Spelling suggestions: "subject:"equations nonlinéaires"" "subject:"equations nonlinéaire""
1 |
Équations des ondes avec des perturbations dépendantes du tempsKian, Yavar 23 November 2010 (has links) (PDF)
On étudie l'équation des ondes $\partial_t^2 u-\Div_x(a(t,x)\nabla_xu)=0$ avec une métrique scalaire $a(t,x)$ périodique en temps et égale à $1$ en dehors d'un ensemble compact par rapport à $x$. Notre objectif est d'estimer les solutions de cette équation ayant des données initiales dans l'espace énergétique $\dot{H}^1({\R}^n)\times L^2({\R}^n)$. Plus précisément, nous établirons des estimations de Strichartz globales ainsi que la décroissance de l'énergie locale sous certaines hypothèses. Nous distinguerons le cas des dimensions impaires de celui des dimensions paires. Notons $n$ la dimension de l'espace. Dans la première partie de notre recherche, nous traitons le cas des dimensions $n\geq3$ impaires. Pour cela on suppose que $a(t,x)$ est non captif et que les résonances $z\in\mathbb{C}$ sont contenue dans le disque unité ouvert. Sous cette hypothèse on démontre la décroissance exponentielle de l'énergie locale et on en déduit l'intégrabilité $L^2$ en temps de l'énergie locale. Ensuite, on établit des estimations de Strichartz locales pour les solutions de $\partial_t^2 u-\Div_x(a(t,x)\nabla_xu)=0$. En combinant ces deux arguments, on établit des estimations de Strichartz globales en considérant les solutions tronquées en temps. Dans la deuxième partie de notre recherche, nous traitons le cas des dimensions $n\geq4$ paires. Considérons la résolvante tronquée $R_\chi(\theta)=\chi(\mathcal U(T)-e^{-i\theta})^{-1}\chi$ , où $\chi\in{\CI}$, $T$ est la période de $a(t,x)$ et $\mathcal U(T)$ est le propagateur associé à l'équation au temps $T$. Nous supposons que $a(t,x)$ est non captif et que la résolvante tronquée $R_\chi(\theta)$ admet un prolongement holomorphe sur $\{\theta\in\mathbb{C}\ :\ \textrm{Im}(\theta) \geq 0\}$, pour $n \geq 3$, impair, et sur $\{ \theta\in\mathbb C\ :\ Im(\theta)\geq0,\ \theta\neq 2k\pi-i\mu,\ k\in\mathbb{Z},\ \mu\geq0\}$ pour $n \geq4$, pair. De plus, pour $n \geq4$ pair, on suppose que $R_\chi(\theta)$ est bornée au voisinage de $\theta=0$. Sous cette hypothèse on démontre la décroissance de l'énergie locale. En combinant cet argument avec les résultats de la première partie, on obtient des estimations de Strichartz globales pour les dimensions $n\geq3$ quelconques.
|
2 |
SOLUTIONS ENTIÈRES D'ÉQUATIONS HESSIENNESHossein, Mouhamad 12 May 2009 (has links) (PDF)
On étudie dans cette thèse l'existence et l'unicité de solutions entières, dans des espaces de Hölder à poids appropriés, d'équations hessiennes elliptiques dans Rn et Cn, invariantes par rotation.
|
3 |
Effets dispersifs et asymptotique en temps long d'équations d'ondes dans des domaines extérieurs / Dispersive effects and long-time asymptotics for wave equations in exterior domainsLafontaine, David 25 September 2018 (has links)
L'objet de cette thèse est l'étude des équations de Schrödinger et des ondes, à la fois linéaires et non linéaires, dans des domaines extérieurs. Nous nous intéressons en particulier aux inégalités dites de Strichartz, qui sont une famille d'estimations dispersives mesurant la décroissance du flot linéaire, particulièrement utiles à l'étude des problèmes non linéaires correspondants. Dans des géométries dites non-captantes, c'est à dire où tous les rayons de l'optique géométrique partent à l'infini, de nombreux résultats montrent que de telles estimations sont aussi bonnes que dans l'espace libre. D'autre part, la présence d'une trajectoire captive induit nécessairement une perte au niveau d'une autre famille d'estimations à priori, les estimations d'effet régularisant et de décroissance locale de l'énergie, respectivement pour Schrödinger et pour les ondes. En contraste de quoi, nous montrons des estimations de Strichartz sans perte dans une géométrie captante instable : l'extérieur de plusieurs obstacles strictement convexes vérifiant la condition d'Ikawa. La seconde partie de cette thèse est dédiée à l'étude du comportement en temps long des équations non-linéaires sous-jacentes. Lorsque le domaine dans lequel elles vivent n'induit pas trop de concentration de l'énergie, on s'attend à ce qu'elles diffusent, c'est à dire se comportent de manière linéaire asymptotiquement en temps. Nous montrons un tel résultat pour les ondes non linéaires critiques à l'extérieur d'une classe d'obstacles généralisant la notion d'étoilé. A l'extérieur de deux obstacles strictement convexes, nous obtenons un résultat de rigidité concernant les solutions à flot compact, premier pas vers un résultat général. Enfin, nous nous intéressons à l'équation de Schrödinger non linéaire, dans l'espace libre, mais avec un potentiel. Nous montrons que les solutions diffusent si l'on prend un potentiel répulsif, ainsi qu'une somme de deux potentiels répulsifs ayant des surfaces de niveau convexes, ce qui fournit un exemple de diffusion dans une géométrie captante analogue à l'extérieur de deux convexes stricts. / We are concerned with Schrödinger and wave equations, both linear and non linear, in exterior domains. In particular, we are interested in the so-called Strichartz estimates, which are a family of dispersive estimates measuring decay for the linear flow. They turn out to be particularly useful in order to study the corresponding non linear equations. In non-captive geometries, where all the rays of geometrical optics go to infinity, many results show that Strichartz estimates hold with no loss with respect to the flat case. Moreover, the local smoothing estimates for the Schrödinger equation, respectively the local energy decay for the wave equation, which are another family of dispersive estimates, are known to fail in any captive geometry. In contrast, we show Strichartz estimates without loss in an unstable captive geometry: the exterior of many strictly convex obstacles verifying Ikawa's condition. The second part of this thesis is dedicated to the study of the long time asymptotics of the corresponding non linear equations. We expect that they behave linearly in large times, or scatter, when the domain they live in does not induce too much concentration effect. We show such a result for the non linear critical wave equation in the exterior of a class of obstacles generalizing star-shaped bodies. In the exterior of two strictly convex obstacles, we obtain a rigidity result concerning compact flow solutions, which is a first step toward a general result. Finally, we consider the non linear Schrödinger equation in the free space but with a potential. We prove that solutions scatter for a repulsive potential, and for a sum of two repulsive potentials with strictly convex level surfaces. This provides a scattering result in a framework similar to the exterior of two strictly convex obstacles.
|
4 |
Mathematical modelling for dose depositon in photontherapy / Modélisation mathématique du dépôt de dose en photonthérapiePichard, Teddy 04 November 2016 (has links)
Les traitements en radiothérapie consistent à irradier le patient avec desfaisceaux de particules énergétiques (typiquement des photons) ciblant la tumeur. Cesparticules sont transporté à travers le milieu et y dépose de l'énergie. Cette énergiedéposée, appelée la dose, est responsable des effets biologiques des radiations.Ce travail a pour but de développer des méthodes numériques de calcul etd'optimisation de la dose qui sont compétitives en termes de coût de calcul et de précisionpar rapport à des méthodes de référence.Le mouvement des particules est d'abord étudié via un système d'équationscinétiques linéaires. Cependant, résoudre directement ces systèmes est numériquementtrop coûteux pour des applications médicales. Pour palier ce coût de calcul, la méthodemoment, et en particulier les modèles Mn, est utilisée. Ces équations aux moments sontnon linéaires et valides sous une condition appelée réalisabilité.Les schémas numériques standards pour les équations aux moments sontcontraints par des conditions de stabilité qui se trouvent être très restrictives lorsque lemilieu contient des zones sous-denses. Des schémas numériques inconditionnellementstables et adaptés aux équations aux moments (préservant la réalisation) sontdéveloppés. Ces schémas se révèlent compétitifs en termes de coûts de calcul par rapportaux approches de référence. Finalement, ces méthodes sont appliquées dans uneprocédure d'optimisation visant à maximiser la dose dans la tumeur et la minimiser dansles tissus sains. / Radiotherapy treatments consists in irradiating the patient with beams ofenergetic particles (typically photons) targeting the tumor. Such particles are transportedthrough the medium and deposit energy in the medium. This deposited energy is the socalleddose, responsible for the biological effect of the radiations.The present work aim to develop numerical methods for dose computation andoptimization that are competitive in terms of computational cost and accuracy compared toreference method.The motion of particles is first studied through a system of linear transport equationsat the kinetic level. However, solving directly such systems is numerically too costly formedical application. Instead, the moment method is used with a special focus on the Mnmodels. Those moment equations are non-linear and valid under a condition calledrealizability.Standard numerical schemes for moment equations are constrained by stabilityconditions which happen to be very restrictive when the medium contains low densityregions. Inconditionally stable numerical schemes adapted to moment equations(preserving the realizability property) are developped. Those schemes are shown to becompetitive in terms of computational costs compared to reference approaches. Finallythey are applied to in an optimization procedure aiming to maximize the dose in the tumorand to minimize the dose in healthy tissues.
|
5 |
Analyse Algorithmique des Systèmes HybridesGirard, Antoine 30 September 2004 (has links) (PDF)
Cette thèse est consacrée à l'analyse algorithmique des systèmes hybrides. Nous examinons plusieurs problèmes liés à l'étude et au controle des systèmes hybrides linéaires par morceaux. Dans une première partie, nous présentons les notions de base de la théorie. Nous illustrons notre propos grace à de nombreux exemples. La deuxième partie est dédiée au calcul algorithmique des exécutions acceptées par un système hybride. Une méthode de détection des événements (changement de valeur de la variable discrète du système) est proposée. Le cas des exécutions périodiques est également examiné. Dans la troisième partie, nous abordons le problème du calcul de l'ensemble atteignable des systèmes hybrides. Nous apportons un soin particulier aux systèmes où les dynamiques continues sont connues de manière incertaine. Dans la quatrième partie, nous nous intéressons au controle des systèmes hybrides. Nous construisons une analyse multirésolution de l'espace des entrées d'un système linéaire et calculons une base d'ondelettes associée. Les propriétés de cette base se révèlent intéressantes pour la synthèse de signaux d'entrée d'un système hybride. Dans la dernière partie nous montrons que les techniques développées pour les systèmes hybrides linéaires par morceaux peuvent etre utilisées pour analyser des systèmes dynamiques non-linéaires.
|
6 |
Problèmes aux valeurs propres non linéaires dans les inéquations variaionnelles : Etude localeIssard-Roch, Françoise 09 March 1984 (has links) (PDF)
ON S'INTERESSE A UNE CLASSE D'INEQUATIONS VARIATIONNELLES ELLIPTIQUES, ASSOCIEES A UN PROBLEME D'OBSTACLE ET DEPENDANT D'UN PARAMETRE LAMBDA : A(A,V-U) >OU= SOM::(OMEGA )LAMBDA F(U)(V-U)DX POUR TOUT V APPARTIENT A K, U APPARTIENT A K=(W APPARTIENT A H::(0)**(1)(OMEGA )/W OU= PSI P.P. SUR OMEGA ). UNE TELLE INEQUATION ADMET AU MOINS UNE BRANCHE DE SOLUTIONS EQUATION ET UNE BRANCHE DE SOLUTIONS INEQUATIONS. ON CHERCHE A CONNAITRE LA STRUCTURE LOCALE DES BRANCHES INEQUATIONS. GRACE A UN PROCESSUS DE LINEARISATION "CONIQUE" ON CLASSE LES POINTS DE LA BRANCHE INEQUATION EN POINTS REGULIERS OU SINGULIERS. AU VOISINAGE D'UN POINT REGULIER, ON MONTRE QUE LES SOLUTIONS ADMETTENT UN DEVELOPPEMENT SELON LAMBDA . PUIS ON ETUDIE LE COMPORTEMENT LOCAL DES SOLUTIONS AU VOISINAGE D'UN POINT SINGULIER VERIFIANT CERTAINES HYPOTHESES, QUI SONT A RAPPROCHER DE CELLES FAITES POUR LES EQUATIONS ET QUI ASSURENT QU'ON A DU POINT DE RETOURNEMENT. ON MONTRE QUE, DANS CERTAINS CAS, IL EXISTE UN TEL POINT SINGULIER, SUR LA BRANCHE DE SOLUTIONS MAXIMALES. LES BRANCHES EQUATIONS ET INEQUATIONS SONT RELIEES PAR UN POINT APPELE POINT DE TRANSITION. ON FAIT UNE ETUDE PLUS FINE AU VOISINAGE DE CE POINT. UNE ETUDE DES DIVERSES CONDITIONS INTRODUITES POUR L'ETUDE LOCALE, MONTRE QU'ELLES SONT FORTEMENT LIEES A UNE CONDITION TYPE STABILITE. ILLUSTRATION NUMERIQUE SUR QUELQUES PROBLEMES D'OBSTACLE
|
7 |
Applications de la théorie de Galois différentielle aux équations différentielles linéaires d'ordre 4Gaillard, Philippe 25 October 2004 (has links) (PDF)
Pour les équations différentielles ordinaires linéaires d'ordre 2 et 3, des algorithmes de résolution exacte avec des temps de calcul réalistes existent, se fondant sur une étude préalable précise des groupes de Galois différentiels potentiels de ces équations. Plusieurs études de l'ordre 4 ont déjà eu lieu mais ne concernaient qu'un aspect particulier de la classification des groupes. Dans cette thèse, on donne les bornes optimales pour le degré du polynôme minimal des dérivées logarithmiques des solutions liouvilliennes de telles équations (travail commun avec D. Boucher et F. Ulmer) puis on présente une stratégie algorithmique de recherche du groupe de Galois différentiel d'une équation en connaissant ses semiinvariants de degré 2 et 4, obtenue après avoir en particulier complété les travaux précédents par les cas imprimitif-monomial de la classification des groupes. On trouve alors plus efficacement des semi-invariants produits de formes linéeaires. Dans le chapitre 4 de cette thèse, on s'intérresse aux chutes d'ordre de la puissance symétrique quatrième d'une équation. Plus précisément, on montre qu'une chute d'ordre de un implique l'existence d'au moins un semi-invariant de degré 4, ce qui permet d'obtenir des informations sur le groupe de l'équation. En cas de chute d'ordre de deux et plus, des conditions de finitude du groupe sont données par un théorème de M.F. Singer. Dans le chapitre 5, on traite deux exemples. Dans le premier, on applique la stratégie algorithmique décrite dans le chapitre 3 en vue de trouver le groupe de Galois diff érentiel d'une équation dont on calcule ensuite les solutions (à l'aide d'une méthode décrite par F. Ulmer). Le second est un exemple de résolution du problème inverse pour le groupe SO(4, C) à l'aide de la méthode décrite par C. Mitschi et M.F. Singer (équation qui n'admet donc pas de solutions liouvilliennes). On trouvera en annexe la liste explicite des semiinvariants de degré 2 et 4 des sous-groupes monomiaux de SL(4, C).
|
8 |
Equations des ondes avec des perturbations dépendantes du tempsKian, Yavar 23 November 2010 (has links)
Résumé / Abstract
|
9 |
Le problème de Cauchy en relativité générale / The Cauchy problem in general relativityCzimek, Stefan 07 July 2017 (has links)
Dans cette thèse nous étudions le problème de Cauchy en relativité générale. Motivés par la conjecture de censure cosmique faible formulée par Penrose, nous analysons le problème aux données initiales pour les équations d'Einstein dans le vide en faible régularité. Nous démontrons les deux résultats suivants. o Premièrement, nous nous intéressons aux équations de contrainte pour les données initiales et mettons en place une procédure de prolongement. Plus précisément, étant donné des données initiales pour les équations d'Einstein sur la boule unité dans R3, nous les prolongeons de manière continue en des données globales, asymptotiquement plates sur R3. Les équations de contrainte forment un système couplé d'équations non-lineaires sous-determinées géométriques. La preuve de notre procédure de prolongement repose sur un schéma iteratif où nous séparons ce système en deux problèmes de prolongement decouplés et solubles. Enfin, le résultat de prolongement pour les équations de contrainte est obtenu par un argument de point fixe. o Deuxièment, nous prouvons une version localisée du théorème de courbure L2 de Klainerman-Rodnianski-Szeftel. Nous montrons que, étant données des données initiales pour les équations d'Einstein sur une variété compacte avec bord, le temps d'existence de la solution des équations d'Einstein dans le domaine de dépendance de ces données initiales ne dépend que de normes de basse régularité des données initiales. En particulier, notre résultat est un critère localisé de continuité pour les équations d'Einstein. Notre preuve utilise un argument de localisation où, tout d'abord, nous généralisons la théorie de Cheeger-Gromov de convergence pour les variétés Riemanniennes à notre cas de régularité faible, et ensuite nous appliquons la procédure de prolongement pour les équations de contrainte mentionnée ci-dessus avec un argument de changement d’échelle. / In this thesis we study the Cauchy problem of general relativity. Motivated by the weak cosmic censorship conjecture formulated by Penrose, we analyse the initial value problem for the Einstein vacuum equations in low regularity. We prove the following two results. First, we consider the constraint equations of the initial data and demonstrate an extension procedure. More precisely, given small initial data for the Einstein equations on the unit ball in R3, we continuosly extend it to global, asymptotically flat initial data on R3. The constraint equations for the Einstein vacuum equations are a coupled system of non-linear under-determined geometric elliptic equations. The proof of our extension procedure is based on an iterative scheme where we split this system into two decoupled, solvable extension problems. The extension result for the constraint equations follows then by a fix point argument. Second, we prove a localised version of the bounded L2-curvature theorem by Klainerman-Rodnianski-Szeftel. We show that given low regularity initial data to the Einstein equations on a compact manifold with boundary, the time of existence of the solution to the Einstein equations in the domain of dependence of the initial data depends only on low regularity geometric data. In particular, this result is a localised continuation criterion for the Einstein vacuum equations. Our proof uses a localisation argument where we first generalise the known Cheeger-Gromov convergence theory for Riemannian manifolds to our low regularity setting, and then apply the above extension procedure for the constraint equations with a scaling argument.
|
10 |
Phénomènes de Stokes et approche galoisienne des problèmes de confluenceDreyfus, Thomas 20 November 2013 (has links) (PDF)
Cette thèse porte sur la théorie de Galois différentielle. Elle est divisée en deux parties. La première concerne la théorie de Galois différentielle paramétrée, et la seconde, les équations aux q-différences. Dans le chapitre 2, nous exposons une généralisation de l'algorithme de Kovacic qui permet de calculer le groupe de Galois paramétré de certaines équations différentielles paramétrées d'ordre 2. Dans le chapitre 3, nous présentons une généralisation du théorème de densité de Ramis qui donne un ensemble de générateurs topologiques du groupe de Galois pour les équations différentielles linéaires paramétrées à coefficients dans un anneau convenable. Nous obtenons une contribution au problème inverse dans cette théorie de Galois, donnons un critère d'isomonodromie, et répondons partiellement à une question posée par Sibuya. Dans le chapitre 4, il est question de confluence et d'équations aux q-différences. Nous prouvons comment la transformée de Borel-Laplace d'une série formelle divergente solution d'une équation différentielle linéaire à coefficients dans C(z) peut être uniformément approchée par un q-analogue de la transformée de Borel-Laplace appliqué à une série formelle solution d'une famille d'équations aux q-différences linéaires qui discrétise l'équation différentielle. Nous faisons directement les calculs dans le cas des séries hypergéométriques basiques, et nous prouvons sous des hypothèses raisonnables, qu'une matrice fondamentale d'une équation différentielle linéaire à coefficients dans C(z) peut être uniformément approchée par une matrice fondamentale d'une famille d'équations aux q-différences linéaires correspondante.
|
Page generated in 0.11 seconds