Spelling suggestions: "subject:"rekommendationssystem"" "subject:"rekommendationssystems""
11 |
Predicting future purchases with matrix factorizationHojlas, Azer, Paulsrud, August January 2022 (has links)
This thesis aims to establish the efficacy of using matrix factorization to predict future purchases. Matrix factorisation is a machine learning method, commonly used to implement the collaborative filtering recommendation system. It finds items that a user may be interested in by comparing items that other similar users have rated, explicitly or implicitly, highly. To fulfill the purpose of the thesis, a qualitative and comparative approach was taken. First, three different implementations of matrix factorisation were created and trained on one year of purchase histories. Two generic methods of predicting future purchases, picking a random item and picking the top selling items, were also created to serve as a point of comparison. The ability to predict future purchases was established as the proportion of correct predictions a method could make. All five methods were then tested using a separate data set and the results compared. The results clearly show that matrix factorisation models are better at predicting future purchases than the generic models. However, the difference between the matrix factorization models was comparatively small. A notable discovery was that there was a decrease in the gap between all methods ability of predicting future purchases, as more predictions are made. The method of predicting a random item fared poorly, correctly predicting cumulatively less than one tenth of any other method. / Denna avhandling syftar till att fastställa matrisfaktoriseringens förmåga att förutsäga framtida köp. Matrisfaktorisering är en maskininlärningsmethod som vanligen används för att implementera rekommendationssystemet för kollaborativ filtrering. Den hittar artiklar som en användare kan vara intresserad av genom att jämföra artiklar som liknande användare har betygsatt högt, uttryckligen eller implicit. För att uppfylla avhandlingens syfte har en kvalitativ och jämförande studie genomförts. Först skapades tre olika matrisfaktoriserings modeler som tränades på ett års köphistorik. Två enkla metoder för att förutsäga framtida köp, att välja ett slumpmässigt föremål och välja de mest sålda föremålen, skapades också för att möjliggöra jämförelser. Möjligheten att förutsäga framtida köp fastställdes som andelen korrekta förutsägelser en metod kunde göra. Alla fem metoderna testades sedan med en separat datamängd och resultaten jämfördes. Resultaten visar tydligt att matrisfaktoriseringsmodeller är bättre på att förutsäga framtida köp än de enkla modellerna. Skillnaden mellan matrisfaktoriseringsmodellerna var dock jämförelsevis liten. En anmärkningsvärd upptäckt var att gapet mellan alla metoders förmåga att förutsäga framtida köp minskade, desto fler förutsägelser som gjordes. Metoden att förutsäga ett slumpmässigt objekt presterade dåligt, då kumulativa andelen korrekta förutsägelser var mindre än en tiondel av någon av de andra metoderna.
|
12 |
Andra lyssnar även på... : En kvalitativ studie om användarupplevelsen av Spotifys rekommendationssystem. / A qualitative study on the user experience of Spotify's recommendation system.Fabricio de Barros, Camilla, Kinnvall, Julia, Pousette Lilja, Willmer January 2023 (has links)
The overload of content in digital services demands a way to filter the content for each individual user. The solution to this problem has come to be recommendation systems, which creates recommendations after the behavior patterns and preferences of each user. Previous research of recommendation systems tends to focus on the technical sides of the algorithms, and the user's perspective often gets forgotten. Although there's no direct connection between the preciseness of the algorithms and the users experience, instead subjective factors play an important role. This study wants to create a deeper understanding of the user experience of recommendation system in order to help digital services improve their use of these systems and hence their user experience. This study specifically examines how Spotify users experiences the services use of recommendation systems. Spotify is a music streaming service which uses recommendation systems in various functions. A qualitative study has been conducted through surveys, observations and interviews with a targeted audience. While analyzing the collected data recurrent themes were sorted under five categories. Based on recurrent themes we were able to state several conclusions. Problems in the interface design had an impact on the users experience of the functions based on recommendation systems, making interface an important aspect of the user experience of recommendation system. The purpose of using recommendation systems was described as to explore new music, although this purpose is generally not fulfilled. Although users found the recommendations relevant their core purpose was not fulfilled, this shows how significant research of the user perspective is. Lastly practical improvement suggestions are discussed, such as social interactions between users, a higher implementation of collaborative filtering and changes in the interface.
|
13 |
Automatic Music Recommendation for Businesses : Using a two-stage Membership model for track recommendation / Automatisk Musikrekommendation för Företag : En tvåstegsmodell för musikrekommendationriktade mot företagHaapanen Rollenhagen, Svante January 2021 (has links)
This thesis proposes a two-stage recommendation system for providing music recommendations based on seed playlists as inputs. The goal is to help businesses find relevant and brand-fit music to play in their venues. The problem of recommending music using machine learning has been investigated quite a bit in both academia and the industry, with collaborative filtering and content-based filtering being the major approaches used. One of the difficulties of creating a recommendation system is how to evaluate it. In this thesis, both a quantitative and a qualitative evaluation are made to determine how well the results correspond to the actual quality of recommendations. The application of recommending music to businesses also poses different problems than a service directed at end consumers, mostly related to how many track recommendations are needed. A two-stage approach was used with Stage 1 producing candidates and a Stage 2 model using a neural network comparing five tracks from the playlist with a candidate was used to rank said candidates. The results show that the Stage 2 model has substantially better results in both the qualitative and quantitative evaluation compared to Stage 1. The quality of the recommendations from the whole system is not completely satisfactory, and some possible reasons for this are discussed, including improving the Stage 1 candidate generator (which was not modified in the scope of this thesis). / Automatisk musikrekommendation med hjälp av maskininlärning har utforskats av både industrin och akademin genom åren, där två huvudsakliga metoder utkristalliserats: collaborative filtering samt content-based filtering. I det här arbetet har en content-based modell tagits fram, uppdelad i två stadier: Steg 1 som genererar kandidater som Steg 2 sedan ordnade om med hjälp av ett neuralt nätverk som jämförde 5 låtar i taget från en spellista med motsvarande kandidater genererade av Steg 1 En av svårigheterna med att skapa automatiska rekommendationer är utvärderingen av den. I det här arbetet har både en kvantitativ och kvalitativ studie utförts för att försäkra att resultaten motsvarar den faktiska kvaliten hos rekommendationerna. Slutmålet med att hjälpa företag med musikrekommendation ställer också unika problem att lösa i jämförelse med en tjänst för privatpersoner, framförallt relaterat till storleken på de returnerade rekommendationerna. Resultaten visade att Steg 2 lyckades rangordna rekommendationerna från Steg 1 på ett sätt som gav högre poäng i både den kvantitativa och kvalitativa utvärderingen av systemen. De slutgiltiga resultaten var inte helt tillfredsställande, och potentialla orsaker till detta diskuteras. Dessa inkluderar Steg 1 (som inte modifierades inom ramen för detta arbete). Utvärderingen visade dock att de kvantitativa utvärderingsramarna verkar motsvara den upplevda kvaliten hos rekommendationerna baserat på den kvalitativa utvärderingen.
|
14 |
Rekommendationssystem för livestreamingtjänsterSunmark, Henrik January 2016 (has links)
Användningen och behovet av rekommendationssystem i digitala tjänster har växt i takt med att utbudet i dessa blivit allt större och svårare för användare att navigera i. Rekommendationssystem används idag i allt ifrån E-handel till musikoch filmstreaming. För att förse användare med rekommendationer på objekt används en mängd olika väl beprövade algoritmer, filtreringsmetoder och datainsamlingsmetoder. Att applicera dessa i livestreamingtjänster ställer nya krav på systemen eftersom innehållet byts ut mer frekvent, helt nytt innehåll tillkommer regelbundet och explicit data samt metadata är sällan tillräcklig för att ta fram träffsäkra rekommendationer. I en fallstudie med företaget Liveguide undersöks hur rekommendationssystem kan appliceras i livestreamingtjänster med avseende på de utmaningar och krav som finns. Metoder presenteras där aktuella lösningar testas, utvärderas och anpassas till att fungera bra i livestreamingsammanhang. Slutligen föreslås tre modeller för rekommendationssystem som tagits fram utifrån det resultat metoderna leder till. För att tillfredsställa de identifierade utmaningarna inom området visade sig hybrida, mångsidiga modeller fördelaktiga i livestreaming. / The usage and demand of recommender systems in digital services has increased in line with their huge range of products, making it more difficult for users to navigate through the content. Recommender systems are used in a wide scope of digital services ranging from E-commerce to music and film streaming. In order to provide users with recommendations on objects, a variety of algorithms, filtering methods and methods of data collections are being used. Applying these in live streaming services puts new demands on such systems since the content is replaced frequently and new objects added regularly. Furthermore, livestreaming services often lack explicit data and metadata, making recommendations less accurate. In a case study with Liveguide, recommender systems are evaluated, focusing on whether they are applicable to live streaming services, respecting requirements and demands on such systems. Methods are presented which tests, evaluates and adapts existing solutions to fit in well in context of live streaming. Finally, three models for recommender systems are suggested, based on the methods result. In order to satisfy the identified challenges, hybrid models turned out to be preferable in the context.
|
15 |
Automatic tag suggestions using a deep learning recommender system / Automatiska taggförslag med hjälp av ett rekommendationssystem baserat på djupinlärningMalmström, David January 2019 (has links)
This study was conducted to investigate how well deep learning can be applied to the field of tag recommender systems. In the context of an image item, tag recommendations can be given based on tags already existing on the item, or on item content information. In the current literature, there are no works which jointly models the tags and the item content information using deep learning. Two tag recommender systems were developed. The first one was a highly optimized hybrid baseline model based on matrix factorization and Bayesian classification. The second one was based on deep learning. The two models were trained and evaluated on a dataset of user-tagged images and videos from Flickr. A percentage of the tags were withheld, and the evaluation consisted of predicting them. The deep learning model attained the same prediction recall as the baseline model in the main evaluation scenario, when half of the tags were withheld. However, the baseline model generalized better to the sparser scenarios, when a larger number of tags were withheld. Furthermore, the computations of the deep learning model were much more time-consuming than the computations of the baseline model. These results led to the conclusion that the baseline model was more practical, but that there is much potential in using deep learning for the purpose of tag recommendation. / Den här studien genomfördes i syfte att undersöka hur effektivt djupinlärning kan användas för att konstruera rekommendationssystem för taggar. När det gäller bildobjekt så kan taggar rekommenderas baserat på taggar som redan förekommer på objektet, samt på information om objektet. I dagens forskning finns det inte några publikationer som presenterar ett rekommendationssystem baserat på djupinlärning som bygger på att gemensamt använda taggarna och objektsinformationen. I studien har två rekommendationssystem utvecklats. Det första var en referensmodell, ett väloptimerat hybridsystem baserat på matrisfaktorisering och bayesiansk klassificering. Det andra systemet baserades på djupinlärning. De två modellerna tränades och utvärderades på en datamängd med bilder och videor taggade av användare från Flickr. En procentandel av taggarna var undanhållna, och utvärderingen gick ut på att förutsäga dem. Djupinlärningsmodellen gav förutsägelser av samma kvalitet som referensmodellen i det primära utvärderingsscenariot, där hälften av taggarna var undanhållna. Referensmodellen gav dock bättre resultat i de scenarion där alla eller nästan alla taggar var undanhållna. Dessutom så var beräkningarna mycket mer tidskrävande för djupinlärningsmodellen jämfört med referensmodellen. Dessa resultat ledde till slutsatsen att referensmodellen var mer praktisk, men att det finns mycket potential i att använda djupinlärningssystem för att rekommendera taggar.
|
16 |
Evaluating Cold-Start in Recommendation Systems Using a Hybrid Model Based on Factorization Machines and SBERT Embeddings / Evaluering av kallstartsproblemet hos rekommendationssystem med en NLP-baserad hybridmodell baserad på faktoriseringsmaskiner och SBERT inbäddningarChowdhury, Sabrina January 2022 (has links)
The item cold-start problem, which describes the difficulty of recommendation systems in recommending new items to users, remains a great challenge for recommendation systems that rely on past user-item interaction data. A popular technique in the current research surrounding the cold-start problem is the use of hybrid models that combine two or more recommendation strategies that may contribute with their individual advantages. This thesis investigates the use of a hybrid model which combines Sentence BERT embeddings with a recommendation model based on Factorization Machines (FM). The research question is stated as: How does a hybrid recommendation system based on Factorization Machines with frozen Sentence BERT embeddings perform in terms of solving the cold-start problem?. Three experiments were conducted to answer the research question. These involved finding an optimal pre-trained Sentence BERT model, investigating the difference in performance between an FM-model and a hybrid FM-model, as well as the difference in ranking of an item depending on whether or not the hybrid FM-model has been trained on the item. The results show that the best pre-trained Sentence BERT model for producing meaningful embeddings is the paraphrase-MiniLM-L3-v2 model, that a hybrid FM-model and a standard FM-model perform almost equally in terms of precision and recall at 50, and that there is a weak correlation between the item-frequency and how the hybrid FM-model ranks an item when trained and not trained on the item. The answer to the research question is that a recommendation model based on Factorization Machines with frozen Sentence BERT embeddings displays low precision at 50 and recall at 50 values with the given parameters in comparison to the values given in an optimal recommendation scenario. The hybrid FM-model shows cold-start potential due to displaying similar results to the standard FM-model, but these values are so low that further investigation with other parameters is needed for a clearer conclusion. / Kallstartsproblem för artiklar som beskriver svårigheten hos rekommendationssystem gällande uppgiften att rekommendera nya artiklar till användare, är fortsatt en stor utmaning för rekommendationssystem som förlitar sig på data som beskriver interaktioner mellan användare och artiklar. En populär teknik inom den aktuella forskningen gällande kallstartsproblemet är användandet av hybridmodeller som kombinerar två eller flera rekommendationsstrategier och som potentiellt kan bidra med sina individuella fördelar. Detta examensarbete undersöker användandet av en hybridmodell som kombinerar menings-BERT inbäddningar med en rekommendationsmodell baserad på faktoriseringsmaskiner (FM). Frågeställningen lyder: Hur väl kan kallstartsproblemet för rekommendationer lösas med en hybridmodell baserad på faktoriseringsmaskiner med frusna menings-BERT-inbäddningar?. Tre experiment utfördes för att svara på frågeställningen. Dessa experiment innebar att hitta en optimal förtränad menings-BERT-modell, undersöka skillnaden i utförandet mellan en FM-modell och en hybrid FM-modell, samt skillnaden i ranking av en artikel baserat på huruvida hybridmodellen tränats eller inte tränats på artikeln. Resultaten visar att den bästa förtränade menings-BERT-modellen gällande skapandet av meningsfulla inbäddningar är paraphrase-MiniLM-L3-v2-modellen, att en hybrid FM-modell och en FM-modell genererar nästan identiska resultat baserat på precision och återkallelse för de första 50 resultaten och att det finns en svag korrelation mellan artikel-frekvens och hur hybridmodellen rankar en artikel när hybridmodellen tränats eller inte tränats på artikeln. Svaret på frågeställningen är att en hybrid FM-modell med frusna menings-BERT-inbäddningar visar låga resultat för precision och återkallelse för de första 50 resultaten givet de använda parametrarna jämfört med de värden som skulle genererats i ett optimalt rekommendationsscenario. Den hybrida FM-modellen visar kallstartspotential då den visar liknande resultat som FM-modellen, men dessa värden är så låga att frågan behöver undersökas ytterligare för tydligare resultat.
|
17 |
Design an emotionally positive experience via sentiment classification for social media recommendation systems : A case study in TikTok / Skapa en emotionellt positiv upplevelse genom sentimentklassificering för rekommendationssystem för sociala medier : En fallstudie i TikTokDeng, Yawen January 2023 (has links)
Recommendation system benefits social media by attracting users with the posts they prefer. The recommended posts, however, may not align with what users really need to browse, especially in terms of emotion. Thus we conducted a case study in TikTok, in order to understand the emotional impact of social application’s post feed and to explore the interactive solution. The state-of-arts were reviewed, on the topics of psychology issues caused by social media, related therapy and product solutions. To empathise with users’ situation, a workshop was performed, consisting of a card game, presentation and participatory design. Then an emotion reminder, built on a Naive Bayesian text classifier and a facial expression SVM, was prototyped. With an accuracy of 0.51 (text) and 0.69 (facial expression) in sentiment classification, the emotion reminder was then tested by the users. It was discovered that users had higher emotion awareness, higher sense of control over the browsing and lower engagement in the interface with the prototype, compared with the original TikTok interface. And this was aligned with their needs described in the workshop. Users preferred the prototype’s content-based emotion detection than the detection based on their biological data in terms of privacy, and embraced the format of the reminder, instead of auto-filter, as an emotionally positive experience was not just browsing the posts with positive feelings, but receiving negative posts as well. / Rekommendationssystem gynnar sociala medier genom att locka användare med de inlägg de föredrar. De rekommenderade inläggen kan dock inte alltid överensstämma med det användarna verkligen behöver bläddra igenom, särskilt när det gäller känslor. Därför genomförde vi en fallstudie på TikTok för att förstå den emotionella påverkan av sociala applikationers inläggflöde och för att utforska interaktiva lösningar. Den senaste forskningen inom området granskades med fokus på psykologiska problem orsakade av sociala medier, relaterad terapi och produktlösningar. För att sätta oss in i användarnas situation genomfördes en workshop med ett kortspel, presentation och deltagande design. Därefter skapades en känslomässig påminnelse, baserad på en Naive Bayes-textklassificerare och en SVM för ansiktsuttryck. Med en noggrannhet på 0,51 (text) och 0,69 (ansiktsuttryck) i känslolägesklassificering testades sedan känslominnaren av användarna. Det visade sig att användarna hade ökad medvetenhet om sina känslor, ökad känsla av kontroll över bläddrandet och lägre engagemang i gränssnittet med prototypen jämfört med det ursprungliga TikTok-gränssnittet. Detta stämde överens med deras behov som beskrevs under workshopen. Användarna föredrog prototypens innehållsbaserade känslodetektion jämfört med detektering baserad på deras biologiska data av integritetsskäl och omfamnade formatet på påminnelsen istället för automatisk filtrering. En emotionellt positiv upplevelse handlade inte bara om att bläddra bland inlägg med positiva känslor, utan även att ta emot negativa inlägg.
|
18 |
Unga vuxnas upplevelser av algoritmbaserade spellistor på Spotify : Hur upplever unga vuxna algoritmbaserade förslag inom Radiofunktionen på musikstreamingtjänsten Spotify? / Young adults experiences of algorithmic based playlists on Spotify : How do young adults experience algorithmic suggestions within the Radio function on the music streaming service Spotify?Jansson, Petter, Ullberg, Edvin January 2022 (has links)
Sättet människor konsumerar musik har förändrats genom historien och i samband med digitaliseringen har nya möjligheter att lyssna på musik uppstått. I samband med denna övergång har även fler algoritmbaserade tillvägagångssätt för musiklyssnande uppkommit. Syftet med studien är att undersöka unga vuxnas upplevelser av den algoritmbaserade Radiofunktionen på musikstreamingtjänsten Spotify. Studien har även undersökt huruvida de algoritmbaserade förslagen eventuellt påverkar användarnas upplevelser och musikbeteenden.Undersökningen är baserad på sju respondenters upplevelser inom åldersspannet 20-30 år, i denna studie definierat som unga vuxna. Studien har genomförts via kvalitativa metoder däribland en inledande dagboksstudie, med syfte att förbereda respondenternas reflektiva tänkande vilket följdes upp med semistrukturerade intervjuer. Därefter transkriberades intervjuerna för att senare kodas och en tematisk analys genomfördes. Resultatet av studien påvisar att det finns en variation i användandet av radiofunktionen samt att majoriteten av respondenterna uttryckt en positiv upplevelse av Radio på Spotify. Studien bidrar med nya insikter kring algoritmbaserade upplevelser hos användare i relation till musikstreaming och framförallt funktionen radio, samt hur användandet kan skilja sig beroende på situation och anledning till användande. / The streaming of music has during the last two decades become a new standard for how people acquire and listen to music. In correlation with this shift, other possibilities for listening to music have been on the rise. The purpose of this study is to investigate the experience for young adults of algorithm-based playlist ”Radio” on the streaming service platform Spotify. The investigation will determine whether or not these algorithm-based suggestions potentially affect the users' experience of listening to music and overall music behavior.The study is based on the experience of seven respondents of ages ranging between 20-30 years old - through this study referred to as "young adults." The qualitative methods this research has followed consists of a simple initial diary study, in order to prepare the respondents reflective thinking before the following semi-structured interviews. The interviews were then transcribed and followed by coding as well as a thematical analysis. The results of the study show that there is a variation in the use of the ”Radio” phenomenon on Spotify and that the vast majority of the respondents participating in the investigation expressed an overall positive experience. Furthermore, this study indicates that the respondents utilize the feature on different occasions and for different purposes.
|
19 |
Behavior reflects preference : Mitigating the user cold-start in recommender systems with user telemetry dataMueller, Sebastian January 2021 (has links)
Recommender Systems are information filtering systems that aim to predict a user’s preference for an item. A central challenge when building a Recommender System is the user cold-start, the integration of new users into the recommendation process. It can currently not be ultimately solved, but only mitigated based on additional information about the user. This work proposes to utilize technical usage data, telemetry data, for user preference modeling. In the industry use-case of an in-game item recommendation system for a mobile game, telemetric features have been engineered, to capture player’s behavior during the first hours inside the game. The prediction of the first purchase was then modeled as a multi-class classification problem. Across a range of different classification model families, the models trained on telemetric features of the present dataset all significantly outperform the same models trained on demographic features, which in turn outperform naive baselines. The result has implications for industry use-cases where Recommender Systems are being employed, and telemetric features can be aggregated, like mobile applications. It also has implications on future research of cold-start mitigation, as telemetric information could be used to generate recommendations in different problem architectures than classification. / Rekommendationssystem är informationsfiltreringssystem som försöker att förutsäga en användares preferens för en artikel. En viktig utmaning när man bygger ett rekommendationssystem är kallstarten, integrationen av nya användare i rekommendationsprocessen. Kallstarten kan fortfarande inte lösas fullständigt. Problemet blir nuförtiden mildrad genom att använda sig av externa datakällor om användaren. Detta arbete föreslår att man använder telemetrisk användningsdata för modellering av användarpreferens. Arbetet fokuserar på industriella användningsfallet av ett rekommendations system för artiklar inom ett mobilspel. Telemetriska egenskaper har konstruerats för att infånga spelarens beteende under de första timmarna i spelet. Rekommendationen för det relevantaste första köpet modellerades sedan som ett klassificeringsproblem med flera klasser. Över en rad olika klassificeringsmodellfamiljer överträffade modellerna tränade på telemetriska egenskaper signifikant samma modeller som tränats på demografiska egenskaper vilket i sin tur överträffar naiva basmetoder. Resultatet har konsekvenser för industriella applikationer där rekommendationssystem används och i vilka telemetriska egenskaper kan aggregeras, t.ex. mobilappar. Det har också konsekvenser för framtida forskning om kallstartreducering, eftersom telemetrisk information kan användas för att generera rekommendationer i andra problemklasser än klassificering.
|
20 |
Creating a Recommender System for a Service Booking WebsiteMustaf Cali, Sakariya January 2020 (has links)
Detta dokument presenterar implementeringen av ett rekommendationssystem för tjänstebokningssidan Boka.se. Rekommendationssystem omfattar mjukvaruverktyg och teknik för att generera förslag till en användare enligt deras preferenser och förekommer ofta på e-handelssidor. Baserat på användarens feedback kan det föreslagna rekommendationssystemet generera förslag för tjänster som passar dem. Det här dokumentet ger en översikt över rekommendationssystem och visar implementeringen av ett user-based collaborative filtering system, baserat på en data som tillhandahålls av tjänstbokningssidan Boka.se. Den beskriver också olika fallgropar och begränsningar för att skapa ett rekommendationssystem baserat på data som inte har några identifierande attribut för varken användare eller objekt.
|
Page generated in 0.0869 seconds