Spelling suggestions: "subject:"regularity"" "subject:"dregularity""
191 |
Sobre a topologia das fibrações de Milnor / On the topology of the Milnor fibrationsRafaella de Souza Martins 16 February 2018 (has links)
Nesta tese abordaremos dois tipos de problemas relacionados aos célebres Teorema da Fibração de Milnor e Teorema da Fibração de Milnor-Lê para o caso real com valores críticos não isolados. Primeiramente, asseguramos fibrações do tipo Milnor-Lê para F : (Xm, 0) → (Yn, 0), germe de aplicação subanalítico com X e Y espaços subanalíticos sobre C \\ {0} uma curva subanalítica conexa em Y e sobre um subespaço analítico suave W ⊂ Y de dimensão p, n ≥ p ≥ 2, sob algumas condições. Em particular, mostramos a existência das fibrações sobre o discriminantes de germe de aplicações subanalíticos, caso esse ainda não estudado na literatura, normalmente o conjunto dos valores críticos são desconsiderados. Finalizando nossa análise da categoria subanalítica, certificamos que existe a fibração de Milnor-Lê para f : (X, 0) →(Rp, 0), com dimensão de X maior que p ≥ 2, subanalítica e X subanalítico com valores críticos não isolados, definindo d-regularidade. Abordamos estes problemas utilizando resultados de campos de vetores rugosos. Em uma segunda etapa apresentamos um novo critério necessário e suficiente para verificar a importante propriedade de transversalidade de um germe de aplicação real f de classe Cl, l ≥ 1. Fazendo uso também de uma recente ferramenta desenvolvida, a D-regularidade, verificamos condições para a existência das fibrações do germe de aplicação Ψ F, X : (Cn, 0) → (C, 0) não holomorfo, dado por Ψ (z, z̄) = Σnj=1 kjtjzj a<sub<jzj bj, aj, bj ≥ 0 com aj = bj para pelo menos um j e aj ≠ bj para ao menos um j, com j = 1, ... , n. Observamos que ΨF, X são polinômios homogêneos pesados mistos com R+ -ação. Consideramos ΨF, X : (R2n ,0) → (R2, 0) germe de aplicação analítico real. Estudamos a topologia dessas fibrações nos reais, constatando que o discriminante tem dimensão 1 e por isso tem ambas as fibrações conhecidas. Por fim exibimos um homeomorfismo entre as fibras dos valores regulares e dos valores críticos. / In this thesis two types of problems related to the famous Milnor Fibration Theorem and Milnor-Lê Fibration Theorem for the real case with non-isolated critical values will be addressed. Primarily, we assure the fibrations of type Milnor-Lê for the germ F : (X, 0) → (Y, 0) subanalytic with X and Y subanalytic spaces on C \\ {0} a subanalytic connected curve in Y and over a smooth analytical subspace W ⊂ Y of dimension p, n &ge p ≥ 2, under some conditions. In particular, we show the existence of the fibrations about the discriminants of subanalytical map-germ, if this not been studied in the literature, usually the set of critical values are disregarded. Finalizing our analysis of this subanalytic category, we certify that there exist the fibrations of type Milnor-Lê to f : (X, 0) → (Rp, 0), with dimension of X greater than p ≥ 2, subanalytic and X subanalytic with non-isolated critical values, setting d -regularity. We address these problems using results of the rugose vector fields. In a second part, we present a new necessary and sufficient criterion to verify the important transversality property of a real map-germ f of class Cl, l ≥ 1. Using a recent developed tool, D-regularity, we verify conditions for the existence of the fibrations of map-germ Ψ F, X : (Cn, 0) → (C, 0) non holomorphic, given by Ψ (z, z̄) = Σnj=1 kjtjzj ajzb<sup<j, aj, bj ≥ 0 with aj = bj for at least one j and aj ≠ bj for at leeast one j = 1, ..., n. We note that Ψ F, X are mixed weighted homogeneous polynomials with R+-action. We consider ΨF, X : (R2n, 0) → (R2, 0) real analytic map-germ. We studied the topology of these fibrations, noting that the discriminant has dimension 1 and therefore has both the fibrations known. Lastly we show a homeomorphism between the fibers of the regular values and the critical values for a case special this family.
|
192 |
Processus d’évolution discontinus de Moreau et stabilité de la prox-régularité : Applications à l’optimisation non-convexe et aux équations généralisée / Discontinuous Moreau’s sweeping process and stability of the prox-regularity : Applications to nonconvex optimization and generalized equationsNacry, Florent 26 June 2017 (has links)
Cette thèse est consacrée, d'une part, à l'étude d'existence de solutions pour des problèmes d'évolution et, d'autre part, à la stabilité de la propriété de prox-régularité ensembliste. Nous étudions dans la première partie des processus de rafle de Moreau perturbés et discontinu du premier et du second ordre. L'ensemble mouvant est prox-régulier dans un espace de Hilbert réel quelconque et sa variation est contrôlé par une mesure de Radon. Des applications à la théorie de la complémentarité et à celle des inéquations variationnelles sont présentées. Dans la seconde partie, on donne des conditions suffisantes assurant la prox-régularité d'ensembles décrit par des contraintes non nécessairement lisses sous forme d'inégalités et/ ou d'égalités et plus généralement d'ensembles de solutions d'équations généralisées. On y développe également des conditions vérifiables assurant la préservation de la prox-régularité vis-à-vis d'opérations ensemblistes : les cas de l'intersection, d'image directe, de pré-image, d'union et projection sur un sous-espace sont considérés. / In this dissertation, we study, on the one hand, the existence of solutions for some evolution problems and, on the other hand, the stability of prox-regularity under set operations. The first topic is devoted to first and second order nonconvex perturberd Moreau's sweeping processes in infinite dimensional framework. The moving set is assumed to be prox-regular and moved in a bounded variation way. Applications to the theory of complementarity problems and evolution variational inequalities are given. In the other topic, we first give verifiable sufficient conditions ensuring the prox-regularity of constrained sets and more generally for solution sets of generalized equations. We also develop the preservation of prox-regularity under set operations as intersection, direct image, inverse image, union and projection along a vector space.
|
193 |
Analytical properties of viscosity solutions for integro-differential equations : image visualization and restoration by curvature motions / Propriétés analytiques des solutions de viscosité des équations integro-différentielles : visualisation et restauration d'images par mouvements de courbureCiomaga, Adina 29 April 2011 (has links)
Le manuscrit est constitué de deux parties indépendantes.Propriétés des Solutions de Viscosité des Equations Integro-Différentielles.Nous considérons des équations intégro-différentielles elliptiques et paraboliques non-linéaires (EID), où les termes non-locaux sont associés à des processus de Lévy. Ce travail est motivé par l'étude du Comportement en temps long des solutions de viscosité des EID, dans le cas périodique. Le résultat classique nous dit que la solution u(¢, t ) du problème de Dirichlet pour EID se comporte comme ?t Åv(x)Åo(1) quand t !1, où v est la solution du problème ergodique stationaire qui correspond à une unique constante ergodique ?.En général, l'étude du comportement asymptotique est basé sur deux arguments: la régularité de solutions et le principe de maximumfort.Dans un premier temps, nous étudions le Principe de Maximum Fort pour les solutions de viscosité semicontinues des équations intégro-différentielles non-linéaires. Nous l'utilisons ensuite pour déduire un résultat de comparaison fort entre sous et sur-solutions des équations intégro-différentielles, qui va assurer l'unicité des solutions du problème ergodique à une constante additive près. De plus, pour des équationssuper-quadratiques le principe de maximum fort et en conséquence le comportement en temps grand exige la régularité Lipschitzienne.Dans une deuxième partie, nous établissons de nouvelles estimations Hölderiennes et Lipschitziennes pour les solutions de viscosité d'une large classe d'équations intégro-différentielles non-linéaires, par la méthode classique de Ishii-Lions. Les résultats de régularité aident de plus à la résolution du problème ergodique et sont utilisés pour fournir existence des solutions périodiques des EID.Nos résultats s'appliquent à une nouvelle classe d'équations non-locales que nous appelons équations intégro-différentielles mixtes. Ces équations sont particulièrement intéressantes, car elles sont dégénérées à la fois dans le terme local et non-local, mais leur comportement global est conduit par l'interaction locale - non-locale, par exemple la diffusion fractionnaire peut donner l'ellipticité dans une direction et la diffusion classique dans la direction orthogonale.Visualisation et Restauration d'Images par Mouvements de CourbureLe rôle de la courbure dans la perception visuelle remonte à 1954, et on le doit à Attneave. Des arguments neurologiques expliquent que le cerveau humain ne pourrait pas possiblement utiliser toutes les informations fournies par des états de simulation. Mais en réalité on enregistre des régions où la couleur change brusquement (des contours) et en outre les angles et les extremas de courbure. Pourtant, un calcul direct de courbures sur une image est impossible. Nous montrons comment les courbures peuvent être précisément évaluées, à résolution sous-pixelique par un calcul sur les lignes de niveau après leur lissage indépendant.Pour cela, nous construisons un algorithme que nous appelons Level Lines (Affine) Shortening, simulant une évolution sous-pixelique d'une image par mouvement de courbure moyenne ou affine. Aussi bien dans le cadre analytique que numérique, LLS (respectivement LLAS) extrait toutes les lignes de niveau d'une image, lisse indépendamment et simultanément toutes ces lignes de niveau par Curve Shortening(CS) (respectivement Affine Shortening (AS)) et reconstruit une nouvelle image. Nousmontrons que LL(A)S calcule explicitement une solution de viscosité pour le le Mouvement de Courbure Moyenne (respectivement Mouvement par Courbure Affine), ce qui donne une équivalence avec le mouvement géométrique.Basé sur le raccourcissement de lignes de niveau simultané, nous fournissons un outil de visualisation précis des courbures d'une image, que nous appelons un Microscope de Courbure d'Image. En tant que application, nous donnons quelques exemples explicatifs de visualisation et restauration d'image : du bruit, des artefacts JPEG, de l'aliasing seront atténués par un mouvement de courbure sous-pixelique / The present dissertation has two independent parts.Viscosity solutions theory for nonlinear Integro-Differential EquationsWe consider nonlinear elliptic and parabolic Partial Integro-Differential Equations (PIDES), where the nonlocal terms are associated to jump Lévy processes. The present work is motivated by the study of the Long Time Behavior of Viscosity Solutions for Nonlocal PDEs, in the periodic setting. The typical result states that the solution u(¢, t ) of the initial value problem for parabolic PIDEs behaves like ?t Å v(x) Å o(1) as t ! 1, where v is a solution of the stationary ergodic problem corresponding to the unique ergodic constant ?. In general, the study of the asymptotic behavior relies on two main ingredients: regularity of solutions and the strong maximum principle.We first establish Strong Maximum Principle results for semi-continuous viscosity solutions of fully nonlinear PIDEs. This will be used to derive Strong Comparison results of viscosity sub and super-solutions, which ensure the up to constants uniqueness of solutions of the ergodic problem, and subsequently, the convergence result. Moreover, for super-quadratic equations the strong maximum principle and accordingly the large time behavior require Lipschitz regularity.We then give Lipschitz estimates of viscosity solutions for a large class of nonlocal equations, by the classical Ishii-Lions's method. Regularity results help in addition solving the ergodic problem and are used to provide existence of periodic solutions of PIDEs. In both cases, we deal with a new class of nonlocal equations that we term mixed integrodifferential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.Image Visualization and Restoration by CurvatureMotionsThe role of curvatures in visual perception goes back to 1954 and is due to Attneave. It can be argued on neurological grounds that the human brain could not possible use all the information provided by states of simulation. But actually human brain registers regions where color changes abruptly (contours), and furthermore angles and peaks of curvature. Yet, a direct computation of curvatures on a raw image is impossible. We show how curvatures can be accurately estimated, at subpixel resolution, by a direct computation on level lines after their independent smoothing.To performthis programme, we build an image processing algorithm, termed Level Lines (Affine) Shortening, simulating a sub-pixel evolution of an image by mean curvature motion or by affine curvature motion. Both in the analytical and numerical framework, LL(A)S first extracts all the level lines of an image, then independently and simultaneously smooths all of its level lines by curve shortening (CS) (respectively affine shortening (AS)) and eventually reconstructs, at each time, a new image from the evolved level lines.We justify that the Level Lines Shortening computes explicitly a viscosity solution for the Mean CurvatureMotion and hence is equivalent with the clasical, geometric Curve Shortening.Based on simultaneous level lines shortening, we provide an accurate visualization tool of image curvatures, that we call an Image CurvatureMicroscope. As an application we give some illustrative examples of image visualization and restoration: noise, JPEG artifacts, and aliasing will be shown to be nicely smoothed out by the subpixel curvature motion.
|
194 |
Elementos finitos quadrilaterais Hermitianos de alta regularidade gerados pela partição de unidade aplicados na solução de problemas de elasticidade e elastodinâmicaMazzochi, Rudimar January 2014 (has links)
Neste trabalho foram desenvolvidas as funções de interpolação com regularidades C1 e C2, utilizando o Método da Partição de Unidade, referentes ao elemento quadrilateral de quatro nós. Estes elementos quadrilaterais Hermitianos de regularidade C1 e C2 foram implementados em uma plataforma própria de elementos finitos, considerando uma estratégia do tipo sub-paramétrica. De forma comparativa com os elementos Lagrangeanos de regularidade C0 e diferentes ordens polinomiais, os elementos de regularidade C1 e C2 foram aplicados na solução de: problemas clássicos de elasticidade plana infinitesimal isotrópica; aproximação das frequências naturais de vibração livre de barras e viga; pro- pagação de onda elástica em barra devido à aplicação de força impulsiva. Os resultados obtidos mostraram que foi possível se obter um maior percentual de frequências naturais aproximadas do espectro discreto, dado um certo nível de erro máximo, com os elementos de regularidade C1 e C2 em comparação com os elementos Lagrangeanos de regularidade C0 de quatro, oito, dezesseis e vinte e cinco nós. Quanto ao problema de propagação de onda elástica devido à aplicação de força impulsiva, as soluções obtidas com os elementos de regularidade C1 e C2 também apresentaram-se satisfatórias em relação à solução ana- lítica e às soluções aproximadas obtidas com os elementos Lagrangeanos de regularidade C0 de quatro e oito nós. Por outro lado, nas simulações dos problemas de elasticidade plana infinitesimal isotrópica, os elementos de regularidade C1 e C2 não apresentaram um comportamento satisfatório. Os erros relativos em normas L2 e de energia da solução aproximada foram maiores do que aqueles obtidos com o elemento Lagrangeano de regularidade C0 de oito nós, por exemplo, e as taxas de convergência em norma de energia obtidas com tais elementos foram inferiores às preditas pelo estimador de erro a priori. / In this work the shape functions with regularity C1 e C2 were developed, by means of the Partition of Unity Method, concerning to the four-node quadrilateral element. These Hermitian quadrilateral elements with regularity C1 e C2 were implemented in an own platform of finite elements, considering the subparametric strategy. Comparatively with the C 0 regularity Lagrangian elements of different polynomial order, C1 and C2 regularity elements were applied in simulations of: classical isotropic infinitesimal plane elasticity problems; approximation of natural frequencies of free vibration for bars and beam; elastic wave propagation in bar caused by forced vibration with impulsive loading applied. The results obtained showed that was possible to get a major number of natural frequencies of free vibration for the discrete spectrum, given a certain level of error, for C1 and C2 regularity elements in comparison with C 0 regularity Lagrangian elements of four, eight, sixteen and twenty-five nodes. Regarding to the elastic wave propagation problem in bar due to the application of impulsive loading, the solution obtained with C1 and C2 regularity elements also presented satisfactory results with relation to the analytical solution and those obtained with C 0 regularity Lagrangian elements with four and eight nodes. On the other hand, for isotropic infinitesimal plane elasticity problems, C1 and C2 regularity elements did not present satisfactory results. Relative errors in L2 and energy norms of approximate solution were greater than those computed for the C 0 Lagrangian element of eight nodes, for example, and convergence rates obtained with the C1 and C2 regularity elements were lower than those predicted by the a priori error estimator.
|
195 |
Critérios de regularidade para soluções fracas das equações magneto-micropolaresSouza, Suelen Cristina Pereira de 19 February 2016 (has links)
This work, we discuss some criteria of regularity for a weak solution of the Magneto-micropolar equations. Furthermore, we show that it is possible to extend some recent results from the Navier-Stokes equations to the Magneto-micropolar equations. In order to give an example, we prove that a weak solution (u,w, b)(t), defined in [0, T], is smooth on R3 × (0, T), if it satisfies the condition a3u3, a3w, a3b E L00(0, T;L2(R3)). / Neste trabalho, discutimos alguns critérios de regularidade para uma solução fraca do sistema de equações tridimensionais de fluido Magneto-micropolar. Além disso, mostramos que é possível estender, para este mesmo sistema, alguns resultados recentes obtidos para as equações de Navier-Stokes. Em ordem a citar um exemplo, provamos que uma solução fraca (u,w, b)(t) definida em [0, T] é suave em R3 × (0, T) se esta satisfaz a condição a3u3, a3w, a3b E L00(0, T;L2(R3)).
|
196 |
Limites de seqüências de permutações de inteiros / Limits of permutation sequencesRudini Menezes Sampaio 18 November 2008 (has links)
Nesta tese, introduzimos o conceito de sequência convergente de permutações e provamos a existência de um objeto limite para tais sequências. Introduzimos ainda um novo modelo de permutação aleatória baseado em tais objetos e introduzimos um conceito novo de distância entre permutações. Provamos então que sequências de permutações aleatórias são convergentes e provamos a equivalência entre esta noção de convergência e convergência nesta nova distância. Obtemos ainda resultados de amostragem e quase-aleatoriedade para permutações. Provamos também uma caracterização para parâmetros testáveis de permutações. / We introduce the concept of convergent sequence of permutations and we prove the existence of a limit object for these sequences. We also introduce a new and more general model of random permutation based on these limit objects and we introduce a new metric for permutations. We also prove that sequences of random permutations are convergent and we prove the equivalence between this notion of convergence and convergence in this new metric. We also show some applications for samplig and quasirandomness. We also prove a characterization for testable parameters of permutations.
|
197 |
Le problème de Cauchy en relativité générale / The Cauchy problem in general relativityCzimek, Stefan 07 July 2017 (has links)
Dans cette thèse nous étudions le problème de Cauchy en relativité générale. Motivés par la conjecture de censure cosmique faible formulée par Penrose, nous analysons le problème aux données initiales pour les équations d'Einstein dans le vide en faible régularité. Nous démontrons les deux résultats suivants. o Premièrement, nous nous intéressons aux équations de contrainte pour les données initiales et mettons en place une procédure de prolongement. Plus précisément, étant donné des données initiales pour les équations d'Einstein sur la boule unité dans R3, nous les prolongeons de manière continue en des données globales, asymptotiquement plates sur R3. Les équations de contrainte forment un système couplé d'équations non-lineaires sous-determinées géométriques. La preuve de notre procédure de prolongement repose sur un schéma iteratif où nous séparons ce système en deux problèmes de prolongement decouplés et solubles. Enfin, le résultat de prolongement pour les équations de contrainte est obtenu par un argument de point fixe. o Deuxièment, nous prouvons une version localisée du théorème de courbure L2 de Klainerman-Rodnianski-Szeftel. Nous montrons que, étant données des données initiales pour les équations d'Einstein sur une variété compacte avec bord, le temps d'existence de la solution des équations d'Einstein dans le domaine de dépendance de ces données initiales ne dépend que de normes de basse régularité des données initiales. En particulier, notre résultat est un critère localisé de continuité pour les équations d'Einstein. Notre preuve utilise un argument de localisation où, tout d'abord, nous généralisons la théorie de Cheeger-Gromov de convergence pour les variétés Riemanniennes à notre cas de régularité faible, et ensuite nous appliquons la procédure de prolongement pour les équations de contrainte mentionnée ci-dessus avec un argument de changement d’échelle. / In this thesis we study the Cauchy problem of general relativity. Motivated by the weak cosmic censorship conjecture formulated by Penrose, we analyse the initial value problem for the Einstein vacuum equations in low regularity. We prove the following two results. First, we consider the constraint equations of the initial data and demonstrate an extension procedure. More precisely, given small initial data for the Einstein equations on the unit ball in R3, we continuosly extend it to global, asymptotically flat initial data on R3. The constraint equations for the Einstein vacuum equations are a coupled system of non-linear under-determined geometric elliptic equations. The proof of our extension procedure is based on an iterative scheme where we split this system into two decoupled, solvable extension problems. The extension result for the constraint equations follows then by a fix point argument. Second, we prove a localised version of the bounded L2-curvature theorem by Klainerman-Rodnianski-Szeftel. We show that given low regularity initial data to the Einstein equations on a compact manifold with boundary, the time of existence of the solution to the Einstein equations in the domain of dependence of the initial data depends only on low regularity geometric data. In particular, this result is a localised continuation criterion for the Einstein vacuum equations. Our proof uses a localisation argument where we first generalise the known Cheeger-Gromov convergence theory for Riemannian manifolds to our low regularity setting, and then apply the above extension procedure for the constraint equations with a scaling argument.
|
198 |
Software pro jízdu pravidelnosti / Software for Regularity RacingKříž, Petr January 2017 (has links)
The main goal of this master‘s thesis was to create software solution suitable for measuring and results processing of regularity rally races and to create supplementary web application. The measuring application was created using integrated development environment Microsoft Visual Studio 2015 and c# programming language. For application to work correctly, it was necessary to create a database model, using MySQL relational database management system. The measuring application can work both with local and remote database server. Web application allows user to see various data including results of racing events or tournaments, data are being fetched from the MySQL database. There was an option to explore existing circuit racing software Vola Timing Circuit – Pro for inspiration.
|
199 |
Rayleigh-Bénard convection: bounds on the Nusselt numberNobili, Camilla 11 September 2016 (has links)
We examine the Rayleigh–Bénard convection as modelled by the Boussinesq equation. Our aim is at deriving bounds for the heat enhancement factor in the vertical direction, the Nusselt number, which reproduce physical scalings. In the first part of the dissertation, we examine the the simpler model when the acceleration of the fluid is neglected (Pr=∞) and prove the non-optimality of the temperature background field method by showing a lower bound for the Nusselt number associated to it. In the second part we consider the full model (Pr<∞) and we prove a new upper bound which improve the existing ones (for large Pr numbers) and catches a transition at Pr~Ra^(1/3).
|
200 |
Nonconvex Dynamical ProblemsRieger, Marc Oliver 28 November 2004 (has links)
Many problems in continuum mechanics, especially in the theory of elastic materials, lead to nonlinear partial differential equations. The nonconvexity of their underlying energy potential is a challenge for mathematical analysis, since convexity plays an important role in the classical theories of existence and regularity. In the last years one main point of interest was to develop techniques to circumvent these difficulties. One approach was to use different notions of convexity like quasi-- or polyconvexity, but most of the work was done only for static (time independent) equations. In this thesis we want to make some contributions concerning existence, regularity and numerical approximation of nonconvex dynamical problems.
|
Page generated in 0.0346 seconds