• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 346
  • 166
  • 47
  • 25
  • 10
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 798
  • 405
  • 359
  • 206
  • 169
  • 139
  • 122
  • 108
  • 96
  • 88
  • 84
  • 82
  • 77
  • 75
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
581

Evolução numérica de espaços-tempos radiativos / Numerical evolution of radiative spacetimes

Eduardo Lima Rodrigues 23 October 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho consiste na aplicação de métodos espectrais para obter a evolução de sistemas isolados que possam emitir ondas gravitacionais no regime não-linear pleno da Relatividade Geral. A perspectiva da detecção de ondas gravitacionais nos próximos anos torna premente a construção de padrões temporais e angulares de ondas gravitacionais emitidas por sistemas que são fortes candidatos a fontes intensas de ondas gravitacionais. Estudamos a evolução de esferóides de matéria emitindo ondas gravitacionais e um campo de radiação nula onde o espaço-tempo exterior é descrito pelas equações de Robinson- Trautman. O campo de radiação nula é esperado em um colapso gravitacional realístico e pode representar uma superposição incoerente de ondas eletromagnéticas, neutrinos ou campos escalares sem massa. Analisamos a evolução do espectro de emissão de ondas gravitacionais e a extração de massa do sistema devido à emissão de ambos os tipos de radiação. Apresentamos também o primeiro código numérico utilizando o método de Galerkin para integrar as equações de campo do problema de Bondi. Realizamos vários testes numéricos para verificar a convergência, estabilidade e precisão, obtendo resultados promissores. Esse código abre várias possibilidades de aplicações em cenários mais gerais de espaços-tempos com ondas gravitacionais. / This work consists of applying spectral methods to obtain the evolution of isolated systems that can emit gravitational waves in the full nonlinear regime of General Relativity. The perspective of detection of gravitational waves in the next years means that the construction of angular and temporal patterns of gravitational waves emitted by systems that are strong candidates for intense sources of gravitational waves has become pressing.The evolution of spheroids of matter emitting gravitational waves and a null radiation field is studied in the realm of radiative Robinson-Trautman spacetimes. The null radiation field is expected in realistic gravitational collapse and can be either an incoherent superposition of waves of electromagnetic, neutrino or massless scalar fields. We studied the evolution of the angular pattern of gravitational wave emission and the mass extraction of the bounded configuration through the emission of both types of radiations. We present the first numerical code based on the Galerkin method to integrate the field equations of the Bondi problem. Several numerical tests were performed to verify the issues of convergence, stability and accuracy with promising results. This code opens up several possibilities of applications in more general scenarios for studying the evolution of spacetimes with gravitational waves.
582

Métodos espectrais aplicados à relatividade numérica: determinação dos dados iniciais / Spectral methods applied to numerical relativity: determination of initial data

Mariana Alves Alcoforado 09 October 2012 (has links)
Neste trabalho aplicamos métodos espectrais para a determinação da configuração inicial de três espaços-tempos contendo buracos negros. Para isto apresentamos primeiro a foliação do espaço-tempo em hipersuperfícies tridimensionais espaciais parametrizadas pela função temporal t. Este processo é chamado de decomposição 3+1 [2] [5]. O resultado deste processo são dois conjuntos de equações classificadas em equações de vínculo e evolução [4]. As equações de vínculo podem ser divididas em vínculos Hamiltoniano e dos momentos. Para a obtenção dos dados iniciais dos problemas estudados aqui, apenas a equação de vínculo Hamiltoniano será resolvida numericamente, pois as equações de vínculo dos momentos possuem solução analítica nestes casos. Uma pequena descrição dos métodos espectrais é apresentada, destacando-se os método de Galerkin, método pseudoespectral ou de colocação e método de Tau, que são empregados na resolução das equações de vínculo Hamiltoniano dos problemas estudados. Verificamos que os resultados obtidos neste trabalho superam aqueles produzidos por Kidder e Finn [15], devido a uma escolha diferente das funções de base, que aqui satisfazem uma das condições de contorno. / In this work we apply spectral methods for determining the initial configuration of three spacetimes containing black holes. For this we present first the foliation of spacetime into three-dimensional spacelike hypersurfaces parameterized by the time function t. This process is called 3 + 1 decomposition [2] [5]. The result of this process are two sets of equations classified into constraint and evolution equations [4]. The constraint equations can be divided into Hamiltonian and momentum constraints.To obtain the initial data of the problems studied here, only the Hamiltonian constraint is solved numerically, since the momentum constraint of these cases have analytical solution. A short description of spectral methods is presented, highlighting Galerkin method, pseudospectral or collocation method and Tau method, which are employed in solving the constraint equations Hamiltonian of the problems studied. We found that the results obtained in this work outperform those produced by Kidder and Finn [15], due to a different choice of basis functions, which meet here one of the boundary conditions.
583

Simulations numériques de collisions de vents dans les systèmes binaires / Numerical simulations of colliding winds in binary systems

Lamberts-Marcade, Astrid 14 September 2012 (has links)
L'objectif de cette thèse est de comprendre la structure des binaires gamma, binaires à collision de vents composées d'une étoile massive et d'un pulsar jeune. Ces binaires possèdent probablement une structure similaire aux binaires à collision de vents composées de deux étoiles massives, avec des particularités liées à la nature relativiste du vent de pulsar. L'interaction de deux vents supersoniques d'étoiles massives crée une structure choquée qui présente des signatures observationnelles du domaine radio aux rayons X. Plusieurs instabilités ainsi que le mouvement orbital des étoiles influent sur la structure choquée. Afin de comprendre leur impact, j'ai effectué des simulations à haute résolution de binaires à collision de vents à l'aide du code hydrodynamique RAMSES. Ces simulations sont numériquement coûteuses à réaliser, surtout lorsque un des vents domine fortement l'autre. A petite échelle, les simulations soulignent l'importance de l'instabilité de couche mince non-linéaire dans les collisions isothermes alors que l'instabilité de Kelvin-Helmholtz peut fortement modifier la structure choquée dans une collision adiabatique. A plus grande échelle, cette instabilité peut parfois détruire la structure spirale à laquelle on s'attend si la différence de vitesse entre les vents est trop importante. WR 104 est une binaire dont on observe la structure spirale grâce à l'émission de poussières. Les simulations de ce système montrent un bon accord avec la structure observée et indiquent que des processus de refroidissement du gaz sont nécessaires à la formation de poussières. Pour modéliser les vents de pulsar dans les binaires gamma, RAMSES a été étendu à l'hydrodynamique relativiste. J'utilise ce nouveau code pour réaliser des simulations préliminaires de binaires gamma. Elles montrent effectivement une structure similaire aux binaires stellaires, avec de légères corrections relativistes . Ce code est adapté à l'étude de divers systèmes astrophysiques tels que les jets relativistes, les sursauts gamma ou les nébuleuses de pulsar et fera partie de la prochaine version de RAMSES qui sera rendue publique. / The aim of this thesis is to understand the structure of colliding wind binaries composed of a massive star and a young pulsar, called gamma-ray binaries. They are expected to display a similar structure to colliding wind binaries composed of massive stars, with some particularities due to the relativistic nature of the pulsar wind. The interaction of the supersonic winds from massive stars creates a shocked structure with observational signatures from the radio domain to the X-rays. The structure is affected by various instabilities and by the orbital motion of the stars. To understand their impact, I carried out high resolution simulations of colliding wind binaries with the hydrodynamical code RAMSES. They are computationally demanding, especially when one of the winds strongly dominates the other one. Small scale simulations highlight the importance of the Non-linear Thin Shell Instability in isothermal collisions while the Kelvin-Helmholtz instability may strongly impact the dynamics of adiabatic collisions. I found that, at larger scales, this instability can destroy the expected large scale spiral structure when there is an important velocity gradient between the winds. WR 104 is a system that displays a spiral structure with important dust emission. The simulation of this system shows a good agreement with the observed structure and indicates cooling processes are necessary to enable dust formation. To model the pulsar wind in gamma-ray binaries, an extension of RAMSES has been developed, that incorporates relativistic hydrodynamics. I used this new relativistic code to perform preliminary simulations of gamma-ray binaries. They display a similar structure to colliding wind binaries with small relativistic corrections. We expect to use this code to perform large scale simulations of gamma-ray binaries. It will be part of the next public release of RAMSES and is suited for the study of many astrophysical problems such as relativistic jets, pulsar wind nebulae or gamma-ray bursts.
584

A construção de uma Unidade de Ensino Potencialmente Significativa (UEPS) para ensinar relatividade utilizando animações e o game A slower speed of light / Building up a teaching and learning sequence (tls) to teach special relativity using animations and the game a slower speed of light

Riboldi, Bruno Marconi 21 December 2015 (has links)
Submitted by Livia Mello (liviacmello@yahoo.com.br) on 2016-10-06T20:18:19Z No. of bitstreams: 1 DissBMR.pdf: 4436976 bytes, checksum: 6798de1dc9fbb33dbd67f393ab12e887 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:20:22Z (GMT) No. of bitstreams: 1 DissBMR.pdf: 4436976 bytes, checksum: 6798de1dc9fbb33dbd67f393ab12e887 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:20:28Z (GMT) No. of bitstreams: 1 DissBMR.pdf: 4436976 bytes, checksum: 6798de1dc9fbb33dbd67f393ab12e887 (MD5) / Made available in DSpace on 2016-10-20T19:20:35Z (GMT). No. of bitstreams: 1 DissBMR.pdf: 4436976 bytes, checksum: 6798de1dc9fbb33dbd67f393ab12e887 (MD5) Previous issue date: 2015-12-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / This present work aims to build a Teaching and Learning Sequence (TLS) proposed by Marco. A. Moreira , based on David Ausubel's Meaningful Learning Theory. The TLS aims to lead to a meaningful conceptual learning of Einstein's Special Relativity theory by suppressing the excessive calculus involving it. One of its greatest achievements is the use of the educational game - a slower speed of light and animations. The topics of the unit content are time dilation, length contraction, invariance of the speed of light, the relativity of simultaneity, spotlight effect and Terrell effect. The TLS was able to promote differentiated classes, providing evidences of conceptual evolution - stimulating and making it possible the teaching of modern and contemporary physics at this level. The TLS developed for this study was applied in two classes in a State high school in Itapira - SP and the results were analyzed so that the teaching unit efficiency could be evaluated. At the end of this work an instructional product, which is the TLS itself, is presented. / O presente trabalho tem como objetivo construir e aplicar uma Unidade de Ensino Potencialmente Significativa (UEPS), baseada na teoria da Aprendizagem Significativa de David Ausubel e proposta por Marco A. Moreira. A UEPS visa facilitar a aprendizagem significativa da teoria da Relatividade Restrita e suprimir o excesso de matematização que envolve a tal teoria. Um dos diferenciais desta UEPS é o uso do game educativo A slower speed of light e animações. Os temas abordados na unidade de ensino são a dilatação temporal, a contração do comprimento, a invariância da velocidade da luz, a simultaneidade de eventos relativísticos, o efeito holofote e o efeito Terrell. A UEPS construída foi capaz de permitir aulas diferenciadas, fornecendo evidências de uma evolução conceitual por parte dos alunos, viabilizando e incentivando o ensino da física moderna e contemporânea neste nível de ensino. A UEPS desenvolvida neste trabalho foi aplicada em duas salas de uma escola pública de Itapira – SP, sendo que os resultados foram analisados para que se pudesse avaliar a eficácia da unidade de ensino. Ao final do trabalho é apresentado o produto educacional que consiste na UEPS para o ensino da teoria da Relatividade Restrita.
585

Geometria de Weyl e A teoria gravitacional de Nordström

Almeida, Tony Silva 20 August 2010 (has links)
Made available in DSpace on 2015-05-14T12:14:07Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 649165 bytes, checksum: 4b61e26e50f256db343ba95b4cf95a8b (MD5) Previous issue date: 2010-08-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this disssertation we are concerned with Nordström s scalar gravity theory, one of the first attempts to formulate a relativistic theory of gravitation. We start be describing the theory in its original formulation given by Nordström. We then proceed to show how Nordström s approach is equivalent to a metric theory of gravity which regards gravity as a manifestation of spacetime curvature, a result first obtained by Einstein and Fokker in 1914. We exlore this formal equivalence between the two approaches to derive Nordström s predictions of some observed phenomena, such as Mercury s perihelium and the time delay of the light. finally we consider a third approach which makes use of Weyl geometry through its concept of gauge transformations. We then show that one can regard both Nordström s and Einstein-Fokker s framework as equivalent to a theory formulated to a theory formulated in minkowski spacetime in which the gravitational field is encoded in a non-trivial affine connection. / Nesse dissertação descrevemos a teoria da gravitação escalar de Norsdtröm em diferentes formalismos. Iniciamos tratando esta teoria em sua formulação original, que ficou conhecida por manter a estrutura geométrica da relatividade especial. A seguir revisamos a formulação métrica da teoria de Nordström, devido à Einstein e Fokker, que descreve a gravitação como manifestação da curvatura do espaço-tempo. Nessa formulação, descrevemos as predições da teoria de Nordström para alguns efeitos gravitacionais observados, tais como o movimento do periélio de Mercúrio e o atraso gravitacional da luz. Finalmente introduzimos a geometria de Weyl juntamente com o conceito das transformações de calibre para fazer a transição da formulação métrica em Einstein-Fokker (referencial de Riemann) para o espaço-tempo de Minkowski (referencial de Weyl), onde o campo gravitacional fica codificado pela conexão afim de Weyl. Mostramos também que a estrutura geodésica nessas três formulações é idêntica.
586

Condi??es de energia de hawking e ellis e a equa??o de raychaudhuri

Santos, Crislane de Souza 14 April 2011 (has links)
Made available in DSpace on 2014-12-17T15:14:52Z (GMT). No. of bitstreams: 1 CrislaneSS_DISSERT.pdf: 1091298 bytes, checksum: 831e6bef52e8fad49a4683ec16886d4d (MD5) Previous issue date: 2011-04-14 / In the Einstein s theory of General Relativity the field equations relate the geometry of space-time with the content of matter and energy, sources of the gravitational field. This content is described by a second order tensor, known as energy-momentum tensor. On the other hand, the energy-momentum tensors that have physical meaning are not specified by this theory. In the 700s, Hawking and Ellis set a couple of conditions, considered feasible from a physical point of view, in order to limit the arbitrariness of these tensors. These conditions, which became known as Hawking-Ellis energy conditions, play important roles in the gravitation scenario. They are widely used as powerful tools for analysis; from the demonstration of important theorems concerning to the behavior of gravitational fields and geometries associated, the gravity quantum behavior, to the analysis of cosmological models. In this dissertation we present a rigorous deduction of the several energy conditions currently in vogue in the scientific literature, such as: the Null Energy Condition (NEC), Weak Energy Condition (WEC), the Strong Energy Condition (SEC), the Dominant Energy Condition (DEC) and Null Dominant Energy Condition (NDEC). Bearing in mind the most trivial applications in Cosmology and Gravitation, the deductions were initially made for an energy-momentum tensor of a generalized perfect fluid and then extended to scalar fields with minimal and non-minimal coupling to the gravitational field. We also present a study about the possible violations of some of these energy conditions. Aiming the study of the single nature of some exact solutions of Einstein s General Relativity, in 1955 the Indian physicist Raychaudhuri derived an equation that is today considered fundamental to the study of the gravitational attraction of matter, which became known as the Raychaudhuri equation. This famous equation is fundamental for to understanding of gravitational attraction in Astrophysics and Cosmology and for the comprehension of the singularity theorems, such as, the Hawking and Penrose theorem about the singularity of the gravitational collapse. In this dissertation we derive the Raychaudhuri equation, the Frobenius theorem and the Focusing theorem for congruences time-like and null congruences of a pseudo-riemannian manifold. We discuss the geometric and physical meaning of this equation, its connections with the energy conditions, and some of its several aplications. / Na teoria da Relatividade Geral de Einstein as equa??es de campo relacionam a geometria do espa?o-tempo com o conte?do de mat?ria e de energia, fontes do campo gravitacional. Esse conte?do ? descrito por um tensor de segunda ordem, conhecido como tensor energia-momento. Por outro lado, os tensores energia-momento que possuem significado f?sico n?o s?o especificados por essa teoria. Na d?cada de 70, Hawking e Ellis estabeleceram algumas condi??es, consideradas plaus?veis do ponto de vista f?sico, com o intuito de limitar as arbitrariedades desses tensores. Essas condi??es ficaram conhecidas como condi??es de energia de Hawking-Ellis, desempenham pap?is importantes no cen?rio da gravita??o. Elas s?o largamente usadas como poderosas ferramentas de an?lise, desde a demonstra??o de importantes teoremas relativos ao comportamento de campos gravitacionais e geometrias associadas, comportamento qu?ntico da gravita??o, at? as an?lises de modelos cosmol?gicos. Nesta disserta??o apresentamos uma dedu??o rigorosa das v?rias condi??es de energia em voga atualmente na literatura cient?fica, tais como: Condi??o de Energia Nula (NEC), Condi??o de Energia Fraca (WEC), Condi??o de Energia Forte (SEC), Condi??o de Energia Dominante (DEC) e Condi??o de Energia Dominante Nula (NDEC). Tendo em mente as aplica??es mais corriqueiras em Gravita??o e Cosmologia, as dedu??es foram feitas inicialmente para um tensor energia-momento de um fluido perfeito generalizado e depois estendidas aos campos escalares com acoplamento m?nimo e n?o-m?nimo ao campo gravitacional. Apresentamos tamb?m um estudo sobre as poss?veis viola??es de algumas dessas condi??es de energia, visando o estudo da natureza singular de algumas solu??es exatas da Relatividade Geral de Einstein, em 1955, o f?sico indiano Raychaudhuri derivou uma equa??o que hoje ? considerada fundamental para o estudo da atra??o gravitacional da mat?ria, a qual ficou conhecida como equa??o de Raychaudhuri. Essa c?lebre equa??o ? considerada o alicerce da compreens?o da atra??o gravitacional em Astrof?sica e Cosmologia e dos teoremas de Singularidades, como por exemplo, o teorema de Hawking e Penrose sobre a singularidade do colapso gravitacional. Nesta disserta??o derivamos a equa??o de Raychaudhuri, o teorema de Frobenius e o teorema da Focaliza??o para congru?ncias tipo-tempo e tipo-nulas de uma variedade pseudo-riemanniana. Discutimos o significado geom?trico e f?sico dessa equa??o, sua conex?o com as condi??es de energia, e algumas de suas in?meras aplica??es.
587

Evolução numérica de espaços-tempos radiativos / Numerical evolution of radiative spacetimes

Eduardo Lima Rodrigues 23 October 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho consiste na aplicação de métodos espectrais para obter a evolução de sistemas isolados que possam emitir ondas gravitacionais no regime não-linear pleno da Relatividade Geral. A perspectiva da detecção de ondas gravitacionais nos próximos anos torna premente a construção de padrões temporais e angulares de ondas gravitacionais emitidas por sistemas que são fortes candidatos a fontes intensas de ondas gravitacionais. Estudamos a evolução de esferóides de matéria emitindo ondas gravitacionais e um campo de radiação nula onde o espaço-tempo exterior é descrito pelas equações de Robinson- Trautman. O campo de radiação nula é esperado em um colapso gravitacional realístico e pode representar uma superposição incoerente de ondas eletromagnéticas, neutrinos ou campos escalares sem massa. Analisamos a evolução do espectro de emissão de ondas gravitacionais e a extração de massa do sistema devido à emissão de ambos os tipos de radiação. Apresentamos também o primeiro código numérico utilizando o método de Galerkin para integrar as equações de campo do problema de Bondi. Realizamos vários testes numéricos para verificar a convergência, estabilidade e precisão, obtendo resultados promissores. Esse código abre várias possibilidades de aplicações em cenários mais gerais de espaços-tempos com ondas gravitacionais. / This work consists of applying spectral methods to obtain the evolution of isolated systems that can emit gravitational waves in the full nonlinear regime of General Relativity. The perspective of detection of gravitational waves in the next years means that the construction of angular and temporal patterns of gravitational waves emitted by systems that are strong candidates for intense sources of gravitational waves has become pressing.The evolution of spheroids of matter emitting gravitational waves and a null radiation field is studied in the realm of radiative Robinson-Trautman spacetimes. The null radiation field is expected in realistic gravitational collapse and can be either an incoherent superposition of waves of electromagnetic, neutrino or massless scalar fields. We studied the evolution of the angular pattern of gravitational wave emission and the mass extraction of the bounded configuration through the emission of both types of radiations. We present the first numerical code based on the Galerkin method to integrate the field equations of the Bondi problem. Several numerical tests were performed to verify the issues of convergence, stability and accuracy with promising results. This code opens up several possibilities of applications in more general scenarios for studying the evolution of spacetimes with gravitational waves.
588

Métodos espectrais aplicados à relatividade numérica: determinação dos dados iniciais / Spectral methods applied to numerical relativity: determination of initial data

Mariana Alves Alcoforado 09 October 2012 (has links)
Neste trabalho aplicamos métodos espectrais para a determinação da configuração inicial de três espaços-tempos contendo buracos negros. Para isto apresentamos primeiro a foliação do espaço-tempo em hipersuperfícies tridimensionais espaciais parametrizadas pela função temporal t. Este processo é chamado de decomposição 3+1 [2] [5]. O resultado deste processo são dois conjuntos de equações classificadas em equações de vínculo e evolução [4]. As equações de vínculo podem ser divididas em vínculos Hamiltoniano e dos momentos. Para a obtenção dos dados iniciais dos problemas estudados aqui, apenas a equação de vínculo Hamiltoniano será resolvida numericamente, pois as equações de vínculo dos momentos possuem solução analítica nestes casos. Uma pequena descrição dos métodos espectrais é apresentada, destacando-se os método de Galerkin, método pseudoespectral ou de colocação e método de Tau, que são empregados na resolução das equações de vínculo Hamiltoniano dos problemas estudados. Verificamos que os resultados obtidos neste trabalho superam aqueles produzidos por Kidder e Finn [15], devido a uma escolha diferente das funções de base, que aqui satisfazem uma das condições de contorno. / In this work we apply spectral methods for determining the initial configuration of three spacetimes containing black holes. For this we present first the foliation of spacetime into three-dimensional spacelike hypersurfaces parameterized by the time function t. This process is called 3 + 1 decomposition [2] [5]. The result of this process are two sets of equations classified into constraint and evolution equations [4]. The constraint equations can be divided into Hamiltonian and momentum constraints.To obtain the initial data of the problems studied here, only the Hamiltonian constraint is solved numerically, since the momentum constraint of these cases have analytical solution. A short description of spectral methods is presented, highlighting Galerkin method, pseudospectral or collocation method and Tau method, which are employed in solving the constraint equations Hamiltonian of the problems studied. We found that the results obtained in this work outperform those produced by Kidder and Finn [15], due to a different choice of basis functions, which meet here one of the boundary conditions.
589

Um objeto compacto exótico na relatividade geral pseudo-complexa

Volkmer, Guilherme Lorenzatto January 2018 (has links)
O impacto que estruturas algébricas podem exercer em teorias físicas e bem ilustrado pela Mecânica Quântica, onde os números complexos são inquestionavelmente a escolha mais adequada para desenvolver a teoria. A Relatividade Geral pseudo-complexa avalia a possibilidade da interação gravitacional assumir sua descrição mais natural quando construída tendo como base os números pseudo-complexos, que consistem em uma das três possibilidades de números complexos abelianos com uma unica unidade imaginária. Esse conjunto numérico e dotado de elementos não nulos cujo produto e zero, tais números recebem o nome de zeros generalizados ou divisores de zero. A presença de zeros generalizados permite a introdução de um princípio variacional modificado do qual um termo adicional, ausente na Relatividade Geral, emerge nas equações de campo. Esse termo adicional e interpretado como uma energia escura, cuja origem física está relacionada com flutuações no vácuo. A inclusão desse efeito e legítima pois flutuações no vácuo a priori devem gravitar como qualquer outra forma de energia. Das equações de campo podemos resumir a principal ideia conceitual da teoria, na Relatividade Geral pseudo-complexa massa não apenas curva o espaçotempo como também e capaz de alterar a estrutura do espaço-tempo ao redor da massa. As diferenças com relação a Relatividade Geral se manifestam em situações físicas extremas, no regime de campos gravitacionais intensos. Como aplicação analisamos sob o ponto de vista teórico um objeto compacto exótico composto por matéria escura fermiônica. / The impact that algebraic structures can exert on physical theories is well illustrated by Quantum Mechanics, where complex numbers are unquestionably the most appropriate choice to develop the theory. Pseudo-complex General Relativity evaluates the possibility that the gravitational interaction acquires its most natural description when constructed upon pseudo-complex numbers, which consist of one of the three possibilities of abelian complex numbers with a single imaginary unit. This numerical set is endowed with nonzero elements whose product is zero, such numbers are called generalized zeros or divisors of zero. The presence of generalized zeros allows the introduction of a modi ed variational principle from which an additional term, absent in General Relativity, emerges in the eld equations. This additional term is interpreted as a dark energy, whose physical origin is related to vacuum uctuations. The inclusion of this e ect is legitimate because a priori vacuum uctuations must gravitate as any other form of energy. From the eld equations we can summarize the main conceptual idea of the theory, in pseudo-complex General Relativity mass not only curves spacetime but also is able to change the structure of the spacetime around the mass. The di erences with respect to General Relativity are manifested in extreme physical situations in the regime of intense gravitational elds. As an application we analyze from the theoretical point of view an exotic compact object composed of fermionic dark matter.
590

Études d'effets relativistes au Centre Galactique à l'aide de simulations d'observations d'orbites d'étoiles par l'instrument GRAVITY / Studies of relativistic effects at the Galactic Center by using stellar-orbit observation simulations of the GRAVITY instrument

Grould, Marion 14 October 2016 (has links)
Le Centre Galactique abrite en son cœur un objet compact de plusieurs millions de masses solaires. L'hypothèse faite à l'heure actuelle est que cet objet serait un trou noir supermassif décrit par la relativité générale. L'instrument de seconde génération du Very Large Telescope Interferometer, GRAVITY, va permettre d'apporter des réponses quant à la réelle nature de cet objet. Grâce à sa précision astrométrique de 10 microsecondes d'angle, il va pouvoir sonder l'espace-temps en champ fort via l'observation des étoiles et du gaz situés à proximité de l'objet central.Au cours de ma thèse j'ai mis au point un modèle permettant de simuler les observations d'orbites d'étoiles de GRAVITY, l'objectif étant d'extraire à l'aide de celui-ci les paramètres fondamentaux du candidat trou noir central ainsi que les effets relativistes. Pour cela, j'ai utilisé le code de tracé de rayons GYOTO développé à l'Observatoire de Paris. Ce code permet de calculer des trajectoires d'étoiles et de photons obtenues en présence d'un objet compact. Il est alors possible de simuler les positions apparentes d'étoiles en orbite autour du Centre Galactique en calculant leur image relativiste.J'ai d'abord validé le calcul des trajectoires des photons effectué dans GYOTO. Grâce à des tests effectués en déflexion faible et forte, j'ai pu démontrer que GYOTO était hautement satisfaisant pour simuler les observations GRAVITY. En effet, j'ai montré que l'erreur sur le calcul des géodésiques de genre lumière était inférieure à environ 10^-2 microseconde d'angle, et cela même pour de grandes distances d'intégration.Je me suis ensuite intéressée à l'étude d'une étoile appelée S2 qui a contribué à fortement contraindre la masse de l'objet central. Sa proximité au Centre Galactique fait d'elle une cible idéale pour sonder l'espace-temps en champ fort. En particulier, j'ai estimé quels étaient les temps minimaux d'observation nécessaires pour détecter des effets relativistes à l'aide de mesures astrométriques et spectroscopiques obtenues sur l'étoile S2. Pour cela, j'ai mis en place plusieurs modèles d'orbites prenant en compte chacun un certain nombre d'effets relativistes. Le modèle le plus précis est obtenu en relativité générale complète avec le code GYOTO. Néanmoins, puisque l'étoile S2 est suffisamment éloignée de l'objet compact, ce modèle néglige certains effets de lentilles gravitationnelles telles que les images secondaires et l'amplification des images primaires. Par ailleurs, je me suis également intéressée à la contraindre du moment cinétique du candidat trou noir central avec cette étoile. En particulier, j'ai déterminé, grâce au modèle le plus précis mis en place ici, qu'il était possible de contraindre la norme et la direction du moment cinétique avec une incertitude d'environ 0,1 et 20 degrés, respectivement, et cela en considérant des observations obtenues sur trois périodes de S2 et des précisions de 10 microsecondes d'angle et 10 km/s.En vue de la possible détection d'étoiles plus proches du Centre Galactique par GRAVITY, j'ai développé un modèle prenant en compte les effets de lentilles négligés dans le modèle précédent. Néanmoins, afin de minimiser le temps de calcul demandé par celui-ci, j'ai déterminé une zone de l'espace dans laquelle il était tout de même possible d'utiliser ce dernier.Enfin, j'ai étudié l'influence de corps du Système Solaire sur les mesures astrométriques de GRAVITY, c'est-à-dire sur la séparation angulaire entre deux sources du Centre Galactique. Cette étude a montré que ces mesures différentielles n'étaient déviées que de quelques microsecondes d'angle par la perturbation gravitationnelle engendrée par le Soleil. Cependant, celles-ci sont modifiées de plusieurs centaines de microsecondes d'angle par l'effet d'aberration induit par le mouvement de la Terre par rapport aux sources du Centre Galactique. Il sera donc nécessaire de prendre en compte cet effet lors de l'interprétation des données obtenues par GRAVITY. / Decades of studies have demonstrated the presence of a compact object of several million solar masses at the center of the Galaxy. Nowadays, the assumption is that this compact object is probably a supermassive black hole described by general relativity. The second generation instrument at the Very Large Telescope Interferometer, GRAVITY, is expected to better constrain the nature of this central object. By using its astrometric accuracy of about 10 microarcseconds, it will probe spacetime in strong gravitational fields by observing stars and gas located near the compact object.During my PhD I have developed a stellar-orbit model in order to interpret the future GRAVITY observations. By using this model it will be possible to extract the central black hole candidate parameters and relativistic effects. To implement the model, I used the ray-tracing code GYOTO developed at Observatoire de Paris. This code allows computing star and photon trajectories obtained in the vicinity of a compact object. It is thus possible to simulate apparent positions of stars orbiting the Galactic Center by computing relativistic images.My work started by validating the photon trajectories computed in GYOTO. By doing tests in both weak- and strong-deflection limits, I have shown that the GYOTO code is highly qualified to simulate GRAVITY observations. Indeed, the error made on the photon trajectories is inferior to 10^-2 microarcsecond, even when integrating over large distances.Then, I was interested in studying a star called S2 that contributed to importantly constrain the mass of the central object. This star is the second closest star to the Galactic Center and has an orbital period of about 16 years. Nowadays, we do not know whether closer-in stars will be discovered by GRAVITY. It is thus important to extract as much information as possible from this star. In particular, I have estimated the minimal observation times needed to detect relativistic effects by using astrometric and spectroscopic measurements of S2. To do so, I have developed different stellar-orbit models taking into account a certain number of relativistic effects. The more accurate model is obtained by using the ray-tracing code GYOTO and considering all relativistic effects. However, as the S2 star is sufficiently far from the compact object, this model neglects certain gravitational lensing effects such as the secondary images and the primary images amplification. Besides, I was also interested in the possibility of constraining the angular momentum of the central black hole candidate with the S2 star. In particular, I have shown that with a model which does not use ray-tracing, the norm and the direction of the angular momentum can be constrained with an uncertainty of about 0.1 and 20 degrees, respectively, by using observations obtained during three periods of S2 and with accuracies reaching 10 microarseconds and 10 km/s.Since closer-in stars could be detected by GRAVITY, I have developed a more accurate stellar-orbit model taking into account the lensing effects neglected in the previous model. However, in order to minimize the computing time required by this model, I determined a volume in which it is possible to neglect both the secondary images and the primary images amplification.Finally, I have studied the impact of different components of the Solar System on astrometric positions measured by GRAVITY. This study has shown that those measurements are deviated by an amount of a few microarcseconds by the gravitational perturbation generated by the Sun. However, those apparent positions are shifted by several hundred microarcseconds by the aberration effect due to the movement of the Earth with respect to the Galactic Center. It is thus necessary to take into account this effect in future interpretations of GRAVITY observations.

Page generated in 0.0575 seconds