Spelling suggestions: "subject:"reflectance"" "subject:"reflectances""
571 |
Hyperspectral Image Generation, Processing and AnalysisHamid Muhammed, Hamed January 2005 (has links)
<p>Hyperspectral reflectance data are utilised in many applications, where measured data are processed and converted into physical, chemical and/or biological properties of the target objects and/or processes being studied. It has been proven that crop reflectance data can be used to detect, characterise and quantify disease severity and plant density.</p><p>In this thesis, various methods were proposed and used for detection, characterisation and quantification of disease severity and plant density utilising data acquired by hand-held spectrometers. Following this direction, hyperspectral images provide both spatial and spectral information opening for more efficient analysis.</p><p>Hence, in this thesis, various surface water quality parameters of inland waters have been monitored using hyperspectral images acquired by airborne systems. After processing the images to obtain ground reflectance data, the analysis was performed using similar methods to those of the previous case. Hence, these methods may also find application in future satellite based hyperspectral imaging systems.</p><p>However, the large size of these images raises the need for efficient data reduction. Self organising and learning neural networks, that can follow and preserve the topology of the data, have been shown to be efficient for data reduction. More advanced variants of these neural networks, referred to as the weighted neural networks (WNN), were proposed in this thesis, such as the weighted incremental neural network (WINN), which can be used for efficient reduction, mapping and clustering of large high-dimensional data sets, such as hyperspectral images.</p><p>Finally, the analysis can be reversed to generate spectra from simpler measurements using multiple colour-filter mosaics, as suggested in the thesis. The acquired instantaneous single image, including the mosaic effects, is demosaicked to generate a multi-band image that can finally be transformed into a hyperspectral image.</p>
|
572 |
Surface Characterization using Radiometric and Fourier Optical MethodsHansson, Peter January 2003 (has links)
This thesis treats static and dynamic surface characterization using radiometric and Fourier optical methods. A Fourier optical method has been developed for real time image processing in paper production and printing applications. It has been shown that the method can be used to measure crepe frequency, an important parameter in tissue paper production, as well as to monitor the wire mark pattern at paper web velocities of up to 20 m/s. The wire mark pattern has been used to measure dimensional variations across a paper web. These are important for the mechanical properties of paper. Imaging of the moving surfaces onto a spatial light modulator, necessary for Fourier optical analysis of opaque objects, constitutes a motion blur problem. This problem has been solved by means of optical motion compensation using a rotating mirror. A rotating mirror system has also been developed for the inspection of small particles fixed to a rotating sample disc. The optical motion compensation configurations have made exposure times of more than two orders of magnitude longer than the exposure time without compensation possible. A light scattering model for opaque objects, for example coated paper, has also been developed and verified, with a coefficient of determination between theory and measurement ranging from r2=0.84 to r2=0.98, on various paper samples. The light scattering model has been used in the development of an instrument based on the photometric stereo principle. In this instrument the reflectance (or color) and topography of opaque samples are determined from two or more images of the sample illuminated from different directions. The method has been successfully used for studies of the relation between topography and print results in gravure and flexographic printing. Comparisons of surface height profiles measured with the photometric stereo method and profiles obtained with mechanical and optical scanning stylus instruments have shown coefficients of determination of up to r2=0.97. The main advantages of the method are the high speed, the scalability and the ability to obtain reflectance and surface height maps of a surface simultaneously.
|
573 |
Applications of Solid-Phase Microextraction to Chemical Characterization of Materials Used in Road ConstructionTang, Bing January 2008 (has links)
Environmental and health aspects of road materials have been discussed for a long time, mostly regarding bitumen and bitumen fumes. However, just a few studies on other types of road materials have been reported. In this doctoral study, two types of materials, asphalt release agents and bituminous sealants, were investigated with regard to chemical characterization and emission profiles. Besides conventional test methods, solid-phase microextraction (SPME) technique was applied for emissions profiles screening and quantitative analysis. General description of main characteristics of asphalt release agents and bituminous sealants is given, and a comprehensive state-of-the-art on SPME technique is presented, especially on methodologies for analyzing mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs) in different sample matrices. In the experimental study, chemical characterization of the two material types was performed using conventional methods, including fourier transform infrared spectroscopy - attenuated total reflectance (FTIR-ATR), gel permeation chromatography (GPC), mass spectrometry (MS) and gas chromatography – mass spectrometry (GC-MS). General patterns regarding functional groups and molecular weight distribution were studied. In the case of asphalt release agents, more detailed information on chemical compositions, especially the contents of MAHs and PAHs, was obtained. General information on emission proneness of asphalt release agents was obtained using thermogravimetric analysis (TGA) and MS. Using headspace(HS)-SPME and GC-MS, emission profiles of asphalt release agents were characterized at different temperatures, whereas the profiles of bituminous sealants were obtained solely at room temperature. The results presented were used for ranking the materials with regard to degree of total emission as well as emission of hazardous substances. The applicability of HS-SPME for quantitative analysis of MAHs in asphalt release agents and emulsion-based bituminous sealants was investigated. The use of a surrogate sample matrix was concerned, and experimental parameters influencing the HS-SPME procedure, such as equilibration and extraction time, as well as effects of sample amount and matrices, were studied. The methods were evaluated with regard to detection limit, accuracy as well as precision. Different calibration approaches including external calibration, internal calibration and standard addition were investigated. The determination of MAHs in asphalt release agents and emulsion-based bituminous sealants using HS-SPME-GC-MS was conducted. / QC 20100913
|
574 |
Crystallization of Parabens : Thermodynamics, Nucleation and ProcessingHuaiyu, Yang January 2013 (has links)
In this work, the solubility of butyl paraben in 7 pure solvents and in 5 different ethanol-water mixtures has been determined from 1 ˚C to 50 ˚C. The solubility of ethyl paraben and propyl paraben in various solvents has been determined at 10 ˚C. The molar solubility of butyl paraben in pure solvents and its thermodynamic properties, measured by Differential Scanning Calorimetry, have been used to estimate the activity of the pure solid phase, and solution activity coefficients. More than 5000 nucleation experiments of ethyl paraben, propyl paraben and butyl paraben in ethyl acetate, acetone, methanol, ethanol, propanol and 70%, 90% ethanol aqueous solution have been performed. The induction time of each paraben has been determined at three different supersaturation levels in various solvents. The wide variation in induction time reveals the stochastic nature of nucleation. The solid-liquid interfacial energy, free energy of nucleation, nuclei critical radius and pre-exponential factor of parabens in these solvents have been determined according to the classical nucleation theory, and different methods of evaluation are compared. The interfacial energy of parabens in these solvents tends to increase with decreasing mole fraction solubility but the correlation is not very strong. The influence of solvent on nucleation of each paraben and nucleation behavior of parabens in each solvent is discussed. There is a trend in the data that the higher the boiling point of the solvent and the higher the melting point of the solute, the more difficult is the nucleation. This observation is paralleled by the fact that a metastable polymorph has a lower interfacial energy than the stable form, and that a solid compound with a higher melting point appears to have a higher solid-melt and solid-aqueous solution interfacial energy. It has been found that when a paraben is added to aqueous solutions with a certain proportion of ethanol, the solution separates into two immiscible liquid phases in equilibrium. The top layer is water-rich and the bottom layer is paraben-rich. The area in the ternary phase diagram of the liquid-liquid-phase separation region increases with increasing temperature. The area of the liquid-liquid-phase separation region decreases from butyl paraben, propyl paraben to ethyl paraben at the constant temperature. Cooling crystallization of solutions of different proportions of butyl paraben, water and ethanol have been carried out and recorded using the Focused Beam Reflectance Method, Particle Vision and Measurement, and in-situ Infrared Spectroscopy. The FBRM and IR curves and the PVM photos track the appearance of liquid-liquid phase separation and crystallization. The results suggest that the liquid-liquid phase separation has a negative influence on the crystal size distribution. The work illustrates how Process Analytical Technology (PAT) can be used to increase the understanding of complex crystallizations. By cooling crystallization of butyl paraben under conditions of liquid-liquid-phase separation, crystals consisting of a porous layer in between two solid layers have been produced. The outer layers are transparent and compact while the middle layer is full of pores. The thickness of the porous layer can reach more than half of the whole crystal. These sandwich crystals contain only one polymorph as determined by Confocal Raman Microscopy and single crystal X-Ray Diffraction. However, the middle layer material melts at lower temperature than outer layer material. / <p>QC 20130515</p> / investigate nucleation and crystallization of drug-like organic molecules
|
575 |
Electronic Coupling Effects and Charge Transfer between Organic Molecules and Metal Surfaces / Elektronische Kopplungseffekte und Ladungstransfer zwischen organischen Molekülen und MetalloberflächenForker, Roman 28 January 2010 (has links) (PDF)
We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. / Zur Analyse der Struktur-Eigenschafts-Beziehungen dünner, epitaktischer Molekülfilme wird in situ differentielle Reflexionsspektroskopie (DRS) als Variante der optischen Absorptionsspektroskopie verwendet. Klare Zusammenhänge zwischen den Spektren und der unterschiedlich starken Kopplung zum jeweiligen Substrat werden gefunden. Während man breite und beinahe unstrukturierte Spektren für eine Quaterrylen (QT) Monolage auf Au(111) erhält, ist die spektrale Form von auf Graphit abgeschiedenem QT ähnlich der isolierter Moleküle. Durch Einfügen einer atomar dünnen organischen Zwischenschicht bestehend aus Hexa-peri-hexabenzocoronen (HBC) mit einem deutlich unterschiedlichen elektronischen Verhalten gelingt sogar eine effiziente elektronische Entkopplung vom darunter liegenden Au(111). Diese Ergebnisse werden durch systematische Variation der Metallsubstrate (Au, Ag und Al), welche von inert bis sehr reaktiv reichen, untermauert. Zu diesem Zweck wird 3,4,9,10-Perylentetracarbonsäuredianhydrid (PTCDA) gewählt, um Vergleichbarkeit der molekularen Filmstrukturen zu gewährleisten, und weil dessen elektronische Anordnung auf verschiedenen Metalloberflächen bereits eingehend untersucht worden ist. Wir weisen ionisiertes PTCDA an einigen dieser Grenzflächen nach und schlagen vor, dass der Ladungsübergang mit der elektronischen Niveauanpassung zusammenhängt, welche mit der Ausbildung von Grenzflächendipolen auf den entsprechenden Metallen einhergeht.
|
576 |
Hyperspectral Image Generation, Processing and AnalysisHamid Muhammed, Hamed January 2005 (has links)
Hyperspectral reflectance data are utilised in many applications, where measured data are processed and converted into physical, chemical and/or biological properties of the target objects and/or processes being studied. It has been proven that crop reflectance data can be used to detect, characterise and quantify disease severity and plant density. In this thesis, various methods were proposed and used for detection, characterisation and quantification of disease severity and plant density utilising data acquired by hand-held spectrometers. Following this direction, hyperspectral images provide both spatial and spectral information opening for more efficient analysis. Hence, in this thesis, various surface water quality parameters of inland waters have been monitored using hyperspectral images acquired by airborne systems. After processing the images to obtain ground reflectance data, the analysis was performed using similar methods to those of the previous case. Hence, these methods may also find application in future satellite based hyperspectral imaging systems. However, the large size of these images raises the need for efficient data reduction. Self organising and learning neural networks, that can follow and preserve the topology of the data, have been shown to be efficient for data reduction. More advanced variants of these neural networks, referred to as the weighted neural networks (WNN), were proposed in this thesis, such as the weighted incremental neural network (WINN), which can be used for efficient reduction, mapping and clustering of large high-dimensional data sets, such as hyperspectral images. Finally, the analysis can be reversed to generate spectra from simpler measurements using multiple colour-filter mosaics, as suggested in the thesis. The acquired instantaneous single image, including the mosaic effects, is demosaicked to generate a multi-band image that can finally be transformed into a hyperspectral image.
|
577 |
Laponite-supported titania photocatalystsDaniel, Lisa Maree January 2007 (has links)
This thesis describes the synthesis and characterisation of titania photocatalysts for incorporation into a polyethylene film. Monodisperse, anatase-phase titania nanoparticles are prepared and the synthesis conditions necessary for attraction to a laponite clay support are determined. Methods of preventing agglomeration of the laponite system such as the use of a polyethylene oxide surfactant or chemical modification of the laponite plate edges with a dimethyloctyl methoxysilane are also explored. Finally, photocatalytic studies on the laponite-supported titania nanoparticles are performed, and the compatibility and photoactivity of these materials in the polyethylene film are examined.
|
578 |
Introgression of genes from rape to wild turnipJenkins, Toni E. January 2005 (has links)
Introgression of genes from crops into ruderal populations is a multi-step process requiring sympatry, synchronous flowering, chromosomal compatibility, successful pollination and development of the zygote, germination, establishment and reproduction of hybrid progeny. The goal of this thesis was to generate data on as many steps in this process as possible and integrate them into a predictive statistical model to estimate the likelihood of successful introgression under a range of scenarios. Rape (Brassica napus) and wild turnip (B. rapa var. oleifera) were used as a model system. A homozygous dominant mutation in the rape genome conferring herbicide resistance provided a convenient marker for the study of introgression. Potential differences between wild turnip populations from a wide range of geographic locations in New Zealand were examined. Hand pollination established the genetic compatibility of rape and wild turnip and a high potential for gene introgression from rape to wild turnip. Interspecific hybrids were easily generated using wild turnip as the maternal plant, with some minor differences between wild turnip populations. The frequency of successful hybridisation between the two species was higher on the lower raceme. However, the upper raceme produced more dormant interspecific hybrid seed. Field trials, designed to imitate rare rape crop escapes into the ruderal environment, examined the ability of rare rape plants to pollinate wild turnip plants over four summers. At a ratio of 1 rape plant for every 400 wild turnip plants, the incidence of interspecific hybridisation was consistently low (<0.1 to 2.1 % of total seed on wild turnip plants). There was a significant year effect with the first season producing significantly more seed and a greater frequency of interspecific hybrid progeny than the other years. The frequency of interspecific hybrid progeny increases when the ratio of rape: wild turnip plant numbers increases. The relative importance of anemophily and entomophily in the production of interspecific hybrids was examined. Wild turnip plants produced twice as many seeds with bee pollination relative to wind pollination. However, the frequency of interspecific hybrids under wind pollination was nearly twice that for bee pollination. Light reflectance patterns under UV light revealed a marked difference between wild turnip and rape flowers compared to near identical appearance under visible light. The data indicates that bees are able to distinguish between rape and wild turnip flowers and exhibit floral constancy when foraging among populations with these two species. Hybrid survival in the seed bank, germination and seedling establishment in the field are important components of fitness. Seed banks established in the soil after the field trials described above germinated in subsequent spring seasons. The predominantly brassica weed populations were screened for herbicide resistance and the numbers of interspecific hybrids germinating compared to the original frequency in the field trial results. Frequency of interspecific hybrids was reduced in the populations compared to the original seed deposit. Seed with a known frequency of interspecific hybrid seed was sown in a separate trial, and the frequency of interspecific hybrids compared at 0, 4, 6, and 8 weeks after sowing. Poor germination resulted limited competition between seedlings, however the frequency of interspecific hybrids declined over time indicating low plant fitness. There were no significant population effects on any parameters tested. Interspecific hybrids grown in a glasshouse were backcrossed to the parental species and selfed within the plant and within populations. Pollen from the interspecific hybrids was found to have markedly reduced fertility. Interspecific hybrid plants had low female fertility, with the majority (88%) of the pollinated flowers aborting the siliques. Of the remaining siliques, most (98%) had only one to three seeds per silique. Inheritance of the herbicide resistance gene was regular in backcrosses but highly skewed following self pollination with an excess of herbicide-sensitive progeny. Production of a stochastic predictive model integrated the information acquired over the practical work phase of this thesis and utilised the capabilities of @risk, a new application of a risk analysis tool. The three outputs examined were the number of flowering plants resulting from backcrosses to rape and wild turnip and self pollination of the interspecific hybrid progeny. Five scenarios were modelled and all demonstrated the high likelihood of introgression failure in this system. In all scenarios, >75% of simulations resulted in no interspecific hybrid progeny surviving to flowering in the third generation. In all scenarios, and for all three outputs, the seed set on the interspecific hybrids of the second generation was the major factor that limited the number interspecific hybrid progeny surviving to flowering in the third generation.
|
579 |
Μελέτη τροποποιημένων με βόριο καταλυτών Νi/Al2O3 για την αναμόρφωση του μεθανίου με διοξείδιο του άνθρακα / Study of boron-modified Ni/Al2O3 catalysts for the carbon dioxide reforming of methaneΦούσκας, Αγάπιος 25 January 2012 (has links)
Κατά τις τελευταίες δεκαετίες παρατηρείται συνεχής αύξηση της έντασης του φαινομένου του θερμοκηπίου γεγονός που προκαλεί σημαντικές συνέπειες στο περιβάλλον και στη ζωή μας γενικότερα. Συνεπώς, είναι απαραίτητη η μείωση της ανθρωπογενούς εκπομπής των αερίων που συμβάλλουν στην αύξηση του φαινομένου αυτού. Η εκμετάλλευση και χρήση των δύο πιο σημαντικών θερμοκηπικών αερίων, του μεθανίου και του διοξειδίου του άνθρακα, μπορεί να επιτευχθεί με την αναμόρφωση του CH4 με CO2 ή αλλιώς ξηρή αναμόρφωση του μεθανίου (Dry Reforming of Methane-DRM). Με τη διεργασία DRM τα δύο συγκεκριμένα αέρια μετατρέπονται σε αέριο σύνθεσης (synthesis gas), το οποίο χρησιμοποιείται είτε για τη σύνθεση πληθώρας οργανικών ενώσεων, είτε για την παραγωγή Η2 για ενεργειακούς σκοπούς. Η DRM παρουσιάζει σημαντικά πλεονεκτήματα: δεν απαιτείται η χρήση ύδατος, φθηνό σχετικά κόστος εγκαταστάσεων, χρησιμοποιείται σε χημικά συστήματα μεταφοράς ενέργειας, ενώ και το αέριο σύνθεσης που παράγεται έχει ακόμα κατάλληλη αναλογία για συνθέσεις Fischer–Tropsch. Παρόλα αυτά η DRM δεν έχει εκτεταμένη βιομηχανική εφαρμογή επειδή αντιμετωπίζει ένα σημαντικό μειονέκτημα: ο καταλύτης μετά από κάποιο χρόνο λειτουργίας απενεργοποιείται λόγω του άνθρακα που αποτίθεται πάνω του. Στην παρούσα εργασία μελετήθηκε ο state of the art καταλύτης Ni/Al2O3, τον οποίο τροποποιήσαμε με βόριο σε διάφορους λόγους [Β/(B+Νi)] με κύριο στόχο τη μείωση των ανθρακούχων αποθέσεων. Οι τροποποιημένοι καταλύτες συντέθηκαν με τη μέθοδο του υγρού συνεμποτισμού και χαρακτηρίστηκαν φυσικοχημικά με διάφορες τεχνικές, ώστε να μελετήσουμε την επίδραση του βορίου στην υφή τους (ΒΕΤ, porosimetry, SEM, TEM), στη δομή τους (XRD, UV-Vis DRS) και στην αναγωγιμότητά τους (H2-TPR). Η καταλυτική συμπεριφορά τους για την αντίδραση της ξηρής αναμόρφωσης του μεθανίου αξιολογήθηκε σε αντιδραστήρα σταθερής κλίνης, για 24h, σε συνθήκες: 973Κ, 1 atm, τροφοδοσία 50%CH4-50%CO2. Ο άνθρακας που αποτέθηκε στους χρησιμοποιημένους καταλύτες μετρήθηκε με τη μέθοδο της θερμοπρογραμματισμένης υδρογόνωσης (TPH). Τα ανηγμένα και χρησιμοποιημένα στην DRM καταλυτικά δείγματα μελετήθηκαν επίσης με ηλεκτρονικό μικροσκόπιο σάρωσης (SEM με αναλυτή EDS) και ηλεκτρονικό μικροσκόπιο διαπερατότητας (ΤΕΜ).
Βρέθηκε ότι η παρουσία του Β μειώνει σημαντικά την ποσότητα του αποτιθέμενου άνθρακα στους καταλύτες Ni/Al2O3, σε ποσοστό έως και 86%, χωρίς να επηρεάζει ιδιαίτερα τη δραστικότητα και την εκλεκτικότητα των καταλυτών. Σημαντικό ρόλο παίζει το ποσοστό του Β στον καταλύτη, με τον καταλύτη με λόγο Β/(B+Νi) = 0,5 να εμφανίζει τη βέλτιστη συμπεριφορά. Τα αποτελέσματα μας έδειξαν ότι η ιδιαίτερη θετική επίδραση του βορίου οφείλεται κυρίως στο γεγονός ότι ευνοεί τη διασπορά του μεταλλικού νικελίου. Τροποποίηση με βόριο, σε κατάλληλη περιοχή φορτίσεων, του καταλύτη Ni/Al2O3 μεγιστοποιεί το πλήθος των νανοσωματιδίων νικελίου με μέση διάσταση < 6.0 nm, τα οποία, ως γνωστόν, ελαχιστοποιούν την απόθεση άνθρακα. / The intensity of the greenhouse effect is constantly increasing in the last few decades with an adverse effect both on the environment and the humanity. In order to decrease the effect, human-caused emissions should be minimized. The two most important greenhouse gases, methane and carbon dioxide, can be used in the DRM (Dry Reforming of Methane) process. With this process the above mentioned gases are converted to synthesis gas, which is then used for the synthesis of a great number of organic compounds and synthetic fuels (through the Fisher-Tropsch syntheses) or for the production hydrogen to be used as a fuel (energy purposes). The DRM process presents a number of advantages, namely: no water is required, relatively low cost of process plants,it can be used as a Chemical Energy Transfer System and, finally, the produced synthesis gas has adequate CO/H2 ratio for Fisher-Tropsch syntheses. Although DRM is a promising process, its industrial application is hindered by a major drawback: the catalysts are rapidly deactivating due to coking.
In the current study, the state of the art catalyst Ni/Al2O3 was studied and modified with boron, using different ratios of Β/(B+Νi). Our primary objective was to reduce coking. The modified catalysts were synthesized by wet co-impregnation and physicochemically characterized in their oxidic, reduced and used forms, using various techniques, in order to investigate the influence of boron on the texture (BET, Porosimetry, SEM, TEM), structure (XRD, UV-Vis DRS) and reducibility (H2-TPR) of the catalysts. The catalytic performance for the DRM process was studied under stable conditions (973Κ, 1 atm and 50%CH4-50%CO2 undiluted feed), for 24h, using a fixed bed reactor. Carbonaceous deposits on the used catalysts were determined by Temperature Programmed Hydrogenation (TPH). Scanning Electron Microscopy (SEM) with EDS analyser and Transmission Electron Microscopy (TEM) were also used in the study of reduced and used catalytic samples.
Modifying Ni/Al2O3 catalysts with boron results in a great decrease of the deposited coke (up to 86%), without any significantly influence on the activity and selectivity of the catalysts. A major factor influencing the catalyst is the B loading, with the ratio Β/(B+Νi)=0,5 giving the best results. Boron’s positive effect was mainly attributed to its ability to increase Ni dispersion. Modification of Ni/Al2O3 catalysts, by using the appropriate boron loading, resulted to an increase of the amount of nickel nanoparticles with an average dimension under 6.0 nm, which are known to minimize coke deposition.
|
580 |
Cristallogenèse exploratoire, structure cristalline et propriétés physiques des deux nouveaux composés dans le système PbO-Fe2O3-P2O5 / Exploratory crystallogenesis, crystalline structure and physical properties of two new compounds in PbO-Fe2O3-P2O5 systemEl Hafid, Moulay El Hassan 22 October 2013 (has links)
Dans ce travail nous avons découvert un nouvel oxyphosphate PbFe3O(PO4)3 dont nous avons déterminé la structure par diffraction des rayons X sur monocristal entre 293 K et 973 K (monoclinique, groupe d’espace P21/m, a = 7,55826 Å, b = 6,3759 Å, c = 10,4245 Å et β = 99,956°, Z = 2, à température ambiante). La mesure de la susceptibilité magnétique statique et les mesures de chaleur spécifiques effectuées sur monocristaux révèlent l’existence d’une séquence inhabituelle de transitions de phase de type ferromagnétiques à Tc1 = 31,8 K, T2 = 23,4 K et Tc3 = 10 K. La mesure de la susceptibilité alternative suggère l’existence d’une dynamique type vitreuse entre ~20 K et Tc3. Nous avons réussi une première extraction des valeurs des exposants critiques (β, γ et δ) par les mesures de la susceptibilité magnétique alternative à la fois sur les poudres et les monocristaux de PbFe3O(PO4)3 et nous avons trouvé des valeurs compatibles avec celles prédites par la théorie du champ moyen.Nous avons aussi étudié et caractérisé les poudres de la série des composés AFe3O(PO4)3 (A=Ca, Sr, Pb) par la diffraction des rayons X, la microsonde Castaing (EPMA) couplée avec spectroscopie à dispersion de longueur d’onde (WDS), la spectroscopie optique et Raman, les mesures calorimétriques (DSC et chaleur spécifique) et les mesures magnétiques. Les mesures d’aimantation, de susceptibilité magnétique et de chaleur spécifique effectuées sur les poudres de la série des composés AFe3O(PO4)3 (A=Ca, Sr, Pb) ont confirmé la succession des trois transitions du second ordre de type ferromagnétique s’étendant sur l’intervalle de température 32 – 8 K. Les mesures de la réflexion diffuse révèlent l’existence de deux bandes d’absorption à 1047 et 837 nm dans les poudres de PbFe3O(PO4)3 et de SrFe3O(PO4)3, avec des sections efficaces ~10-20 cm2 typiques des transitions intraconfigurationnelles interdites de spin et dipolaire électrique forcée.L’exploration du système PbO-Fe2O3-P2O5 a conduit à la découverte d’une nouvelle phase de type Langbeinite et de composition chimique Pb3Fe4(PO4)6, dont la structure cristalline est déterminée par diffraction des rayons X à température ambiante sur monocristaux (P 21 3, Z=4, a=9,7831(2) Å). Cette phase ne subit aucune transition de phase sur la gamme de température 350 – 6 K et ne présente aucun type d’ordre à longue portée jusqu’à 2 K. / A new oxyphosphate compound PbFe3O(PO4)3 has been discovered. Its crystal structure was characterized by single crystal X-ray diffraction (XRD) between 293 and 973 K (monoclinic symmetry P 21/m, a = 7.5826 Å, b = 6.3759 Å, c = 10.4245 Å and = 99.956 °, Z = 2, at room temperature). DC magnetic susceptibility and specific heat measurements performed on single crystals unveiled an unusual sequence of second order ferromagnetic-like phase transitions at Tc1 = 31.8 K, T2 = 23.4 K and Tc3 ~ 10 K. AC magnetic susceptibility suggests a glassy-like dynamics between ~ 20 K and Tc3. A first extraction of the critical exponents (β,γ,δ) was performed by ac magnetic susceptibility in both PbFe3O(PO4)3 powders and single crystals and the values were found to be consistent with mean-field theory.AFe3O(PO4)3 (A= Ca, Sr and Pb) powder compounds were studied by means of X-Ray diffraction (XRD), from 300 to 6 K in the case of A=Pb, electron-probe microanalysis (EPMA) coupled with wavelength dispersion spectroscopy (WDS), Raman and diffuse reflectance spectroscopies, specific heat and magnetic properties measurements. Magnetization, magnetic susceptibility and specific heat measurements carried out on AFe3O(PO4)3 (A= Ca, Sr and Pb) powders firmly establish a series of three ferromagnetic (FM)-like second order phase transitions spanned over the 32 – 8 K temperature range. Diffuse reflectance measurements reveal two broad absorption bands at 1047 and 837 nm, in both PbFe3O(PO4)3 and SrFe3O(PO4)3 powders, with peak cross sections ~10-20 cm2 typical of spin-forbidden and forced electric dipole transitions.Further exploration of the PbO-Fe2O3-P2O5 system led to the discovery of a new langbeinite phase, Pb3Fe4(PO4)6, the crystal structure of which was solved by room temperature single crystal XRD (P 21 3, Z=4, a=9,7831(2) Å). This phase does not undergo any structural phase transition down to 6 K nor any kind of long range ordering down to 2 K.
|
Page generated in 0.0619 seconds