• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 13
  • 4
  • 3
  • 2
  • Tagged with
  • 67
  • 67
  • 20
  • 19
  • 18
  • 17
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Ribosomal RNA Modification Enzymes : Structural and functional studies of two methyltransferases for 23S rRNA modification in Escherichia coli

Punekar, Avinash S. January 2014 (has links)
Escherichia coli ribosomal RNA (rRNA) is post-transcriptionally modified by site-specific enzymes. The role of most modifications is not known and little is known about how these enzymes recognize their target substrates. In this thesis, we have structurally and functionally characterized two S-adenosyl-methionine (SAM) dependent 23S rRNA methyltransferases (MTases) that act during the early stages of ribosome assembly in E. coli. RlmM methylates the 2'O-ribose of C2498 in 23S rRNA. We have solved crystal structures of apo RlmM at 1.9Å resolution and of an RlmM-SAM complex at 2.6Å resolution. The RlmM structure revealed an N-terminal THUMP domain and a C-terminal catalytic Rossmann-fold MTase domain. A continuous patch of conserved positive charge on the RlmM surface is likely used for RNA substrate recognition. The SAM-binding site is open and shallow, suggesting that the RNA substrate may be required for tight cofactor binding. Further, we have shown RlmM MTase activity on in vitro transcribed 23S rRNA and its domain V. RlmJ methylates the exocyclic N6 atom of A2030 in 23S rRNA. The 1.85Å crystal structure of RlmJ revealed a Rossmann-fold MTase domain with an inserted small subdomain unique to the RlmJ family. The 1.95Å structure of the RlmJ-SAH-AMP complex revealed that ligand binding induces structural rearrangements in the four loop regions surrounding the active site. The active site of RlmJ is similar to N6-adenine DNA MTases. We have shown RlmJ MTase activity on in vitro transcribed 23S rRNA and a minimal substrate corresponding to helix 72, specific for adenosine. Mutagenesis experiments show that residues Y4, H6, K18 and D164 are critical for catalytic activity. These findings have furthered our understanding of the structure, evolution, substrate recognition and mechanism of rRNA MTases.
62

Etudes de la biogenèse du ribosome chez l'Homme / Understanding human ribosome biogenesis

Zorbas, Christiane 26 June 2015 (has links)
Les ribosomes sont des macrocomplexes ribonucléoprotéiques sophistiqués, essentiels pour décoder l’information génétique et la traduire en protéines fonctionnelles. Chez les organismes eucaryotes, le ribosome est constitué de deux sous-unités, la petite (40S) et la grande (60S). Leur biogenèse est un processus fondamental, très complexe, qui mène à la synthèse et l’assemblage de 4 ARNr et 80 protéines ribosomiques (79 chez la levure). La biogenèse du ribosome a longtemps été étudiée chez Saccharomyces cerevisiae. Près de 20 ans de recherches ont été nécessaires à la communauté scientifique pour identifier les quelques 200 facteurs de synthèse du ribosome levurien. Alors que le schéma global de cette voie de biosynthèse semble conservé chez les organismes eucaryotes, de nombreux éléments suggèrent qu’elle serait plus élaborée chez l’homme et nécessiterait un plus grand nombre de facteurs que chez la levure. De plus, la caractérisation de nombreuses ribosomopathies, ou maladies du ribosome prédisposant aux cancers, a suscité un intérêt accru pour l’étude de la voie de biosynthèse du ribosome dans le paradigme expérimental le plus approprié, la cellule humaine.<p><p>Au cours de ma thèse de doctorat, j’ai contribué à un projet systématique d’identification de facteurs d’assemblage (FA) du ribosome chez l’homme. Pratiquement, nous avons identifié 286 FA humains, dont beaucoup sont homologues aux facteurs levuriens connus, et 74 sont sans équivalent chez la levure. Par ailleurs, j’ai caractérisé en détail certains facteurs. En particulier, Trm112 pour lequel j’ai montré qu’il agit comme un stabilisateur de la méthyltransférase (MTase) Bud23, spécifique à l’ARNr 18S de la sous-unité levurienne 40S. J’ai également participé à la caractérisation de mutations à l’interface du complexe Bud23-Trm112. Enfin, j’ai contribué à l’étude de trois FA que nous avons identifiés chez l’homme, DIMT1L et WBSCR22-TRMT112. J’ai montré que ces protéines sont les orthologues des MTases levuriennes Dim1 et Bud23-Trm112, qu’elles sont requises pour la synthèse et la modification de l’ARNr mature de la petite sous-unité ribosomique, et qu’elles seraient impliquées dans un mécanisme conservé contrôlant la qualité de la voie de biosynthèse du ribosome.<p><p>La totalité des FA que nous avons identifiés en cellule humaine sont à la disposition de la communauté scientifique dans une base de données en ligne accessible sur la page www.RibosomeSynthesis.com. Nous espérons que cette ressource contribuera à une meilleure compréhension des mécanismes moléculaires sous-jacents au développement des ribosomopathies et à l’élaboration d’agents thérapeutiques efficaces.<p> / Doctorat en sciences, Spécialisation biologie moléculaire / info:eu-repo/semantics/nonPublished
63

Étude de la régulation de l’activité de la fibrillarine : rôles des modifications post-traductionnelles / Study of fibrillarin activity regulation : roles of post-translational modifications

Laforêts, Florian 01 July 2016 (has links)
Le ribosome est responsable de la traduction des ARNm en protéines. Au sein du ribosome, les ARNr jouent un rôle central dans la traduction, et leurs modifications post-transcriptionnelles moduleraient l'activité traductionnelle du ribosome, impactant ainsi sur l'expression génique. Les ARNr humains contiennent 106 2'-O-méthylations, ajoutées par la fibrillarine (FBL). FBL fonctionne au sein d'un complexe snoRNP contenant les protéines Nop56, Nop58, 15.5kDa et un petit ARN nucléolaire (snoARN) à boîte C/D. La régulation de l'activité de la FBL et du complexe snoRNP à boîte C/D ne sont pas connus. Ce travail a exploité des données structurales de FBL et du complexe de méthylation pour construire un modèle permettant d'explorer les relations ses structure-fonction. L'impact de l'acétylation de FBL a également été exploré. Le 5-fluorouracile (5-FU) est un analogue de l'uracile, dont la cytotoxicité dépend de son altération du métabolisme des ARNr. Le 5-FU inhibe la maturation des ARNr et altère la localisation de plusieurs facteurs nucléolaires, dont FBL. Ce travail montre que le 5-FU induit une nouvelle acétylation de FBL en position K292. De plus, le 5-FU réduit l'association de FBL avec les membres protéiques du complexe de méthylation, et induit une baisse globale de ses interactions. De plus, ce travail propose un rôle nouveau de la déacétylase SIRT7 et de l'acétyltransférase CBP sur le complexe de méthylation. Ces enzymes semblent aussi participer aux dérégulations du complexe de méthylation induites par le 5-FU. L'ensemble de ces résultats supportent l'implication des modifications post-traductionnelles dans la régulation du complexe de méthylation des ARNr / The ribosome is responsible for the translation of mRNA into proteins. Within the ribosome, rRNAs play a crucial role in translation, and their post-transcriptional modifications regulate the ribosome’s translational activity and impact on gene expression. The human ribosome contains 106 2’-O-methylations added by fibrillarin (FBL). FBL functions through a box C/D snoRNP complex consisting of Nop56, Nop58 and 15.5kDa along with a box C/D small nucleolar RNA (snoRNA). The regulation of FBL ad the C/D box snoRNP complexe are unknown. This work exploitated strtuctural data on FBL and the methylation complex to build a model allowing the extrapolation of structure-function relationships. The impact of FBL acetylation was also investigated. 5-FU is a uracile analog, and its cytotoxicity depends mostly on its alteration of RNA metabolism. As such, 5-FU inhibits rRNA maturation and alters the localization of nucleolar factors such as FBL. 5-FU induced a novel FBL acetylation at position K292, decreased FBL interaction with the methylation complex proteins, and induced a large scale inhibition of its interactions. This discovered a new role of the deacetylase and the acetyltransferase CBP on snoRNP integrity. Moreover, this work suggests that these enzyme participate in the 5-FU-induced alteration of snoRNP. s. This work supports the involvement of post-translational modifications in the regulation of the rRNA C/D box snoRNP 2’-O-methylation complex
64

Compréhension des rôles des complexes Nob1/Pno1 et RPS14/Cinap dans la maturation cytoplasmique de la petite sous-unité ribosomique (pré-40S) chez les eucaryotes / Understanding Nob1/Pno1 and RPS14/Cinap complexes roles in the cytoplasmic maturation of the eukaryotic small ribosomal subunit (pre-40S)

Raoelijaona, Raivoniaina 14 November 2019 (has links)
Les ribosomes sont des complexes nucléoproétiques responsables de la traduction. Chez les eucaryotes, la biogenèse du ribosome est un processus complexe très régulé qui fait intervenir un nombre important de facteurs d’assemblages (~200). La construction d’un ribosome est initiée dans le nucléole puis continue dans le nucléoplasme et se termine dans le cytoplasme. La maturation cytoplasmique de la petite sous-unité ribosomale implique la dissociation séquentielle des facteurs d’assemblage tardifs et la maturation finale de l’ARNr 18S. Ce processus est catalysé par l’endonucléase Nob1 qui assure la coupure de l’extrémité 3’ du précurseur de l’ARNr 18S (pré-18S) aboutissant à sa forme mature. Ce mécanisme est coordonné par la protéine Pno1 qui est le partenaire de Nob1. Des informations détaillées sur l’architecture des particules pré-ribosomiques nous ont permis de mieux comprendre les différents intermédiaires de la biogenèse. Cependant, certains aspects fonctionnels comme la conformation adoptée par Nob1 pour assurer la coupure du site D du pre-18S reste encore flou. L’objectif de mon travail a été de mieux comprendre les aspects très tardifs de la maturation cytoplasmique du ribosome. Pour ce faire, nous avons redéfini l’organisation modulaire de l’endonucléase Nob1 chez les eucaryotes pour ensuite étudier son mode d’interaction avec son partenaire Pno1. Des tests fonctionnels in vitro ont été effectués pour étudier le rôle de Pno1 dans la régulation de la coupure par Nob1.Nos résultats nous ont permis de montrer que le domaine catalytique de Nob1 adopte une conformation atypique. En effet le domaine PIN est composé de deux fragments (res 1-104 and 230-255) séparé par une boucle interne qui est importante pour la reconnaissance avec son partenaire Pno1. Nos études nous ont également montré que Pno1 inhibe l’activité de Nob1 probablement en reconnaissant directement l’ARNr substrat, masquant ainsi le site de coupure de l’endonucléase. Ces résultats sont complémentaires et cohérents avec les données structurales de cryo-EM de la particule pré-40S humaine récemment publiées. En effet, Nob1 est dans une conformation incapable de couper le pré-ARNr puisque son domaine catalytique se retrouve à une distance d’environ 30Å de son ARN substrat. Ce phénomène implique donc des changements de conformations ou encore la nécessité de protéine accessoire pour déplacer certains facteurs. La protéine Cinap est impliqué dans la maturation de l’ARNr 18S. Nos études d’interaction avec les protéines localisées au niveau de la plateforme (à savoir RPS14, RPS26, le complexe Nob1/Pno1) ont permis de montrer que Cinap pouvait former un complexe tripartite avec l’endonucléase Nob1 et son partenaire Pno1. De plus, Cinap est capable de reconnaitre RPS26 dans un complexe RPS14-dépendant. Il est important de noter que RPS26 est un composant de la petite sous-unité qui remplace Pno1 dans le ribosome mature. De ce fait le recrutement de RPS26 au sein du pré-ribosome nécessite la dissociation de Pno1 et cet échange serait assurée par Cinap. Sur la base des travaux effectués, nous pouvons proposer un modèle de maturation où la formation du complexe Cinap/Pno1 induirait un changement de conformation permettant à Nob1 de reconnaitre son substrat et donc de catalyser la coupure du site D qui aboutit à la maturation de l’ARNr 18S et donc à la production de la sous-unité 40S mature. / Ribosomes are translational machineries universally responsible of protein synthesis. In eukaryote, ribosome assembly is a complex and highly regulated process that requires coordinated action of more than 200 biogenesis factors. Ribosome assembly is initiated in the nucleolus, continues in the nucleoplasm and terminates in the cytoplasm. The cytoplasmic maturation events of the small ribosomal subunit are associated with sequential release of the late assembly factors and concomitant maturation of the pre-rRNA. During final maturation of the small subunit, the pre-18S rRNA is cleaved off by the endonuclease Nob1, which activity is coordinated by its binding partner Pno1. Detailed information on pre-ribosomal particle architectures have been provided by structural snapshots of maturation events. However, key functional aspects such as the architecture required for pre-rRNA cleavage have remained elusive. In order to better understand these late steps of cytoplasmic pre-40S maturation, we first redefine the domain organization of Nob1, then study its binding mode with Pno1 using different tools such as sequence analysis, structure prediction and biochemical experiments and, we then performed functional assay to elucidate the role played by Pno1 during the pre-18S rRNA maturation.Our results have shown that eukaryotic Nob1 adopts an atypical PIN domain conformation: two fragments (res 1-104 and 230-255) separated by an internal loop, which is essential for Pno1 recognition. We also found out that Pno1 inhibits Nob1 activity likely by masking the cleavage site. Our findings further support the recently published cryo-EM structure of the pre-40S, where Nob1 displays an inactive conformation. Moreover, 18S rRNA 3’-end cleavage has to happen and this implies structural rearrangement or requirement of some accessory proteins such as Cinap, an atypical kinase involved in pre-18S processing. Studying the interplay between proteins localized in the pre-40S platform (RPS14, RPS26, Nob1/Pno1 complex) has shown that Cinap is able to form a trimeric complex with Nob1 and its binding partner Pno1. Furthermore, Cinap can recognize RPS26 in a RPS14-dependent manner, which had already been studied with its yeast counterpart. It is important to note that RPS26 is the ribosomal protein replacing Pno1 in the mature ribosome. Our finding clearly suggests a mechanism where RPS26 recruitment to the ribosome requires Pno1 dissociation. This exchange would be carried out by Cinap. Therefore, we can suggest a simplified model as follow: upon binding with Pno1, the newly formed complex (Cinap/Pno1) will trigger a conformational change, which will allow the endonuclease Nob1 to reach its substrate (D-site) and perform its cleavage resulting in mature 18 rRNA generation.
65

Rôle du ribosome dans la sénescence

Del Toro Del Toro, Neylen 12 1900 (has links)
La sénescence est considérée comme un mécanisme de suppression tumorale puisque les cellules potentiellement dangereuses, activent leurs protéines de sauvegarde pour arrêter leur prolifération. Les protéines de sauvegarde telles que RB et p53 sont activées suite à différents stress comme des dommages à l’ADN, le raccourcissement des télomères ou l’induction oncogénique. Les cellules sénescentes restent métaboliquement actives, subissent des modifications dans leur expression génique, et sécrètent des cytokines et des chimiokines qui ont des effets paracrines pro-oncogéniques, mais peuvent également contribuer à la stabilité de l’arrêt du cycle cellulaire dans la sénescence de façon autocrine. Une des particularités du phénotype sénescent est la dégradation sélective des protéines dépendante de l’ubiquitination et du protéasome. Parmi les cibles de dégradation se trouvent des protéines impliquées dans la biogenèse du ribosome, ainsi que celles d’autres voies cellulaires requises pour la croissance de cellules cancéreuses. Ceci est lié à un stress nucléolaire qui affecte la biogenèse du ribosome, menant à l’accumulation, dans le nucléoplasme ou le nucléole, de protéines ribosomiques. Ce comportement suggère que les ribosomes des cellules sénescentes seraient structurellement différents. Par conséquent, ceci pourrait entrainer des effets sur leurs capacités à réguler l’initiation, l’élongation et/ou la terminaison de la traduction des ARN messagers (ARNm). Par ailleurs, la déplétion de certaines protéines impliquées dans la ribogenèse, ainsi que la surexpression de protéines ribosomiques telles que RPS14/uS11 amènent à la sénescence. Malgré le stress nucléolaire et les défauts de ribogenèse associés à la sénescence, les cellules sénescentes présentent des niveaux de translecture du codon d’arrêt très diminué, suggérant l’existence de défauts de production de protéines allongées en C-terminal. Nous émettons l’hypothèse que les défauts de la ribogenèse affecteraient la fonction des protéines ribosomiques et des ribosomes. Cette perturbation aurait un impact sur le rôle de suppresseur tumoral de la sénescence. Le premier objectif de cette thèse consiste à démontrer le rôle de RPL22/eL22 en tant que régulateur du cycle cellulaire et inducteur de la sénescence. Le deuxième but est de démontrer que, malgré la perturbation nucléolaire, les ribosomes des fibroblastes sénescents reconnaissent les codons d’arrêt de façon plus efficace que les ribosomes des cellules transformées, ou des cellules normales en prolifération. Nous avons démontré que le phénotype de sénescence peut être induit quand l’expression de RPL22/eL22 est augmentée. RPL22/eL22 s’accumule principalement dans le nucléole, de manière différente de RPS14/uS11, dont l’accumulation est nucléoplasmique. En effectuant des essais kinases in vitro, nous avons montré que RPL22/eL22, tout comme RPS14/uS11, peuvent interagir et inhiber le complexe CDK4-Cycline D1 afin d’activer la voie de RB et établir l’arrêt du cycle cellulaire et la sénescence. Afin de démontrer la fidélité de la terminaison de la traduction dans les cellules sénescentes, nous avons utilisé un système de rapporteurs de luciférases, pour détecter les erreurs de translecture ainsi que pour avoir un contrôle interne du système. L’inactivation de la voie du suppresseur tumoral RB par surexpression de CDK4 ou de l’oncoprotéine virale E7, nous a permis d’observer l’augmentation de la translecture dans les cellules sénescentes. Tandis que l’activation de la voie de suppression tumorale RB, à l’aide du suppresseur de tumeur PML, de la surexpression de RPL22/eL22 et de RPS14/uS11, ainsi que de l’utilisation de Palbociclib (PD-0332991), un inhibiteur des kinases CDK4/6, a montré une réduction des erreurs de translecture. Ces résultats indiquent une nouvelle fonction des protéines du ribosome en tant que suppresseurs de tumeur, permettant d’inhiber les erreurs de translecture du codon d’arrêt de façon dépendante de la voie de RB. Ces travaux suggèrent que de petites molécules ou peptides pourraient simuler les fonctions inhibitrices de ces protéines ribosomiques afin de traiter certains cancers où la voie de RB est activable. / Senescence is considered a mechanism for tumor suppression since potentially dangerous cells activate their protective proteins to stop their proliferation. Safeguard proteins such as RB and p53 are activated as a result of stress such as DNA damage, telomere shortening or oncogenic induction. Senescent cells are metabolically active, they undergo changes in their gene expression and secrete cytokines and chemokines with pro-oncogenic paracrine effects, but which can also contribute to the stability of the senescent cell cycle arrest in an autocrine way. One of the peculiarities of the senescent phenotype is the selective ubiquitination and proteasome dependent-degradation of proteins involved in ribosome biogenesis and other cellular pathways required for cancer cell growth, leading to the accumulation, in the nucleoplasm or nucleolus, of ribosomal proteins. This behavior suggests that the ribosomes of senescent cells are structurally different. Therefore, this could have effects on their ability to regulate the initiation, elongation and/or translation termination of messenger RNAs (mRNAs). Moreover, the depletion of some proteins involved in ribogenesis, as well as the overexpression of ribosomal proteins such as RPS14/uS11 lead to senescence. Despite nucleolar stress and ribogenesis defects associated to senescence, global translation does not seem to be affected in senescence. Strikingly, senescent cells have reduced translational readthrough suggesting that they have defects in the production of C-terminal extended proteins. We hypothesize that defects in ribogenesis would affect the function of ribosomal proteins and ribosomes influencing the tumor suppressor role of senescence. The first aim of this thesis is to demonstrate the role of RPL22/eL22 as a regulator of the cell cycle and senescence inducer. The second aim of this thesis is to demonstrate that, despite the nucleolar disruption, the ribosomes of senescent fibroblasts recognize stop codons more efficiently than ribosomes from transformed cells, but also than ribosomes from proliferating normal cells. We found that the senescent phenotype can be induced by enhancing the expression of RPL22/eL22. RPL22/eL22 accumulates mainly in the nucleolus, unlike RPS14/uS11, whose accumulation is nucleoplasmic. By performing an in vitro kinase assay, we showed that RPL22/eL22, just like RPS14/uS11, can interact and inhibit the CDK4-Cyclin D1 complex in order to activate the RB pathway and establish cellular arrest and senescence. To assess translation termination accuracy in senescent cells, we used a system of luciferase reporters to measure the fidelity of translation termination. Inactivation of the RB tumor suppressor pathway using CDK4 or the viral oncoprotein E7 also increased readthrough in senescent cells while overexpression of PML, a tumor suppressor that activates the RB pathway, overexpression of RPL22/eL22 and RPS14/uS11, as well as the use of Palbociclib (PD-0332991), a CDK4/6 inhibitor, reduce readthrough errors. These results indicate a novel function of ribosomal proteins as tumor suppressors, making it possible to inhibit translational readthrough errors, in a RB-dependent pathway. This work suggests that small molecules or peptides could mimic the inhibitory functions of these ribosomal proteins in order to treat cancers where the RB pathway is activatable.
66

Auto-renouvellement et reprogrammation oncogénique dans les leucémies aiguës

Ottoni, Elizabeth 04 1900 (has links)
No description available.
67

Molecular mechanisms involved in the induction and maintenance of cellular senescence

Igelmann, Sebastian 08 1900 (has links)
La sénescence cellulaire est une barrière à la progression tumorale qui est contournée par les cellules cancéreuses. Elle se met en place suivant différents événements tels que l’activation constante d’oncogènes comme H-RAS et correspond à un arrêt stable du cycle cellulaire. Un autre aspect des cellules sénescentes est la dégradation spécifique des protéines impliquées dans la régulation du cycle cellulaire, la biogenèse des ribosomes, l’homéostasie mitochondriale et le métabolisme cellulaire. Dans cette étude, nous voulions identifier quelles sont les contributions de la dégradation des protéines spécifiques à l’homéostasie mitochondriale, au métabolisme cellulaire ainsi qu’à la biogenèse des ribosomes. De plus, nous voulons voir comment la dégradation des protéines impliquées dans ces voies affecte la sénescence cellulaire. Afin de répondre à ces questions, nous avons divisé nos travaux en 2 parties. La première s’est concentrée sur les ribosomes et les altérations de la biogenèse ribosomale dans la sénescence. La deuxième partie s’est focalisée sur la contribution de la dégradation des protéines importantes pour le métabolisme cellulaire et l’homéostasie mitochondriale. Premièrement, nous avons identifié que la mise en place de la sénescence s’accompagne d’une désynchronisation de la biogenèse des ribosomes. Plus précisément, certains ARNr sont moins transcrits alors que la transcription de certaines protéiques ribosomiques n’est pas altérée. Ceci entraîne un déséquilibre entre la quantité des protéines ribosomiques et celle des ARN ribosomiques. Il provoque l’accumulation de ribo protéines en dehors des ribosomes. Ces protéines acquièrent en conséquence de nouvelles fonctions. Nous avons identifié RPL29 comme une ribo protéine libre du ribosome. Elle est accumulée dans les cellules sénescentes et peut être utilisée comme nouveau biomarqueur afin d’identifier les cellules senescent in vitro et in vivo. L’identification d’un nouveau biomarqueur de cellules sénescentes est cruciale car aucun marqueur spécifique de la sénescence n’est encore disponible. Par ailleurs, nous avons identifié RPS14 comme une protéine qui peut interagir avec le complexe CDK4-cyclin D1 et ainsi, en inhibant son activité, elle limite la prolifération cellulaire. L’arrêt du cycle cellulaire initié par cette protéine ribosomqiue hors du ribosome est indépendant de la protéine suppressive p53. Ceci pourrait offrir une opportunité thérapeutqiue pour le traitement des tumeurs déficientes pour l’expression de p53. La deuxième partie de ce travail s’est concentrée sur les altérations du métabolisme cellulaire en particulier le métabolisme du NAD et l’homéostasie mitochondriale. Dans un premier temps, nous avons confirmé que la perte d’expression de protéines impliquées dans l’homéostasie mitochondriale favorise la mise en place de la sénescence via l’accumulation de NADH et la stabilisation de p53. De plus, nous avons observé que la diminution des régulateurs de l’homéostasie redox NAD+ et NADPH est suffisante pour induire l’entrée en sénescence. A l’inverse la normalisation de ce paramètre est à l’origine d’un contournement de la sénescence. Dans ce cadre, nous avons identifié un nouveau complexe protéique formé par l’enzyme malique, la malate déshydrogénase et la pyruvate carboxylase dont les actions concertées transfèrent l’ion hydrure du NADH vers le NADPH. Nous avons nommé ce complexe HTC pour complexe de transfert d’hydrure. Les réactions métaboliques des protéines de l’HTC permettent la normalisation des niveaux de NAD+ et de NADPH. L’augmentation des niveaux de NAD+ et de NADPH a déjà été associé à la tumorigénèse. A travers ces travaux, nous avons constaté que la surexpression des protéines qui forment le complexe HTC coopère avec l’oncogène Ras à la transformation de cellules primaires. Par ailleurs, les enzymes du complexe HTC sont fortement exprimées in vivo au niveau des cancers de la prostate d’origine murine ou humaine. De plus, inactivation d’une proteine du complexe HTC déclenche l’entrée en sénescence des cellules tumorales y compris en l’absence de p53. Nous avons ainsi caractérisé un nouveau complexe multi-enzymatique qui peut reprogrammer le métabolisme et empêcher la mise en place de la sénescence cellulaire. L’inhibition de la formation du complexe HTC pourrait permettre de cibler spécifiquement sa fonction de novo tout en limitant de bloquer l’activité physiologique normale des ces enzymes en dehors de ce complexe. Par l’ensemble de ces travaux, nous avons mis en évidence l’importance des défauts de biogénèse des ribosomes ainsi que des altérations métaboliques dans la mise en place et le maintien de la sénescence. D’une part, l’accumulation de RPS14 en dehors des ribosomes constitue un nouveau mécanisme de régulation du cycle cellulaire. De plus, l’accumulation de RPL29 dans le nucleole constitue un nouveau biomarker de la senescence. D’autre part, l’identification du complexe HTC a mise en évidence une nouvelle façon de contourner la sénescence et ainsi de contribuer à la transformation de cellules primaires. Ces observations renforcent l’importance de la sénescence cellulaire en tant que mécanisme de suppression tumorale. Ces découvertes créent de nouvelles opportunités thérapeutiques afin de réactiver la sénescence dans les cellules cancéreuses. / Cellular senescence is a barrier to tumor progression that is circumvented in cancer cells. Senescence is a stable cell cycle arrest and can be triggered by various oncogenic events, such as constant activation of the oncogene H-RAS. Other critical aspects of senescent cells include a specific degradation of proteins implicated in cell cycle regulation, ribosome biogenesis, mitochondrial homeostasis, and cellular metabolism. In this study, we wanted to identify the contributions of the specific protein degradation to mitochondrial homeostasis, cellular metabolism, and ribosome biogenesis and how the degradation of proteins implicated in those pathways affects the senescence response. In order to answer our question, we divided our research into two aspects. The first aspect was focused on ribosomes and the alterations in ribosome biogenesis in senescence. The second aspect was the contribution of degradation of proteins implicated in cellular metabolism and mitochondrial homeostasis. First, we identified that a desynchronization of ribosome biogenesis accompanies senescence, meaning that certain rRNA are less transcribed, whereas specific ribosomal proteins do not decrease their transcription leading to an imbalance in ribosomal protein and ribosomal RNA. This imbalance causes an accumulation of ribosomal free riboproteins. Those accumulated riboproteins acquire novel functions. We identified RPL29 as a ribosomal free riboprotein that accumulated in senescent cells and can be used as a novel biomarker to identify senescent cells in vitro and in vivo. Identification of novel senescent cell biomarkers is crucial as no specific marker of senescence is available. Furthermore, we identified RPS14 as a protein that can interact with the CDK4-cyclinD1 complex and decrease cell cycle progression. Of utmost importance is that cell cycle repression was even possible in cancer cells devoided of p53 highlighting novel strategies for p53 null cancer treatments. In the second part, we focused on alterations in cellular metabolism, particularly in light of NAD metabolism and mitochondria homeostasis. We could confirm that the degradation of proteins implicated in mitochondrial homeostasis can induce senescence via the accumulation of NADH and p53 stabilization. Furthermore, we confirmed that the decrease in redox homeostasis regulators, namely NAD+ and NADPH, can trigger senescence. In the same idea, we showed that the normalization of those redox potentials could bypass the senescence response. Most importantly, we identified a novel protein complex formed by malic enzyme, malate dehydrogenase,and pyruvate carboxylase. The concerted actions of those three metabolic enzymes can transfer the hydride ion from NADH towards NADPH. Thus, we coined this complex HTC for hydride transfer complex. These metabolic reactions in HTC allow for two things, the normalization of NAD+ levels and the normalization of NADPH levels. Intruguenlty, both NAD+ and NADPH level increase were previously linked to transformation, and indeed, we were able to show that expression of HTC in combination with oncogenic Ras is sufficient to transform primary cells. Moreover, HTC enzymes are highly expressed in vivo in mouse and human prostate cancer models, and their inactivation triggers senescence even in the absence of p53. We provide evidence for a new multi-enzymatic complex, with de novo functions that reprogram metabolism and prevent cellular senescence. Inhibition of formation of the HTC complex might allow targeting specifically the de novo function of this complex with fewer effects on normal enzyme function. All in all, we highlighted the contributions of ribosome biogenesis and metabolic alterations in inducing and maintaining the senescence response. Furthermore, RPS14 accumulation allows for a novel cell cycle regulation mechanism, and the accumulation of RPL29 in the nucleolus can be used as a novel biomarker for cellular senescence. Moreover, the expression of HTC demonstrated a novel way of avoiding senescence, thus promoting cellular transformation. Both pathways highlight the importance of cellular senescence as a tumor suppressors mechanism, and these discoveries allow for novel strategies for cancer drug development. / Krebs ist eine der häufigsten Todesursachen in der westlichen Welt. Aus diesem Grund ist es von hoher Bedeutung die molekularen Prozesse die eine Zelle entarten, also zum Krebs werden lassen besonders genau zu untersuchen. Im Allgemeinen haben Zellen Mechanismen, die das Entarten verhindern sollen, jedoch sind diese Mechanismen nicht immer fehlerfrei. Ein solcher Mechanismus ist die Zellseneszenz. Dieser Schutzmechanismus kann auf verschiedene Weise, wie zum Beispiel durch das Mutieren eines Onkogenes, aktiviert werden. Die Zellseneszenz ist dadurch charakterisiert, dass sie potentielle Krebszellen an ihrer Zellteilung hindert und es deswegen zu keiner Entstehung eines Karzinoms kommt. Wie bereits angedeutet sind die Mechanismen, welche die Entartung von Zellen stoppen sollen nicht fehlerfrei und die Inaktivität dieser Schutzmechanismen kann zur Entartung - auch maligne Transformation genannt - einer Zelle führen. In dieser Doktorarbeit haben wir aufgezeigt, welche molekularen Prozesse in der Zelle aktiviert bzw. verändert werden und dann dazu führen, dass der Schutzmechanismus der Zellseneszenz umgangen wird. Im Allgemeinen haben wir zwei Prozesse, die während der malignen Transformation verändert werden, untersucht. Dies ist auf der einen Seite die Veränderung von ribosomer Entwicklung und auf der anderen Seite sind es die Veränderungsprozesse im Zellstoffwechsel. Ribosome sind makromolekulare Komplexe in Zellen, die aus speziellen Proteinen und RNA aufgebaut sind und besonders wichtig für die Zelle sind, da sie die Produktion von Proteinen ermöglichen. Wir haben aufgezeigt, dass während der Aktivierung von Zellseneszenz die Produktion von Ribosomen ungleichmäßig in der Zelle heruntergefahren wird. Dies führt dazu, dass bestimmte Proteine, die wichtig für die Ribosomen sind sich im Zellkern bzw. im Kernkörperchen ansammeln. Hier seien besonders zwei Protein zu nenen, RPS14 and RPL29. Wir haben festgestellt, dass diese Ansammlung von RPL29 im Kernkörperchen als Biomarker für die Ermittlung von Zellseneszenz in vivo dienen kann. Außerdem haben wir dargestellt, dass die Ansammlung von dem Protein RPS14 dazu führt, dass der Zellzyklus gestoppt wird. Die Entdeckung von RPS14 als Regulator für den Zellzyklus ist insofern wichtig, da dieser Prozess unabhängig von p53, einem Protein welches in über 50 Prozent aller Krebsarten inaktiv ist, stattfinden kann. Bisher waren zwei Mechanismen zur Zellzyklus Regulierung bekannt. Die Beschreibung von RPS14 im Zellzyklus erlaubt uns einen weiteren Mechanismus hinzuzufügen. Die ist ein wichtiger Schritt zur Erforschung von neuen Inhibitoren der Zellteilung. Im zweiten Teil der Arbeit haben wir untersucht inwiefern der Zellstoffwechsel sich während der Zellseneszenz verändert. Wir haben herausgefunden, dass sich das Niveau von wichtigen Co- Faktoren, die den Redoxstatus der Zelle regulieren währender Zellseneszenz verändert. Insbesondere das Molekül NAD+ zeigte eine starke Verringerung im Niveau. Weiterhin wussten wir, dass das Niveau von NAD+ und auch das Niveau von NADPH, ein Molekül ähnlich dem NAD, in Krebszellen besonders hoch ist. Wir haben festgestellt, dass in der Zelle ein Proteinkomplex aus Stoffwechsel Proteinen entstehen kann, welcher die Level von NAD+ und NADPH durch die Stoffwechselaktion dieser Proteine wieder normalisiert. Dieser Komplex besteht aus drei Proteinen Malic Enzyme 1, Malate Dehydrogenase 1 und Pyruvate Carboxylase. Besonders hervorzuheben hierbei ist unsere Entdeckung, dass Pyruvate Carboxylase in Krebszellen nicht nur in den Mitochondrien vorhanden ist, sondern auch im Zellplasma. Die Aktivierung dieses Proteinkomplexes ermöglicht Zellen die normalerweise in die Zellseneszenz gehen würden, diesen Schutzmechanismus zu umgehen und dabei bösartig zu entarten. Diese Entdeckung ist besonders interessant, da der Zellstoffwechsel von Krebszellen seit langem untersucht wird, es jedoch bisher noch nicht bekannt war das dieser Proteinkomplex in der Lage ist die Zelle bösartig zu transformieren. Wir konnten nachweisen, dass die Proteinlevel von unserem Komplex in Prostatakrebs im Vergleich zu normalem Prostatagewebe erhöht sind. Darüber hinaus waren wir in der Lage zu zeigen, dass die Inaktivierung von einem der Proteine aus dem Komplex dazu führt, dass die Zelle ihren Zellzyklus verlangsamt und weniger aggressiv in einem Kanzerogenitätstest ist. Dies ist selbst dann möglich, wenn die Krebszelle über kein aktives p53 Protein mehr verfügt. Besonders hervorzuheben diese Entdeckung, weil das p53 Protein eines der wichtigsten Proteine ist, welches die Zelle vor einer bösartigen Transformation schützt. Zusammenfassend ist zu sagen, dass wir zwei neue Mechanismen aufgezeigt haben die Veränderung der Ribosomenproduktion und die Stoffwechselprozesse, die sich während der malignen Transformation von Zellen verändern. In der Zukunft wird unsere Forschung versuchen zu verstehen inwiefern diese neuen Erkenntnisse dazu genutzt werden können neue Moleküle zu entwickeln die speziell die beschriebenen Prozesse nutzen, um den Zellzyklus von Krebszellen zu verlangsamen.

Page generated in 0.0913 seconds