301 |
ROS generated by mitochondrial electron transport chain complexes I and III regulate differentiation of the pluripotent cell line P19Pashkovskaia, Natalia 13 March 2018 (has links) (PDF)
Mitochondria are essential for the viability of mammalian cells and provide a compartment for specific chemical reactions. Cellular respiration -- the main mitochondrial function -- is tightly connected with ROS production: the mitochondrial electron transport chain complexes I and III are the main ROS sources in mammalian cells. It has been reported that complex I and complex III activities are essential for cell cycle, apoptosis and stem cell differentiation (Spitkovsky et al., 2004; Varum et al., 2009; Lee et al., 2011; Ma et al., 2011; Tormos et al., 2012).
In our work, we aimed to investigate the role of mitochondrial electron transport chain activity in the regulation of the differentiation potential and to unravel signaling pathways that could participate in this regulation. As a model, we used the P19 pluripotent stem cell line that can be easily differentiated into trophoblasts, expressing intermediate filaments cytokeratin 8/18, and neurons, which express cytoskeleton protein beta-III-tubulin.
We first showed that both trophoblast and neural differentiation of P19 cells were accompanied by activation of cellular respiration. The analysis of respiratory chain complexes and supercomplexes, however, showed that undifferentiated P19 cells, as well as their differentiated derivatives did not differ in their respiratory machinery, including functional respirasomes. While undifferentiated cells did not use respiration as the main energy source, cellular respiration was activated during differentiation, indicating that oxidative metabolism was important for efficient differentiation.
To investigate the potential role of mitochondrial electron transport chain activity we monitored the influence of a disrupted electron flow on the differentiation of P19 cells. We found that the activity of complex I and complex III influenced the differentiation potential of the pluripotent P19 cell line: the presence of complex I and complex III inhibitors rotenone, antimycin A, or myxothiazol increased the amount of cytokeratin 8/18+ cells during trophoblast differentiation, but almost completely prevented the formation of neuron-like beta-III-tubulin+ cells during neuron differentiation. Moreover, a low oxygen level (1 % O2 vs 21 % O2 in atmosphere) - the final electron acceptor - had the same effect on differentiation. These data suggest that mitochondrial electron transport chain activity contributes to the regulation of differentiation.
The presence of complex I and complex III inhibitors, as well as oxygen scarcity, increase ROS production. We suggested that increased ROS level could explain the observed effects. By visualizing mitochondrial superoxide production with a specific dye – MitoSox - we confirmed that rotenone, antimycin A, myxothiazol, as well as low oxygen conditions, increased the superoxide level. These results suggest that the observed changes of the differentiation potential of P19 cells are associated with ROS production. To prove this idea, we differentiated P19 cells in presence of paraquat – a known ROS inducer. In line with our hypothesis paraquat promoted trophoblast differentiation. The received results suggest that the mitochondrial electron transport chain activity regulates differentiation through the ROS level.
ROS are secondary messengers that participate in numerous processes including cell proliferation and differentiation. We aimed to predict the signal pathway that connects ROS level in stem cells and their differentiation potential. For this purpose, we performed a microarray analysis and compared the gene expression profiles of cells grown under hypoxia or in the presence of the complex III inhibitor myxothiazol with untreated control cells. The expression analysis revealed p53 as a transcriptional factor that impacts the differentiation potential in treated cells. p53 is a known redox-sensing molecule (Bigarella et al., 2014) that influences the differentiation potential through cell cycle control (Maimets et al., 2008). This observation is in line with our results and suggests that p53 may regulate the differentiation potential of P19 cells. We are planning to investigate the role of p53 signaling in the regulation of cell cycle and differentiation potential of P19 cell line.
|
302 |
Desarrollo de una herramienta gráfica de exploración de robots con ROSSchkolnik Müller, Demian Aley January 2015 (has links)
Ingeniero Civil en Computación / ROS, un middleware para robots, ofrece gran variedad de herramientas para su utilización. Sin embargo, carece de una importante herramienta: Algo que permita visualizar de forma dinámica sus componentes, y poder así entender sistemas complejos de mejor forma.
Esta memoria consistió en desarrollar una herramienta, que es capaz de visualizar, mediante un grafo, un sistema completo creado en ROS, pudiendo ver cuáles son sus distintos componentes y cómo interactúan. Además, la herramienta incluye la opción de visualizar tres tipos de mensajes comunes presentes en ROS. El trabajo se realizó en el lenguaje de programación Smalltalk, y usando el ambiente de desarrollo Pharo. Para las visualizaciones se utilizó el motor de visualizaciones Roassal, basado en Pharo. El trabajo se dividió en cuatro grandes etapas.
La primera etapa consistió en un trabajo de investigación, haciendo una revisión de las herramienta a usar en el desarrollo, junto a un análisis de los mensajes comunes de ROS y como se representaban. Esto sería usado en la segunda etapa.
La segunda etapa consistió en el desarrollo de una API, que permitiera comunicación entre Pharo y ROS. Para ello se hizo uso de las herramientas de consola presentes en ROS. Junto a la API, se desarrollaron una serie de tests, a modo de robustecer la API frente a posibles cambios en ROS.
La tercera etapa consistió en la creación del grafo general de ROS. Este grafo nos muestra el sistema completo creado en ROS, indicándonos también de qué forma interactúan los componentes entre ellos. En esta etapa, la comunicación con ROS se hace exclusivamente a través de la API implementada en la segunda etapa.
La cuarta y última etapa consistió en la creación de las visualizaciones para tres mensajes comunes de ROS. Estas visualizaciones son dinámicas, es decir, cambian en tiempo real cuando los mensajes cambian.
El presente trabajo presenta primero el estudio previo, explicando las herramientas, lenguajes y funcionalidades que se usarán en el desarrollo. Esta sección también incluye información de herramientas similares existentes, y explica las falencias de éstas y la justificación de la creación de una nueva herramienta. La segunda parte de este trabajo contiene el desarrollo de la herramienta, comenzando por la API, para luego seguir con el grafo general y las visualizaciones.
A modo de conclusión, la herramienta creada presenta una manera eficaz y usable de explorar robots creados con ROS, y fue creada de manera modular y extensible, generando algunas visualizaciones de ejemplo. Puede servir como base para un trabajo futuro, que genere más visualizaciones así como también incluya un sistema de inserción de mensajes.
|
303 |
ADAPTIVE AUTONOMY WITH UNRELIABLE COMMUNICATIONMoberg, Ragnar January 2017 (has links)
For underwater robotics there exists severe constraints regarding wireless bandwidth in the kilobits range. This makes a centralised approach to high-level mission management possibly less than ideal due to inherent delays and possible temporary incompleteness in data during decision making. This thesis aims to propose, implement (in ROS) and test a distributed approach. An auction based method for task assignment was being used, as well as a Pagerank based approach that models a trust based hierarchy between autonomous agents inferred from information exchange, in order to enforce decision conformity. Simulations where carried out using UWsim and a custom made bandwidth limiter for ROS. It was concluded that the Pagerank based algorithm managed to uphold conformity and solve conflicts during network slowdown but did not always lead to the correct decisions being enforced.
|
304 |
Angiotensin II reguliert das Natriumkanal- Öffnungsverhalten über zwei Mechanismen: IP3-Rezeptoren aktivieren die CaMKII und ROS die PKA / Angiotensin II regulates sodium channel gating via two mechanisms: IP3-receptors activate CaMKII and ROS activate PKAFlebbe, Hannah 27 September 2017 (has links)
No description available.
|
305 |
Implication d'AIF dans la mort cellulaire et la physiologie mitochondriale : exemples dans la nécroptose intrinsèque et l'hématopoïèse / Implication of AIF in cell death and mitochondrial physiology : cases of intrinsic necroptosis and hematopoiesisCabon, Lauriane 10 October 2014 (has links)
AIF fait partie des protéines mitochondriales inductrices de mort mais possède aussi un rôle vital nécessaire à la respiration cellulaire. Les recherches menées lors de cette thèse portent sur ces deux fonctions. D'une part, j'ai approfondi l'étude de la nécrose régulée induite par un agent alkylant de l'ADN. J'ai découvert l'importance de RIP1 dans cette voie de mort cellulaire et ainsi conduit à la définir comme nécroptose. J'ai aussi mis en évidence le rôle de BID, BH3-only de la famille BCL-2, dans la libération d'AIF des mitochondries. J'ai montré que les protéases calpaïnes clivaient BID permettant à sa forme tronquée de relocaliser aux mitochondries et d'y activer le facteur pro-apoptotique BAX. Cette étude contribue à replacer le rôle des BH3-only dans des voies de mort cellulaire au delà de l'apoptose. D'autre part, j'ai étudié le rôle d'AIF dans l'hématopoïèse grâce à un modèle murin invalidé pour AIF dans ce système. J'ai observé un blocage de différenciation thymique et le développement d'une pancytopénie sévère. J'ai démontré que cette dernière est associée à la perte des cellules souches hématopoïétiques dont j'ai testé les capacités ex vivo et in vivo. Pour comprendre les raisons de ce défaut, j'ai caractérisé les conséquences associées à la perte d'AIF : perte du complexe I de la chaine respiratoire, diminution d'activité de phosphorylation oxydative, diminution de la production d'ATP, augmentation des espèces réactives de l'oxygène. Cette deuxième étude démontre l'importance d'une phosphorylation oxydative fonctionnelle et de mitochondries saines pour une hématopoïèse normale et particulièrement pour le maintien des cellules souches hématopoïétiques. / AIF is one of the cell death effectors released from mitochondria but it also possess a vital role by regulating the cellular respiration. Throughout this thesis work, I have focused my studies on these two functions. On one hand, I have performed a deeper characterization of the DNA alkylating agent induced regulated necrosis. I have identified RIP1 as a crucial determinant of this cell death pathway, hence linking it to necroptosis. I have also highlighted the role of BID, a BH3-only member of the BCL-2 family, in the mitochondrial release of AIF. I have shown that calpains proteases cleave BID into tBID which relocalize to mitochondria where it helps activating the pro-apoptotic factor BAX. This study contributes to reconsider the role of BH3-only proteins in cell death pathways beyond apoptosis. On the other hand, I have studied AIF role in hematopoiesis thanks to a mouse model with hematopoietic lineage-specific deletion of AIF. I have observed a block in T-cell development and the rapid development of severe pancytopenia. I have demonstrated that this pancytopenia is associated with the loss of hematopoietic stem cells whom capacities were tested both ex vivo and in vivo. In order to understand the underlying determinants of these defects, I have characterized the cellular consequences related to AIF deletion : loss of the respiratory chain complex I, decrease of the oxidative phosphorylation capacity, decreased levels of ATP, increased levels of reactive oxygen species. This second study reveals the importance of a proper oxidative phosphorylation system combined with healthy mitochondria for a normal hematopoiesis and hematopoietic stem cells maintenance.
|
306 |
Regulation of hematopoiesis in the freshwater crayfish, Pacifastacus leniusculus : role of transglutaminaseJunkunlo, Kingkamon January 2017 (has links)
The freshwater crayfish, Pacifastacus leniusculus, has been used as a model for studying hematopoiesis or blood cell production or hematopoiesis and immunity. The work of this thesis aims to investigate the impact of factors such as ROS signaling, Ast1, and the PVF/PVR signaling pathway in controlling stem cell behavior during hematopoiesis and specifically the role of the crosslinking enzyme transglutaminase (TGase) in regulation of hematopoiesis. The role of ROS in crayfish hematopoiesis was characterized by using the antioxidant named NAC to inhibit ROS production. Low ROS level resulted in a prolonged decrease in hemocyte numbers and a combined injection of LPS and NAC caused a slower rate of new hemocyte production. A low ROS level in cell cultures supplemented with crude Ast1 was found to inhibit cell spreading and a high extracellular TGase activity was detected on the surfaces of APC and HPT cells. We suggest that ROS serves as a prime signal to control proliferation and differentiation of progenitor cells by affecting extracellular TGase activity. We reported an inhibitory effect of Ast1 on TGase enzyme activity and on its crosslinking activity and consequently Ast1 affects the clot formation and thus coagulation by inhibiting the crosslinking activity of the TGase enzyme. Secretion of the clot protein (CP) and the production of CP filament network between spreading cells were observed in HPT cell cultures in vitro. In the presence of CP together with Ast1 in 3D-collagen-I cultures, HPT cells were found to be more elongated and they formed chains of cells throughout the surrounding matrix. In the HPT tissue, CP was located around the HPT cells or around the lobules of HPT, and thus, CP was demonstrated to be a part of ECM and to possibly function together with collagen in generating a suitable environment for HPT progenitor cells. The inhibition of PVF/PVR downstream signaling pathway by Sunitinib malate resulted in a dramatic change of cell morphology and induction of an increase cell surface area during cell culture. The addition of crude Ast1 into the cell cultures in vitro enhanced this effect. Consequently, cell migration was stimulated and a high extracellular TGase activity on HPT cell surface was found after this inhibition. In conclusion, the work in this thesis provides new insight in understanding the role of the extracellular matrix (ECM) and extracellular TGase activity in controlling stem cell activity.
|
307 |
4-Hydroxy Estradiol-Induced Oxidant-Mediated Signaling Is Involved In The Development Of Breast CancerOkoh, Victor 12 November 2010 (has links)
Breast cancer is a disease associated with excess exposures to estrogens. While the mode of cancer causation is unknown, others have shown that oxidative stress induced by prolonged exposure to estrogens mediates renal, liver, endometrial and mammary tumorigenesis though the mechanism(s) underling this process is unknown. In this study, we show that 4-hydroxyl 17β-estradiol (4-OHE2), a catechol metabolite of estrogen, induces mammary tumorigenesis in a redox dependent manner. We found that the mechanism of tumorigenesis involves redox activations of nuclear respiratory factor-1 (NRF1); a transcriptions factor associated with regulation of mitochondria biogenesis and oxidative phosphorylation (OXPHOS), as well as mediation of cell survival and growth of cells during periods of oxidative stress. Key findings from our study are as follows: (i) Prolonged treatments of normal mammary epithelial cells with 4-OHE2, increased the formation of intracellular reactive oxygen species (ROS). (ii) Estrogen-induced ROS activates redox sensitive transcription factors NRF1. (iii) 4-OHE2 through activation of serine-threonine kinase and histone acetyl transferase, phosphorylates and acetylate NRF1 respectively. (iv) Redox mediated epigenetic modifications of NRF1 facilitates mammary tumorigenesis and invasive phenotypes of breast cancer cells via modulations of genes involved in proliferation, growth and metastasis of exposed cells. (v) Animal engraftment of transformed clones formed invasive tumors. (vi) Treatment of cells or tumors with biological or chemical antioxidants, as well as silencing of NRF1 expressions, prevented 4-OHE2 induced mammary tumorigenesis and invasive phenotypes of MCF-10A cells. Based on these observations, we hypothesize that 4-OHE2 induced ROS epigenetically activate NRF1 through its phosphorylation and acylation. This, in turn, through NRF1-mediated transcriptional activation of the cell cycle genes, controls 4-OHE2 induced cell transformation and tumorigenesis.
|
308 |
The Role of Redox Signaling in the Molecular Mechanism of Tamoxifen Resistance in Breast CancerGarba, Nana Aisha 13 January 2012 (has links)
The emergence of tamoxifen or aromatase inhibitor resistance is a major problem in the treatment of breast cancer. The molecular signaling mechanism of antiestrogen resistance is not clear. Understanding the mechanisms by which resistance to these agents arise could have major clinical implications for preventing or circumventing it. Therefore, in this dissertation we have investigated the molecular mechanisms underlying antiestrogen resistance by studying the contributions of reactive oxygen species (ROS)-induced redox signaling pathways in antiestrogen resistant breast cancer cells. Our hypothesis is that the conversion of breast tumors to a tamoxifen-resistant phenotype is associated with a progressive shift towards a pro-oxidant environment of cells as a result of oxidative stress. The hypothesis of this dissertation was tested in an in vitro 2-D cell culture model employing state of the art biochemical and molecular techniques, including gene overexpression, immunoprecipitation, Western blotting, confocal imaging, ChIP, Real-Time RT-PCR, and anchorage-independent cell growth assays. We observed that tamoxifen (TAM) acts like both an oxidant and an antioxidant. Exposure of tamoxifen resistant LCC2 cell to TAM or 17 beta-estradiol (E2) induced the formation of reactive oxidant species (ROS). The formation of E2-induced ROS was inhibited by co-treatment with TAM, similar to cells pretreated with antioxidants. In LCC2 cells, treatments with either E2 or TAM were capable of inducing cell proliferation which was then inhibited by biological and chemical antioxidants. Exposure of LCC2 cells to tamoxifen resulted in a decrease in p27 expression. The LCC2 cells exposed to TAM showed an increase in p27 phosphorylation on T157 and T187. Conversely, antioxidant treatment showed an increase in p27 expression and a decrease in p27 phosphorylation on T157 and T187 in TAM exposed cells which were similar to the effects of Fulvestrant. In line with previous studies, we showed an increase in the binding of cyclin E–Cdk2 and in the level of p27 in TAM exposed cells that overexpressed biological antioxidants. Together these findings highly suggest that lowering the oxidant state of antiestrogen resistant LCC2 cells, increases LCC2 susceptibility to tamoxifen via the cyclin dependent kinase inhibitor p27.
|
309 |
Redox Regulation of Ras Proteins in Dictyostelium discoideumCastillo Chabeco, Boris 19 March 2015 (has links)
Reactive oxygen species are a normal consequence of life in an aerobic environment. However when they deviate from the narrow permissible range in cells, oxidative damage can occur. Dictyostelium discoideum is a model organism ideal for the study of cell signaling events such as those affected by oxidative stress. It was previously shown that Ras signaling in Dictyostelium is affected by genetic inactivation of the antioxidant enzyme Superoxide dismutase C (SodC) and in vitro data suggests that the NKCD motif of Ras is the redox target of superoxide.
The main objective of this project was to determine the mechanism of superoxide mediated Ras regulation in vivo. To accomplish the main objective, we cloned, and in some cases, mutated different Ras proteins and later determined their activity in wild type and sodC- cells. RasC and RasD showed normal activation in sodC- cells, however RasG and RasS displayed high Ras activity. These last two Ras proteins contain the NKC118D motif inside the nucleotide binding region. A mutation of cysteine118 to alanine in RasG rendered the protein less active in sodC- than the wild type RasG protein and a mutation alanine118 to cysteine in RasD conferred redox sensitivity to this small GTPase. Additionally, the propensity of RasG to be targeted by superoxide was evident when the environment of wild type cells was manipulated to induce the internal generation of superoxide through changes in the extracellular ion levels mainly magnesium. Lack of magnesium ions increased the intracellular level of superoxide and severely hampered directional cell migration. Chemotaxis of cells expressing RasG was negatively impacted by the absence of magnesium ions; however rasG- cells did not seem to be affected in their ability to perform chemotaxis. The last experiment implies that RasG is an important mediator of cell signaling during oxidative stress, responsible for preventing cells from continuing their developmental program. Our study suggests that the cysteine residue in the NKCD motif is essential for mediating the redox sensitivity of Ras proteins in Dictyostelium and that RasG is an essential mediator of the response to oxidative stress in this organism.
|
310 |
ROS & energy production pathways in the determination of resistance/sensitivity to glucocorticoids-induced apoptosis in acute lymphoblastic leukaemiaBerrou, Ilhem January 2012 (has links)
Glucocorticoids have long been used in the treatment of acute lymphoblastic leukaemia due to their ability to cause cell cycle arrest and apoptosis of lymphoid cells. However, some patients do not respond to glucocorticoid treatment and the majority, who initially respond, may relapse upon prolonged hormone treatment. The inefficiency of the treatment is mainly attributed to the gradual loss of the cellular sensitivity to glucocorticoid-induced apoptosis. Therefore, the need to understand the molecular mechanisms of resistance/ sensitivity of acute lymphoblastic leukaemia cells to glucocorticoid-induced apoptosis is of vital importance, as this will help to develop better prognostic outcomes and improve glucocorticoids therapy. Several mechanisms have been proposed to explain the evasion of glucocorticoid mediated apoptosis in resistant cells. These include post-translational modifications of GR especially phosphorylation which modulates the GR transcriptional activity, and GR mediated signalling thereby affecting gene expression and hence the balance between pro- and anti-apoptotic Bcl-2 family members. In addition the concentration of components of the energy metabolism pathways (i.e. oxidative phosphorylation and glycolysis) and ROS generation are altered in the acute lymphoblastic leukaemia cells. The hypothesis that differentially phosphorylated GR in the resistant versus sensitive ALL cells modulate GR transcriptional activity and target selectively resulting in diverse pro- or anti-apoptotic Bcl-2 family members' gene expression in the two cell lines was tested. Furthermore, in a similar manner, the possibility that differential GR phosphorylation diversely affected gene expression of GR transcriptional target genes that are components of cellular energy production pathways in resistant versus sensitive cells, altering energy and ROS production levels in distinct ways in the two cell lines was explored. GR was found to be predominantly phosphorylated at S211 in the glucocorticoid-sensitive CEM C7-14, and at S226 in the glucocorticoid-resistant CEM C1-15 cells. Differential GR phosphorylation is presumably an indication of dominant p38 MAPK activity in CEM C7-14 and JNK kinase activity in CEM C1-15, which could lead to adverse gene expression of some pro- and anti-apoptotic Bcl-2 family members and particularly Mcl-1, in the two cell lines. Furthermore, differential GR phosphorylation at S211 and S226 in CEM C7-14 and CEM C1-15 affected the gene expression of the Cytochrome C Oxidase assembly factors Surf-1 and SCO2 as well as the nuclear encoded Cytochrome C Oxidase subunit COX-Va and the mitochondrial encoded COX-I, COX-II and COX-III. This effect was more pronounced in the glucocorticoid-sensitive CEM C7-14 cells, probably due to the fact that GR was predominantly phosphorylated at S211 and hence transcriptionally active in these cells. Moreover, in comparison to the resistant CEM C1-15 cells, the CEM C7-14 cells exhibited higher levels of ROS, increased number of active mitochondria and up-regulated glycolysis upon inhibition of oxidative phosphorylation. Glucocorticoids further reduced ROS levels in the CEM C1-15 cells, and increased the NADH/ NAD+ ratio. In conclusion results presented in this thesis provide evidence that differential GR phosphorylation in resistant versus sensitive to glucocorticoid induced apoptosis cells plays essential role in the regulation of programmed cell death and energy metabolism pathways, offering a potential explanation for the molecular events that determine resistance/sensitivity to glucocorticoid-induced apoptosis in ALL cells.
|
Page generated in 0.0261 seconds