Spelling suggestions: "subject:"desolution time"" "subject:"desolution lime""
1 |
Prediction Models for TV Case Resolution Times with Machine Learning / Förutsägelsemodeller för TV-fall Upplösningstid med maskininlärningJavierre I Moyano, Borja January 2023 (has links)
TV distribution and stream content delivery of video over the Internet, since is made up of complex networks including Content Delivery Networks (CDNs), cables and end-point user devices, that is very prone to issues appearing in different levels of the network ending up affecting the final customer’s TV services. When a problem affects the customer, and this prevents from having a proper TV delivery service in devices used for stream purposes, the issue is reported through a call, a TV case is opened and the company’s customer handling agents start supervising it to solve the problem as soon as possible. The goal of this research work is to present an ML-based solution that predicts the Resolution Times (RTs) of the TV cases in each TV delivery service type, therefore how long the cases will take to be solved. The approach taken to provide meaningful results consisted in utilizing four Machine Learning (ML) algorithms to create 480 models for each of the two scenarios. The results revealed that Random Forest (RF) and, specially, Gradient Boosting Machine (GBM) performed exceptionally well. Surprisingly, hyperparameter tuning didn’t significantly improve the RT as expected. Some challenges included the initial data preprocessing and some uncertainty in hyperparameter tuning approaches. Thanks to these predicted times, the company is now able to better inform their costumers on how long the problem is expected to last until is resolved. This real case scenario also considers how the company processes the available data and manages the problem. The research work consists in, first, a literature review on the prediction of RT of Trouble Ticket (TT) and customer churn in telecommunication companies, as well as the study of the company’s available data for the problem. Later, the research focuses in analysing the provided dataset for the experimentation, the preprocessing of the this data according to the industry standards and, finally, the predictions and analysis of the obtained performance metrics. The proposed solution is designed to offer an improved resolution for the company’s specified task. Future work could involve increasing the number of TV cases per service for improving the results and exploring the link between resolution times and customer churn decisions. / TV-distribution och leverans av strömningsinnehåll via internet består av komplexa nätverk, inklusive CDNs, kablar och slutanvändarutrustning. Detta gör det känsligt för problem på olika nätverksnivåer som kan påverka slutkundens TV-tjänster. När ett problem påverkar kunden och hindrar en korrekt TV-leveranstjänst rapporteras det genom ett samtal. Ett ärende öppnas, och företagets kundhanteringsagenter övervakar det för att lösa problemet så snabbt som möjligt. Målet med detta forskningsarbete är att presentera en maskininlärningsbaserad lösning som förutsäger löstiderna (RTs) för TV-ärenden inom varje TV-leveranstjänsttyp, det vill säga hur lång tid ärendena kommer att ta att lösa. För att få meningsfulla resultat användes fyra maskininlärningsalgoritmer för att skapa 480 modeller för var och en av de två scenarierna. Resultaten visade att Random Forest (RF) och framför allt Gradient Boosting Machine (GBM) presterade exceptionellt bra. Överraskande nog förbättrade inte finjusteringen av hyperparametrar RT som förväntat. Vissa utmaningar inkluderade den initiala dataförbehandlingen och osäkerhet i metoder för hyperparametertuning. Tack vare dessa förutsagda tider kan företaget nu bättre informera sina kunder om hur länge problemet förväntas vara olöst. Denna verkliga fallstudie tar också hänsyn till hur företaget hanterar tillgängliga data och problemet. Forskningsarbetet börjar med en litteraturgenomgång om förutsägelse av RT för Trouble Ticket (TT) och kundavhopp inom telekommunikationsföretag samt studier av företagets tillgängliga data för problemet. Därefter fokuserar forskningen på att analysera den tillhandahållna datamängden för experiment, förbehandling av datan enligt branschstandarder och till sist förutsägelser och analys av de erhållna prestandamätvärdena. Den föreslagna lösningen är utformad för att erbjuda en förbättrad lösning för företagets angivna uppgift. Framtida arbete kan innebära att öka antalet TV-ärenden per tjänst för att förbättra resultaten och utforska sambandet mellan löstider och kundavhoppbeslut.
|
2 |
Quality assurance of CsI(TI) crystals for the Bâ†aBâ†aâ†r electromagnetic calorimeter, and a Monte Carlo study of the CP-violating channel B'0#â†>##pi#'+#pi#'-#pi#'0 for the Bâ†aBâ†aâ†r......Champion, Theresa Janet January 1999 (has links)
No description available.
|
3 |
High-Performance Persistent Identification for Research Data ManagementBerber, Fatih 07 September 2018 (has links)
No description available.
|
4 |
Trouble Tickets resolution time estimation : The Design of a Solution for a Real Case Scenario / Uppskattning av tiden för lösning av problembiljetter : Utformning av en lösning för ett verkligt scenarioColella, Riccardo January 2021 (has links)
Internet Service Providers are companies that deliver services managing a complex network of apparatus and cables. Given the complexity of the network, it often happens that alarms are generated. When a problem within the network occurs, a ticket is issued from an alarm and the company starts to supervise it to manage the situation and solve the problem. This work aims to present how can be designed a system that estimates how much time will the trouble ticket take to be solved. The situation is presented within the context of a real case scenario and takes into consideration how the involved company processes the available information and manages the problem. The achieved result is pursued by the company to deliver the information to the final customer that will be able to understand how much time the problem he is facing is going to take before it will be solved. This work will focus on estimating the resolution time for a subset of all the tickets: those that are classified as low priority network problems. The work started with a study of the company that led to the understanding of the available information about the problem, then it focused on the understanding of the procedure adopted by the company to face the solution. It studies the processes that lie behind the ticket creation, the alarm generation and the human intervention, and it concludes with the design of the proposed solution. The proposed solution leverages the company’s processes to produce a result as valuable as possible given the specific use case. / Internetleverantörer är företag som tillhandahåller tjänster genom att hantera ett komplext nätverk av apparater och kablar. Med tanke på nätets komplexitet händer det ofta att larm genereras. När ett problem i nätverket uppstår utfärdas en biljett från ett larm och företaget börjar övervaka det för att hantera situationen och lösa problemet. Syftet med detta arbete är att presentera hur man kan utforma ett system som uppskattar hur lång tid det kommer att ta att lösa problemet. Situationen presenteras inom ramen för ett verkligt scenario och tar hänsyn till hur det berörda företaget behandlar den tillgängliga informationen och hanterar problemet. Företaget strävar efter att leverera information till slutkunden som kan förstå hur lång tid det kommer att ta innan problemet är löst. Detta arbete kommer att inriktas på att uppskatta lösningstiden för en delmängd av alla biljetter: de som klassificeras som nätproblem med låg prioritet. Arbetet inleddes med en studie av företaget som ledde till att man förstod den tillgängliga informationen om problemet, och sedan fokuserade man på att förstå det förfarande som företaget använde för att lösa problemet. Det studeras vilka processer som ligger bakom skapandet av biljetter, alarmeringen och det mänskliga ingripandet, och det avslutas med utformningen av den föreslagna lösningen. Den föreslagna lösningen utnyttjar företagets processer för att ge ett så värdefullt resultat som möjligt med tanke på det specifika användningsfallet.
|
5 |
Augmenting Collective Expert Networks to Improve Service Level ComplianceMoharreri, Kayhan January 2017 (has links)
No description available.
|
6 |
Telecommunications Trouble Ticket Resolution Time Modelling with Machine Learning / Modellering av lösningstid för felanmälningar i telenät med maskininlärningBjörling, Axel January 2021 (has links)
This report explores whether machine learning methods such as regression and classification can be used with the goal of estimating the resolution time of trouble tickets in a telecommunications network. Historical trouble ticket data from Telenor were used to train different machine learning models. Three different machine learning classifiers were built: a support vector classifier, a logistic regression classifier and a deep neural network classifier. Three different machine learning regressors were also built: a support vector regressor, a gradient boosted trees regressor and a deep neural network regressor. The results from the different models were compared to determine what machine learning models were suitable for the problem. The most important features for estimating the trouble ticket resolution time were also investigated. Two different prediction scenarios were investigated in this report. The first scenario uses the information available at the time of ticket creation to make a prediction. The second scenario uses the information available after it has been decided whether a technician will be sent to the affected site or not. The conclusion of the work is that it is easier to make a better resolution time estimation in the second scenario compared to the first scenario. The differences in results between the different machine learning models were small. Future work can include more information and data about the underlying root cause of the trouble tickets, more weather data and power outage information in order to make better predictions. A standardised way of recording and logging ticket data is proposed to make a future trouble ticket time estimation easier and reduce the problem of missing data. / Den här rapporten undersöker om maskininlärningsmetoder som regression och klassificering kan användas för att uppskatta hur lång tid det tar att lösa en felanmälan i ett telenät. Data från tidigare felanmälningar användes för att träna olika maskininlärningsmodeller. Tre olika klassificerare byggdes: en support vector-klassificerare, en logistic regression-klassificerare och ett neuralt nätverk-klassificerare. Tre olika regressionsmodeller byggdes också: en support vector-regressor, en gradient boosted trees-regressor och ett neuralt nätverk-regressor. Resultaten från de olika modellerna jämfördes för att se vilken modell som är lämpligast för problemet. En undersökning om vilken information och vilka datavariabler som är viktigast för att uppskatta tiden det tar att lösa felanmälan utfördes också. Två olika scenarion för att uppskatta tiden har undersökts i rapporten. Det första scenariot använder informationen som är tillgänglig när en felanmälan skapas. Det andra scenariot använder informationen som finns tillgänglig efter det har bestämts om en tekniker ska skickas till den påverkade platsen. Slutsatsen av arbetet är att det är lättare att göra en bra tidsuppskattning i det andra scenariot jämfört med det första scenariot. Skillnaden i resultat mellan de olika maskininlärningsmodellerna var små. Framtida arbete inom ämnet kan använda information och data om de bakomliggande orsakerna till felanmälningarna, mer väderdata och information om elavbrott. En standardiserad metod för att samla in och logga data för varje felanmälan föreslås också för att göra framtida tidsuppskattningar bättre och undvika problemet med datapunkter som saknas.
|
Page generated in 0.0988 seconds