Spelling suggestions: "subject:"deactive low"" "subject:"deactive flow""
11 |
Confined Reacting Supersonic Mixing Layer - A DNS Study With Analysis Of Turbulence And Combustion ModelsChakraborty, Debasis 06 1900 (has links) (PDF)
No description available.
|
12 |
Analyse de l'initiation et du développement de l'auto-inflammation après compression rapide d’un mélange turbulent réactif : Application au contexte CAI/HCCI / Analysis of the initiation and development of autoignition after a rapid compression of a turbulent reactive mixture : Application to the context of CAI/HCCILodier, Guillaume 30 January 2013 (has links)
La stratégie de combustion par auto-inflammation d’une charge homogène en composition s’intègre dans une démarche de réduction des émissions de particules et de NOx, tout en conservant les rendements thermiques élevés des moteurs Diesel classiques. Pour contrôler ce nouveau mode de combustion, une compréhension fine des mécanismes de couplage entre l'aérodynamique et la thermochimie est nécessaire. Des simulations numériques directes d'un écoulement homogène, turbulent, réactif et subissant une compression, ont été effectués. Deux régimes d'auto-inflammation ont ainsi pu être définis. Le premier, dit quasi-homogène, est caractérisé par une auto-inflammation en masse d'un volume important du mélange réactif et s'accompagne de fortes ondes de pression. Dans le second régime, dit localisé, les noyaux s'initient de manière plus sporadique dans l'espace et dans le temps et aucune onde de pression significative n'est générée lors de l'auto-allumage. / Combustion by autoignition of a homogeneous charge aims at reducing particulate matter as well as NOx emissions, while maintaining higher thermal efficiency of conventional diesel engines. To control this new mode of combustion, a fine understanding of the mechanisms of coupling between aerodynamics and thermochemistry is required. Direct Numerical Simulations of a turbulent reactive flow, undergoing a compression, have been performed. This study led to identification of two regimes. The first, known as quasi-homogeneous, is characterized by volumetric autoignition of large zones of the reactive mixture and results in the generation of strong pressure waves, which are potentially dangerous for the structure of engines. In the second regime, called localized, hot spots are initiated more sporadically in space and time, and their topology is such that no significant pressure wave is generated.
|
13 |
Numerical modeling of moving carbonaceous particle conversion in hot environments / Numerische Modellierung der Konversion bewegter Kohlenstoffpartikel in heißen UmgebungenKestel, Matthias 24 June 2016 (has links) (PDF)
The design and optimization of entrained flow gasifiers is conducted more and more via computational fluid dynamics (CFD). A detailed resolution of single coal particles within such simulations is nowadays not possible due to computational limitations. Therefore the coal particle conversion is often represented by simple 0-D models. For an optimization of such 0-D models a precise understanding of the physical processes at the boundary layer and within the particle is necessary.
In real gasifiers the particles experience Reynolds numbers up to 10000. However in the literature the conversion of coal particles is mainly regarded under quiescent conditions. Therefore an analysis of the conversion of single particles is needed. Thereto the computational fluid dynamics can be used.
For the detailed analysis of single reacting particles under flow conditions a CFD model is presented. Practice-oriented parameters as well as features of the CFD model result from CFD simulations of a Siemens 200MWentrained flow gasifier. The CFD model is validated against an analytical model as well as two experimental data-sets taken from the literature. In all cases good agreement between the CFD and the analytics/experiments is shown.
The numerical model is used to study single moving solid particles under combustion conditions. The analyzed parameters are namely the Reynolds number, the ambient temperature, the particle size, the operating pressure, the particle shape, the coal type and the composition of the gas. It is shown that for a wide range of the analyzed parameter range no complete flame exists around moving particles. This is in contrast to observations made by other authors for particles in quiescent atmospheres. For high operating pressures, low Reynolds numbers, large particle diameters and high ambient temperatures a flame exists in the wake of the particle. The impact of such a flame on the conversion of the particle is low. For high steam concentrations in the gas a flame appears, which interacts with the particle and influences its conversion.
Furthermore the impact of the Stefan-flow on the boundary layer of the particle is studied. It is demonstrated that the Stefan-flow can reduce the drag coefficient and the Nusselt number for several orders of magnitude. On basis of the CFD results two new correlations are presented for the drag coefficient and the Nusselt number. The comparison between the correlations and the CFD shows a significant improvement of the new correlations in comparison to archived correlations.
The CFD-model is further used to study moving single porous particles under gasifying conditions. Therefore a 2-D axis-symmetric system of non-touching tori as well as a complex 3-D geometry based on the an inverted settlement of monodisperse spheres is utilized. With these geometries the influence of the Reynolds number, the ambient temperature, the porosity, the intrinsic surface and the size of the radiating surface is analyzed. The studies show, that the influence of the flow on the particle conversion is moderate. In particular the impact of the flow on the intrinsic transport and conversion processes is mainly negligible. The size of the radiating surface has a similar impact on the conversion as the flow in the regarded parameter range.
On basis of the CFD calculations two 0-D models for the combustion and gasification of moving particles are presented. These models can reproduce the results predicted by the CFD sufficiently for a wide parameter range.
|
14 |
Numerical modeling of moving carbonaceous particle conversion in hot environmentsKestel, Matthias 02 June 2016 (has links)
The design and optimization of entrained flow gasifiers is conducted more and more via computational fluid dynamics (CFD). A detailed resolution of single coal particles within such simulations is nowadays not possible due to computational limitations. Therefore the coal particle conversion is often represented by simple 0-D models. For an optimization of such 0-D models a precise understanding of the physical processes at the boundary layer and within the particle is necessary.
In real gasifiers the particles experience Reynolds numbers up to 10000. However in the literature the conversion of coal particles is mainly regarded under quiescent conditions. Therefore an analysis of the conversion of single particles is needed. Thereto the computational fluid dynamics can be used.
For the detailed analysis of single reacting particles under flow conditions a CFD model is presented. Practice-oriented parameters as well as features of the CFD model result from CFD simulations of a Siemens 200MWentrained flow gasifier. The CFD model is validated against an analytical model as well as two experimental data-sets taken from the literature. In all cases good agreement between the CFD and the analytics/experiments is shown.
The numerical model is used to study single moving solid particles under combustion conditions. The analyzed parameters are namely the Reynolds number, the ambient temperature, the particle size, the operating pressure, the particle shape, the coal type and the composition of the gas. It is shown that for a wide range of the analyzed parameter range no complete flame exists around moving particles. This is in contrast to observations made by other authors for particles in quiescent atmospheres. For high operating pressures, low Reynolds numbers, large particle diameters and high ambient temperatures a flame exists in the wake of the particle. The impact of such a flame on the conversion of the particle is low. For high steam concentrations in the gas a flame appears, which interacts with the particle and influences its conversion.
Furthermore the impact of the Stefan-flow on the boundary layer of the particle is studied. It is demonstrated that the Stefan-flow can reduce the drag coefficient and the Nusselt number for several orders of magnitude. On basis of the CFD results two new correlations are presented for the drag coefficient and the Nusselt number. The comparison between the correlations and the CFD shows a significant improvement of the new correlations in comparison to archived correlations.
The CFD-model is further used to study moving single porous particles under gasifying conditions. Therefore a 2-D axis-symmetric system of non-touching tori as well as a complex 3-D geometry based on the an inverted settlement of monodisperse spheres is utilized. With these geometries the influence of the Reynolds number, the ambient temperature, the porosity, the intrinsic surface and the size of the radiating surface is analyzed. The studies show, that the influence of the flow on the particle conversion is moderate. In particular the impact of the flow on the intrinsic transport and conversion processes is mainly negligible. The size of the radiating surface has a similar impact on the conversion as the flow in the regarded parameter range.
On basis of the CFD calculations two 0-D models for the combustion and gasification of moving particles are presented. These models can reproduce the results predicted by the CFD sufficiently for a wide parameter range.:List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XIII
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIX
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 State of the Art in Carbon Conversion Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Combustion of Solid Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Gasification of Porous Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Classification of the Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.3 Overview of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2 Basic Theory and Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Geometry and Length Scales of Coal Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.2 Conditions in a Siemens Like 200 MW Entrained Flow Gasifier . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Velocity Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.2.2 Temperature Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Particle Volume Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2.3 Time Scales of the Physical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.5 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Gas Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
2.7 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Numerics and Solution Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.9 Mesh and Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
3 CFD-based Oxidation Modeling of a Non-Porous Carbon Particle . . . . . . . . . . . . . . . . . . . . .37
3.1 Chemical Reaction System for Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.1.1 Heterogeneous Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.1.2 Homogeneous Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
3.1.3 Comparison of the Semi-Global vs. Reduced Reaction Mechanisms for the Gas Phase . .41
3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.2.1 Validation Against an Analytical Solution of the Two-Film Model . . . . . . . . . . . . . . . . . .43
3.2.2 Validation Against Experiments I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.3 Validation Against Experiments II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
3.3 Influence of Ambient Temperature and Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . .51
3.4 Influence of Heterogeneous Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Influence of Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
3.6 Influence of Operating Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
3.7 Influence of Particle Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
3.8 The influence of Particle Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.9 Impact of Stefan Flow on the Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.9.1 Impact of Stefan Flow on the Drag Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
3.9.2 Impact of Stefan Flow on the Nusselt and Sherwood Number . . . . . . . . . . . . . . . . . . . .85
3.10 Single-Film Sub-Model vs. CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4 CFD-based Numerical Modeling of Partial Oxidation of a Porous Carbon Particle . . . . . . . . . .99
4.1 Chemical Reaction System for Gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.1.1 Heterogeneous Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
4.1.2 Homogeneous Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Two-Dimensional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.2 Influence of Reynolds Number and Ambient Temperature . . . . . . . . . . . . . . . . . . . . . .109
4.2.3 Influence of Porosity and Internal Surface . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3 Comparative Three-Dimensional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
4.3.2 Results of the 3-D Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.4 Extended Sub-Model for Gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .141
5.1 Summary of This Work . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .141
5.2 Recommendations for Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.1 Appendix I: Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2 Appendix II: Two-Film Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3 Appendix III: Sub-Model for the Combustion of Solid Particles . . . . . . . . . . . . . . . . . . . . 160
6.4 Appendix IV: Sub-Model for the Gasification of Porous Particles . . . . . . . . . . . . . . . . . . . 161
|
15 |
Caractérisation et modélisation du comportement lors de l'allumage de poudres propulsives à vulnérabilité réduite en balistique intérieure / Experimental characterization and numerical modeling of the ignition of low vulnerability gun propellants in interior ballisticsBoulnois, Christophe 30 May 2012 (has links)
Les poudres propulsives pour armes sont des matériaux énergétiques dont la combustion permet l’accélération de projectiles jusqu’à des vitesses importantes. Ces matériaux énergétiques sensibles peuvent être soumis à de fortes contraintes (chocs, impacts et incendies) lors de leur utilisation. Le remplacement de certaines substances entrant dans leur formulation permet de diminuer leur vulnérabilité. En conséquence, ces poudres propulsives présentent une dynamique d’allumage différente. Ce travail de recherches est consacré à l’allumage des poudres propulsives pour armes et se présente en quatre chapitres. Un état de l’art sur le sujet est réalisé. Il porte en particulier sur la phénoménologie de l’allumage, la caractérisation de poudres propulsives, et la modélisation de l’allumage. Deux poudres propulsives sont expérimentalement analysées par thermogravimétrie, calorimétrie et spectrométrie de masse. Cette analyse permet de caractériser les différentes étapes cinétiques de la dégradation thermique de ces poudres propulsives. Un code de modélisation biphasique 2D est développé pour servir de support à la comparaison de modèles d’allumage. Le modèle implémenté décrit la chambre de combustion du canon dans les premières phases du coup de canon, lorsque le lit de poudre propulsive est compacté et que les gaz issus du dispositif pyrotechnique d’allumage le parcourent. Un modèle d’allumage est développé à partir des résultats expérimentaux obtenus au deuxième chapitre. Le code de calcul précédemment évoqué permet de comparer l’influence de différents modèles sur la propagation de l’allumage. / Gun Propellants are energetic materials whose combustion can accelerate projectiles to high speeds. These sensitive energetic materials can be subjected to high stresses (shocks, impacts and fires), potentially able to ignite them. The modification of their chemical formulation reduces such vulnerability. Consequently, these propellants have different ignition dynamics. This work focuses on the ignition of gun propellants and comes in four chapters. A state of the art on the subject is firstly made. It focuses on the phenomenology of the ignition and on energetic materials experimental characterization, and modeling of their ignition. Two gun propellants are experimentally analyzed by thermogravimetry, calorimetry and mass spectrometry. This analysis allows characterizing the various stages of the degradation kinetics of these propellants. A 2D biphasic modeling code was developed to provide support for the comparison of ignition models. It describes the combustion chamber in the early stages of the gun firing, when the propellant bed is compacted and the gases from the pyrotechnic igniter are flowing through it. An ignition model is developed from the experimental data obtained in the second chapter. The previously mentioned modeling code allows comparing the influence of different ignition models on the spreading speed of the ignition signal through the packed bed of propellant.
|
Page generated in 0.0591 seconds