• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 50
  • 34
  • 13
  • 7
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 275
  • 58
  • 45
  • 37
  • 33
  • 32
  • 32
  • 24
  • 23
  • 22
  • 21
  • 21
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Équation de diffusion généralisée pour un modèle de croissance et de dispersion d'une population incluant des comportements individuels à la frontière des divers habitats / Generalized diffusion equation for a growth and dispersion model of a population including individual behaviors on the boundary of the different habitats

Thorel, Alexandre 24 May 2018 (has links)
Le but de ce travail est l'étude d'un problème de transmission en dynamique de population entre deux habitats juxtaposés. Dans chacun des habitats, on considère une équation aux dérivées partielles, modélisant la dispersion généralisée, formée par une combinaison linéaire du laplacien et du bilaplacien. On commence d'abord par étudier et résoudre la même équation avec diverses conditions aux limites posée dans un seul habitat. Cette étude est effectuée grâce à une formulation opérationnelle du problème: on réécrit cette EDP sous forme d'équation différentielle, posée dans un espace de Banach construit sur les espaces Lp avec 1 < p < +∞, où les coefficients sont des opérateurs linéaires non bornés. Grâce au calcul fonctionnel, à la théorie des semi-groupes analytiques et à la théorie de l'interpolation, on obtient des résultats optimaux d'existence, d'unicité et de régularité maximale de la solution classique si et seulement si les données sont dans certains espaces d'interpolation. / The aim of this work is the study of a transmission problem in population dynamics between two juxtaposed habitats. In each habitat, we consider a partial differential equation, modeling the generalized dispersion, made up of a linear combination of Laplacian and Bilaplacian operators. We begin by studying and solving the same equation with various boundary conditions in a single habitat. This study is carried out using an operational formulation of the problem: we rewrite this PDE as a differential equation, set in a Banach space built on the spaces Lp with 1 < p < +∞, where the coefficients are unbounded linear operators. Thanks to functional calculus, analytic semigroup theory and interpolation theory, we obtain optimal results of existence, uniqueness and maximum regularity of the classical solution if and only if the data are in some interpolation spaces.
262

Contributions to combinatorics on words in an abelian context and covering problems in graphs / Contributions à la combinatoire des mots dans un contexte abélien et aux problèmes de couvertures dans les graphes

Vandomme, Elise 07 January 2015 (has links)
Cette dissertation se divise en deux parties, distinctes mais connexes, qui sont le reflet de la cotutelle. Nous étudions et résolvons des problèmes concernant d'une part la combinatoire des mots dans un contexte abélien et d'autre part des problèmes de couverture dans des graphes. Chaque question fait l'objet d'un chapitre. En combinatoire des mots, le premier problème considéré s'intéresse à la régularité des suites au sens défini par Allouche et Shallit. Nous montrons qu'une suite qui satisfait une certaine propriété de symétrie est 2-régulière. Ensuite, nous appliquons ce théorème pour montrer que les fonctions de complexité 2-abélienne du mot de Thue--Morse ainsi que du mot appelé ''period-doubling'' sont 2-régulières. Les calculs et arguments développés dans ces démonstrations s'inscrivent dans un schéma plus général que nous espérons pouvoir utiliser à nouveau pour prouver d'autres résultats de régularité. Le deuxième problème poursuit le développement de la notion de mot de retour abélien introduite par Puzynina et Zamboni. Nous obtenons une caractérisation des mots sturmiens avec un intercepte non nul en termes du cardinal (fini ou non) de l'ensemble des mots de retour abélien par rapport à tous les préfixes. Nous décrivons cet ensemble pour Fibonacci ainsi que pour Thue--Morse (bien que cela ne soit pas un mot sturmien). Nous étudions la relation existante entre la complexité abélienne et le cardinal de cet ensemble. En théorie des graphes, le premier problème considéré traite des codes identifiants dans les graphes. Ces codes ont été introduits par Karpovsky, Chakrabarty et Levitin pour modéliser un problème de détection de défaillance dans des réseaux multiprocesseurs. Le rapport entre la taille optimale d'un code identifiant et la taille optimale du relâchement fractionnaire d'un code identifiant est comprise entre 1 et 2 ln(|V|)+1 où V est l'ensemble des sommets du graphe. Nous nous concentrons sur les graphes sommet-transitifs, car nous pouvons y calculer précisément la solution fractionnaire. Nous exhibons des familles infinies, appelées quadrangles généralisés, de graphes sommet-transitifs pour lesquelles les solutions entière et fractionnaire sont de l'ordre |V|^k avec k dans {1/4, 1/3, 2/5}. Le second problème concerne les (r,a,b)-codes couvrants de la grille infinie déjà étudiés par Axenovich et Puzynina. Nous introduisons la notion de 2-coloriages constants de graphes pondérés et nous les étudions dans le cas de quatre cycles pondérés particuliers. Nous présentons une méthode permettant de lier ces 2-coloriages aux codes couvrants. Enfin, nous déterminons les valeurs exactes des constantes a et b de tout (r,a,b)-code couvrant de la grille infinie avec |a-b|>4. Il s'agit d'une extension d'un théorème d'Axenovich. / This dissertation is divided into two (distinct but connected) parts that reflect the joint PhD. We study and we solve several questions regarding on the one hand combinatorics on words in an abelian context and on the other hand covering problems in graphs. Each particular problem is the topic of a chapter. In combinatorics on words, the first problem considered focuses on the 2-regularity of sequences in the sense of Allouche and Shallit. We prove that a sequence satisfying a certain symmetry property is 2-regular. Then we apply this theorem to show that the 2-abelian complexity functions of the Thue--Morse word and the period-doubling word are 2-regular. The computation and arguments leading to these results fit into a quite general scheme that we hope can be used again to prove additional regularity results. The second question concerns the notion of return words up to abelian equivalence, introduced by Puzynina and Zamboni. We obtain a characterization of Sturmian words with non-zero intercept in terms of the finiteness of the set of abelian return words to all prefixes. We describe this set of abelian returns for the Fibonacci word but also for the Thue-Morse word (which is not Sturmian). We investigate the relationship existing between the abelian complexity and the finiteness of this set. In graph theory, the first problem considered deals with identifying codes in graphs. These codes were introduced by Karpovsky, Chakrabarty and Levitin to model fault-diagnosis in multiprocessor systems. The ratio between the optimal size of an identifying code and the optimal size of a fractional relaxation of an identifying code is between 1 and 2 ln(|V|)+1 where V is the vertex set of the graph. We focus on vertex-transitive graphs, since we can compute the exact fractional solution for them. We exhibit infinite families, called generalized quadrangles, of vertex-transitive graphs with integer and fractional identifying codes of order |V|^k with k in {1/4,1/3,2/5}. The second problem concerns (r,a,b)-covering codes of the infinite grid already studied by Axenovich and Puzynina. We introduce the notion of constant 2-labellings of weighted graphs and study them in four particular weighted cycles. We present a method to link these labellings with covering codes. Finally, we determine the precise values of the constants a and b of any (r,a,b)-covering code of the infinite grid with |a-b|>4. This is an extension of a theorem of Axenovich.
263

Chemické a mechanické procesy v synoviálních tekutinách - modelování, analýza, počítačové simulace / Biochemical and mechanical processes in synovial fluid - modeling, analysis and computational simulations

Pustějovská, Petra January 2012 (has links)
vi Title: Biochemical and mechanical processes in synovial fluid - modeling, mathematical analysis and computational simulations Author: Petra Pustějovská (petra.pustejovska@karlin.mff.cuni.cz) Department: Matematický ústav UK, Univerzita Karlova v Praze Institut für Angewandte Mathematik, Universität Heidelberg Supervisors: prof. RNDr. Josef Málek CSc., DSc. (malek@karlin.mff.cuni.cz) Matematický ústav UK, Univerzita Karlova v Praze, Prof. Dr. Dr. h.c. mult. Willi Jäger (jaeger@iwr.uni-heidelberg.de) Institut für Angewandte Mathematik, Universität Heidelberg Abstract: Synovial fluid is a polymeric liquid which generally behaves as a viscoelastic fluid due to the presence of polysaccharide molecules called hyaluronan. In this thesis, we study the biological and biochemical properties of synovial fluid, its complex rheology and interaction with synovial membrane during filtration process. From the mathematical point of view, we model the synovial fluid as a viscous incompressible fluid for which we develop a novel generalized power-law fluid model wherein the power-law exponent depends on the concentration of the hyaluronan. Such a model is adequate to describe the flows of synovial fluid as long as it is not subjected to instantaneous stimuli. Moreover, we try to find a suitable linear viscoelastic model...
264

La Grande Loge Nationale Indépendante et Régulière pour la France et les Colonies Françaises (1910-1940) / The Regular National Grand Lodge of France (1910-1940)

Delon, Francis 19 June 2018 (has links)
Créée le 5 novembre 1913, la Grande Loge Nationale Indépendante et Régulière (GLNIR) occupe une place particulière dans le paysage maçonnique français. En effet, à la différence du Grand Orient de France et de la Grande Loge de France fortement impliqués dans les problèmes de société, elle s’attache essentiellement à la formation morale de ses membres à partir d’une approche symbolique. L’accent sera plus particulièrement mis sur les points suivants : - la notion de « régularité maçonnique » définie par la Grande Loge Unie d’Angleterre. - les raisons de l’absence d’une Grande Loge « régulière » en France, malgré la création de deux Ateliers francophones à Londres. - l’évolution de la Loge anglophone « « Anglo-Saxon Lodge » n°343, créée en 1899 par des Maçons anglais et américains au sein de la Grande Loge de France, non reconnue également par Londres bien qu’elle exige de ses membres la croyance au « Grand Architecte de l’Univers ». - l’influence méconnue du courant maçonnique spiritualiste du lyonnais Jean Bricaud. - l’échec de Ribaucourt et de sa Loge « Le Centre des Amis » conduits à former cette nouvelle structure en raison de l’opposition du Grand Orient de France à la présence d’un rite chrétien, le Régime Écossais Rectifié. - la création de Loges militaires anglaises et le non ralliement escompté d’autres Ateliers du Grand Orient de France pendant la Première Guerre Mondiale. - la spécificité de la GLNIR (prépondérance britannique, problèmes de conscience des francs-maçons catholiques, évolution de ses 34 Ateliers et rôle pionnier de ses deux Loges de recherches). - les relations avec la Grande Loge Unie d’Angleterre et les autres Grandes Loges « régulières » et l’impact de la Déclaration de 1929 définissant strictement les principes de la « Régularité ». / Founded on November 5th 1913, the Regular National Grand Lodge of France plays a specific role in French Freemasonry. Indeed, unlike the Grand Orient of France and the Grand Lodge of France which are strongly committed to social issues, it focuses on the moral formation of its members and has a a symbolical approach. The following points will be emphasized: - the notion of “Masonic Regularity” defined by the United Grand Lodge of England ; - the reasons for the absence of a “regular” Grand Lodge in France in spite of the foundation of two French speaking lodges in London ; - the evolution of the English speaking Lodge “Anglo-Saxon” n°343 founded in 1899 by several English and American Masons under the Jurisdiction of the Grand Lodge of France but not recognized by London although it required its members to believe in the Great Architect of the Universe ; - the underestimated influence of the spiritualist Masonic current of Jean Bricaud, the mason from Lyon; - the failure of Bro. De Ribaucourt and his Lodge “Centre des Amis” to form this new structure because of the opposition of the Grand Orient of France to the presence of a Christian Rite: the Rectified Scottish Rite ; - the setting of British Military Lodges and the failure to rally several other Lodges of the Grand Orient of France during World War I ; - the specificity of the Regular National Grand Lodge of France (British predominance, the moral qualms of catholic Freemasons and the pioneer role of its two Lodges of Research) ; - the relations with the United Grand Lodge of England and the other “Regular” Grand Lodges, and the impact of the Declaration of 1929 promulgating the Basic Principles for Grand Lodge Recognition.
265

Extremal combinatorics, graph limits and computational complexity

Noel, Jonathan A. January 2016 (has links)
This thesis is primarily focused on problems in extremal combinatorics, although we will also consider some questions of analytic and algorithmic nature. The d-dimensional hypercube is the graph with vertex set {0,1}<sup>d</sup> where two vertices are adjacent if they differ in exactly one coordinate. In Chapter 2 we obtain an upper bound on the 'saturation number' of Q<sub>m</sub> in Q<sub>d</sub>. Specifically, we show that for m &ge; 2 fixed and d large there exists a subgraph G of Q<sub>d</sub> of bounded average degree such that G does not contain a copy of Q<sub>m</sub> but, for every G' such that G &subne; G' &sube; Q<sub>d</sub>, the graph G' contains a copy of Q<sub>m</sub>. This result answers a question of Johnson and Pinto and is best possible up to a factor of O(m). In Chapter 3, we show that there exists &epsilon; &gt; 0 such that for all k and for n sufficiently large there is a collection of at most 2<sup>(1-&epsilon;)k</sup> subsets of [n] which does not contain a chain of length k+1 under inclusion and is maximal subject to this property. This disproves a conjecture of Gerbner, Keszegh, Lemons, Palmer, P&aacute;lv&ouml;lgyi and Patk&oacute;s. We also prove that there exists a constant c &isin; (0,1) such that the smallest such collection is of cardinality 2<sup>(1+o(1))<sup>ck</sup> </sup> for all k. In Chapter 4, we obtain an exact expression for the 'weak saturation number' of Q<sub>m</sub> in Q<sub>d</sub>. That is, we determine the minimum number of edges in a spanning subgraph G of Q<sub>d</sub> such that the edges of E(Q<sub>d</sub>)\E(G) can be added to G, one edge at a time, such that each new edge completes a copy of Q<sub>m</sub>. This answers another question of Johnson and Pinto. We also obtain a more general result for the weak saturation of 'axis aligned' copies of a multidimensional grid in a larger grid. In the r-neighbour bootstrap process, one begins with a set A<sub>0</sub> of 'infected' vertices in a graph G and, at each step, a 'healthy' vertex becomes infected if it has at least r infected neighbours. If every vertex of G is eventually infected, then we say that A<sub>0</sub> percolates. In Chapter 5, we apply ideas from weak saturation to prove that, for fixed r &ge; 2, every percolating set in Q<sub>d</sub> has cardinality at least (1+o(1))(d choose r-1)/r. This confirms a conjecture of Balogh and Bollob&aacute;s and is asymptotically best possible. In addition, we determine the minimum cardinality exactly in the case r=3 (the minimum cardinality in the case r=2 was already known). In Chapter 6, we provide a framework for proving lower bounds on the number of comparable pairs in a subset S of a partially ordered set (poset) of prescribed size. We apply this framework to obtain an explicit bound of this type for the poset &Vscr;(q,n) consisting of all subspaces of &Fopf;<sub>q</sub><sup>n</sup>ordered by inclusion which is best possible when S is not too large. In Chapter 7, we apply the result from Chapter 6 along with the recently developed 'container method,' to obtain an upper bound on the number of antichains in &Vscr;(q,n) and a bound on the size of the largest antichain in a p-random subset of &Vscr;(q,n) which holds with high probability for p in a certain range. In Chapter 8, we construct a 'finitely forcible graphon' W for which there exists a sequence (&epsilon;<sub>i</sub>)<sup>&infin;</sup><sub>i=1</sub> tending to zero such that, for all i &ge; 1, every weak &epsilon;<sub>i</sub>-regular partition of W has at least exp(&epsilon;<sub>i</sub><sup>-2</sup>/2<sup>5log&lowast;&epsilon;<sub>i</sub><sup>-2</sup></sup>) parts. This result shows that the structure of a finitely forcible graphon can be much more complex than was anticipated in a paper of Lov&aacute;sz and Szegedy. For positive integers p,q with p/q &VerticalSeparator;&ge; 2, a circular (p,q)-colouring of a graph G is a mapping V(G) &rarr; &Zopf;<sub>p</sub> such that any two adjacent vertices are mapped to elements of &Zopf;<sub>p</sub> at distance at least q from one another. The reconfiguration problem for circular colourings asks, given two (p,q)-colourings f and g of G, is it possible to transform f into g by recolouring one vertex at a time so that every intermediate mapping is a p,q-colouring? In Chapter 9, we show that this question can be answered in polynomial time for 2 &le; p/q &LT; 4 and is PSPACE-complete for p/q &ge; 4.
266

Singular Milnor Fibrations / Fibrações de Milnor singulares

Maico Felipe Silva Ribeiro 28 February 2018 (has links)
In this work we present the most recent developments in the direction of local fibrations structures of analytic singularities. Using techniques and tools from stratification theory we prove structural theorems in the stratified sense, which will be called singular Milnor tube fibration and Milnor-Hamm sphere fibration. In addition, we present algorithms with the purpose of creating a large number of examples in this new setting and compare our results obtained with the current ones found in the literature. Our results generalize all previous result in both cases: in the classical and in the stratified ones. / Neste trabalho apresentamos os mais recentes desenvolvimentos na direção de estruturas de fibrações locais de singularidades analíticas. Usando técnicas e ferramentas da teoria de estratificação, provamos alguns teoremas estruturais no sentido estratificado, os quais serão chamados fibração singular de Milnor sobre o tubo e fibração de Milnor-Hamm sobre a esfera. Além disso, apresentamos algoritmos com o intuito de criar uma ampla variedade de exemplos e comparamos nossos resultados com os atuais encontrados na literatura. Nossos resultados generalizam todos os previamente existentes tanto no caso clássico, quanto no sentido estratificado.
267

Modélisation mathématique et simulations numériques des écoulements sanguins dans des artères avec ou sans stents / Mathematical modelling and numerical simulations of the blood-flow in stented and unstented anevrisms

Bey, Mohamed Amine 08 October 2015 (has links)
Cette thèse est consacrée à la modélisation mathématique et simulations numériques des écoulements sanguins dans des artères en présence d’une endoprothèse vasculaire de type stent. La présence de stent peut être considérée comme une perturbation locale d’un bord lisse d’écoulement, plus précisément les parois de l’artère sont assimilées à une surface fortement rugueuse. Nous nous sommes principalement intéressés au contrôle de la régularité H² sur un modèle simplifié permettant de prendre en compte l’effet de ces stents lorsque le flux sanguin est gouverné par une équation de Laplace (en lien avec la composante axiale de la vitesse d’écoulement) avec une condition aux limites de type Dirichlet, dans un domaine à bord rugueux (en fonction d’un petit paramètre ε). Dans une première partie, nous soulevons la question d’existence et d’unicité de la solution de ce modèle d’écoulement sanguin et nous traitons la régularité H² par des techniques d’analyse variationnelle. Une étude minutieuse permet de contrôler la régularité H² en O(ε−1). Le deuxième axe est dédié à l’étude de la régularité H² par des analyse asymptotiques multiéchelles. Nous montrons que la norme H² de la solution de ce modèle d’écoulement sanguin est singulière en O(ε−½ ). D’autre part, nous améliorons les ordres de convergence des résultats existants concernant la construction des approximations multiéchelles. Dans un troisième temps, nous présentons des estimations d’erreur et des résultats numériques. Ces résultats illustrent le bien fondé des estimations d’erreur sur le plan pratique. Nous montrons bien l’importance des méthodes asymptotiques qui se révèlent plus efficaces qu’un calcul direct. / This thesis is devoted to mathematical modeling and numerical simulations of the blood-flows in arteries in the presence of a vascular prosthesis of type stent. The presence of stent can be considered as a local perturbation of a smooth edge of flow, more precisely the walls artery can be seen as a strongly rough surface.Weare mainly interested in controlling the H² regularity of a simplified model which takes into account the impact of these stents when the blood flow is controlled by a Laplace equation (in link with the axial component rateof flow) with a Dirichlet boundary condition, in a domain with a rough board (according to a small parameter ε). First, we raise the question of existence and unicity of the solution of this model of blood-flow and we study the H² regularity using variational analysis methods. By a detailed study, we control the H² regularity of order O(ε−1). The second part is devoted to the study of the regularity H² regularity using multi-scale analysis.We prove that the H² norm of the solution of this model is singular of order O(ε−½). Moreover, we improve the convergence rate of the existing results on the construction of the multi-scale approximation. Finally, we present an error estimation and numerical results. These numerical results illustrate the well-founded of the error estimates on a practical level. We show the importance of the asymptotic methods that seem to be more effective than a direct computation.
268

Transport optimal : régularité et applications / Optimal Transport : Regularity and applications

Gallouët, Thomas 10 December 2012 (has links)
Cette thèse comporte deux parties distinctes, toutes les deux liées à la théorie du transport optimal. Dans la première partie, nous considérons une variété riemannienne, deux mesures à densité régulière et un coût de transport, typiquement la distance géodésique quadratique et nous nous intéressons à la régularité de l’application de transport optimal. Le critère décisif à cette régularité s’avère être le signe du tenseur de Ma-Trudinger-Wang (MTW). Nous présentons tout d’abord une synthèse des travaux réalisés sur ce tenseur. Nous nous intéressons ensuite au lien entre la géométrie des lieux d’injectivité et le tenseur MTW. Nous montrons que dans de nombreux cas, la positivité du tenseur MTW implique la convexité des lieux d’injectivité. La deuxième partie de cette thèse est liée aux équations aux dérivées partielles. Certaines peuvent être considérées comme des flots gradients dans l’espace de Wasserstein W2. C’est le cas de l’équation de Keller-Segel en dimension 2. Pour cette équation nous nous intéressons au problème de quantification de la masse lors de l’explosion des solutions ; cette explosion apparaît lorsque la masse initiale est supérieure à un seuil critique Mc. Nous cherchons alors à montrer qu’elle consiste en la formation d’un Dirac de masse Mc. Nous considérons ici un modèle particulaire en dimension 1 ayant le même comportement que l’équation de Keller-Segel. Pour ce modèle nous exhibons des bassins d’attractions à l’intérieur desquels l’explosion se produit avec seulement le nombre critique de particules. Finalement nous nous intéressons au profil d’explosion : à l’aide d’un changement d’échelle parabolique nous montrons que la structure de l’explosion correspond aux points critiques d’une certaine fonctionnelle. / This thesis consists in two distinct parts both related to the optimal transport theory.The first part deals with the regularity of the optimal transport map. The key tool is the Ma-Trundinger-Wang tensor and especially its positivity. We first give a review of the known results about the MTW tensor. We then explore the geometrical consequences of the MTW tensor on the injectivity domain. We prove that in many cases the positivity of MTW implies the convexity of the injectivity domain. The second part is devoted to the behaviour of a Keller-Segel solution in the super critical case. In particular we are interested in the mass quantization problem: we wish to quantify the mass aggregated when the blow-up occurs. In order to study the behaviour of the solution we consider a particle approximation of a Keller-Segel type equation in dimension 1. We define this approximation using the gradient flow interpretation of the Keller-Segel equation and the particular structure of the Wasserstein space in dimension 1. We show two kinds of results; we first prove a stability theorem for the blow-up mechanism: we exhibit basins of attraction in which the solution blows up with only the critical number of particles. We then prove a rigidity theorem for the blow-up mechanism: thanks to a parabolic rescaling we prove that the structure of the blow-up is given by the critical points of a certain functional.
269

Méthode de Newton revisitée pour les équations généralisées / Newton-type methods for solving inclusions

Nguyen, Van Vu 30 September 2016 (has links)
Le but de cette thèse est d'étudier la méthode de Newton pour résoudre numériquement les inclusions variationnelles, appelées aussi dans la littérature les équations généralisées. Ces problèmes engendrent en général des opérateurs multivoques. La première partie est dédiée à l'extension des approches de Kantorovich et la théorie (alpha, gamma) de Smale (connues pour les équations non-linéaires classiques) au cas des inclusions variationnelles dans les espaces de Banach. Ceci a été rendu possible grâce aux développements récents des outils de l'analyse variationnelle et non-lisse tels que la régularité métrique. La seconde partie est consacrée à l'étude de méthodes numériques de type-Newton pour les inclusions variationnelles en utilisant la différentiabilité généralisée d'applications multivoques où nous proposons de linéariser à la fois les parties univoques (lisses) et multivoques (non-lisses). Nous avons montré que, sous des hypothèses sur les données du problème ainsi que le choix du point de départ, la suite générée par la méthode de Newton converge au moins linéairement vers une solution du problème de départ. La convergence superlinéaire peut-être obtenue en imposant plus de conditions sur l'approximation multivaluée. La dernière partie de cette thèse est consacrée à l'étude des équations généralisées dans les variétés Riemaniennes à valeurs dans des espaces euclidiens. Grâce à la relation entre la structure géométrique des variétés et les applications de rétractions, nous montrons que le schéma de Newton converge localement superlinéairement vers une solution du problème. La convergence quadratique (locale et semi-locale) peut-être obtenue avec des hypothèses de régularités sur les données du problème. / This thesis is devoted to present some results in the scope of Newton-type methods applied for inclusion involving set-valued mappings. In the first part, we follow the Kantorovich's and/or Smale's approaches to study the convergence of Josephy-Newton method for generalized equation (GE) in Banach spaces. Such results can be viewed as an extension of the classical Kantorovich's theorem as well as Smale's (alpha, gamma)-theory which were stated for nonlinear equations. The second part develops an algorithm using set-valued differentiation in order to solve GE. We proved that, under some suitable conditions imposed on the input data and the choice of the starting point, the algorithm produces a sequence converging at least linearly to a solution of considering GE. Moreover, by imposing some stronger assumptions related to the approximation of set-valued part, the proposed method converges locally superlinearly. The last part deals with inclusions involving maps defined on Riemannian manifolds whose values belong to an Euclidean space. Using the relationship between the geometric structure of manifolds and the retraction maps, we show that, our scheme converges locally superlinearly to a solution of the initial problem. With some more regularity assumptions on the data involved in the problem, the quadratic convergence (local and semi-local) can be ensured.
270

Multivariate Mixed Poisson Processes

Zocher, Mathias 02 December 2005 (has links)
Multivariate mixed Poisson processes are special multivariate counting processes whose coordinates are, in general, dependent. The first part of this thesis is devoted to properties which multivariate counting processes may possess. Such properties are, for example, the Markov property, the multinomial property and regularity. With regard to regularity we study the properties of transition probabilities and intensities. The second part of this thesis restricts the class of all multivariate counting processes by additional assumptions leading to different types of multivariate mixed Poisson processes which, however, are connected with each other. Using a multivariate version of the Bernstein-Widder theorem, it is shown that multivariate mixed Poisson processes are characterized by the multinomial property. Furthermore, regularity of multivariate mixed Poisson processes and properties of their moments are studied in detail. Throughout this thesis, two types of stability of properties of multivariate counting processes are studied: It is shown that most properties of a multivariate counting process are stable under certain linear transformations including the selection of single coordinates and summation of all coordinates. It is also shown that the different types of multivariate mixed Poisson processes under consideration are in a certain sense stable in time.

Page generated in 0.0465 seconds