wurde ein Ursprung der B-Chromosomen in der Zeit vor der Ausbildung der vier Cytodeme von B. dichromosomatica postuliert. Die Analyse der Assoziationen von Mikro-B-Chromosomen mit dem Nukleolus ergab, dass 70% der Mikro-B-Chromosomen nicht mit dem Nukleolus assoziierten. Die hohe Frequenz von nichtassoziierten Mikro-B-Chromosomen weist auf eine Inaktivität der Mikro-B-Chromosomen-lokalisierten 45S rDNA hin. Die Immunfluoreszenzmarkierung zeigte, dass sich das Chromatin der A- und B-Chromosomen deutlich in der euchromatischen Histon-H3-Methylierung unterscheidet. Während die A-Chromosomen deutliche Immunfluoreszenzsignale aufwiesen, zeigten die Mikro-B- und Standard-B-Chromosomen nur eine schwache Markierung mit Antikörpern gegen Histon H3K4me1,2,3, H3K9me3 und H3K27me2,3. Die heteropygnotischen, mit Tandem-Repeats angereicherten Mikro-B-Chromosomen waren dabei noch weniger mit diesen euchromatischen Markierungen gekennzeichnet als die Standard-B-Chromosomen. Keine Unterschiede zwischen den A- und B-Chromosomen wurden für die heterochromatischen Markierungen Histon H3K9me1,2 und H3K27me1 gefunden, was darauf hinweist, dass die B-Chromosomen nicht spezifisch durch zusätzliche heterochromatische Histonmarkierungen gekennzeichnet sind. / Summary The Asteraceae Brachycome dichromosomatica is a suitable species for the analysis of B chromosomes (Bs). The origin and activity of micro B-located 45S rDNA of was analysed. Microisolation of Bs and PCR with internal transcribed spacer 2 (ITS2)-specific primers succeeded in the isolation of B-specific ITS2-sequences. ITS2 was sequenced for micro B, large B and A chromosomes, and conserved differences were identified between sequences originating from A and both types of Bs. Phylogenetic analysis did not identify a species that contained an ITS2 sequence that was more similar to either of the B’s sequences than that of the B. dichromosomatica A chromosomes (As). Thus, an origin of the Bs from As at a time prior to the divergence of the four cytodemes of B. dichromosomatica is suggested. Because 70% of micro Bs did not co-localize with the nucleolus I conclude that micro B-located 45S rDNA is not constitutively transcribed. Immunofluorescence demonstrates that the chromatin in A and both types of Bs differs markedly in euchromatic histone H3 methylation marks. While A chromosomes are labelled brightly, the micro B and large Bs are faintly labelled with antibodies against H3K4me2/3, H3K9me3 and H3K27me2/3. The heteropycnotic, tandem-repeat enriched micro Bs were even less labelled with euchromatic histone H3 methylation marks than large Bs. No differences between A and Bs were found as to the heterochromatic marks H3K9me1/2 and H3K27me1, indicating that Bs are not additionally labelled by heterochromatin typical histone H3 modifications. 1

Page generated in 0.0153 seconds