• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 291
  • 110
  • 71
  • 48
  • 12
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 665
  • 480
  • 118
  • 114
  • 109
  • 107
  • 98
  • 93
  • 82
  • 77
  • 65
  • 63
  • 63
  • 49
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Integrative analysis of age-related changes in the transcriptome of Caenorhabditis elegans

Padvitski, Tsimafei January 2015 (has links)
Ageing is difficult to study because of the complexity and multi-factorial nature of traits that result from a combination of environmental, genetic, epigenetic and stochastic factors, each contributing to the overall phenotype. In light of this challenge, transcriptomic studies of aging organisms are of particular interest, since transcription is an intermediate step that links genotype and phenotype. In recent years microarrays have been widely used for elucidation of changes that occur with age in the transcriptome in Caenorhabditis elegans. However, different microarray studies of C. elegans report sets of differentially expressed genes of varying consistence, with different functional annotations. Failures to find a consistent set of transcriptomic alterations may reflect the absence of a specific genetic program that would guide age-related changes but may also, to some extent, be a consequence of a small sample sizes and a lack of study power in transcriptomic researches. To tackle this issue we analyzed RNA sequences of samples from a time-series experiment of normal aging of C. elegans, performing the first, to our knowledge, NGS-based study of such kind. As a result, evidences were collected that promote a union of two competing theories: the theory of DNA damage accumulation and the theory of programmed aging. Next, we applied two alternative methods, namely the Short Time-series Expression Mining and the Network Smoothing algorithm, in order to obtain and analyze sets of genes that represent distinct modules of age-related changes in the transcriptome. Besides characterization of age-related changes, we were also interested in assessment and validation of the Network Smoothing algorithm. Generally, results of clustering of smoothed scores are consistent with results of short time-series clustering, allowing robust elucidation of functions that are perturbed during aging. At the last phase of the project we questioned if observed changes in the transcriptome can be controlled by specific transcription factors. Thus we used Chip-seq data to predict plausible transcription factor regulators of gene sets obtained using time series clustering and Network smoothing. On the one hand, all predicted transcription factors had documented relevance to aging. On the other hand, we did not achieve gene set specific prediction of transcription factors. In fact, genes with the opposite dynamics were predicted to respond to the same transcription factors.  To summarize, we characterized in details age-related changes in the transcriptome of C. elegans, validated the performance of the Network Smoothing algorithm and showed that integration of gene expression with Chip-seq data allows to predict transcription factors that are capable to modulate the lifespan of C. elegans.
32

Analysis of expression profile and gene variation via development of methods for Next Generation Sequencing data

Wolff, Alexander 19 November 2018 (has links)
No description available.
33

Transcriptomic and lipidomic profiling in developing seeds of two Brassicaceae species to identify key regulators associated with storage oil synthesis

Aulakh, Karanbir S. January 1900 (has links)
Doctor of Philosophy / Biochemistry and Molecular Biophysics Interdepartmental Program / Timothy Durrett / In plants including the members of Brassicaceae family, such as Arabidopsis thaliana and Brassica juncea, seed storage reserves, which include lipids and proteins, accumulate in seeds during development. Triacylglycerols (TAG) are the major storage lipids found in the developing seeds, petals, pollen grains, and fruits of plants. In Arabidopsis seeds, acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) is the major enzyme contributing to TAG biosynthesis. In Arabidopsis, dgat1-1 mutants retain 60-80% seed TAG content due to the involvement of phospholipid: diacylglycerol acyltransferase (PDAT1) in acyl-CoA independent TAG biosynthesis. My study focuses on the elucidation and functional characterization of novel genes involved in the regulation of the TAG biosynthesis pathway. In developing seeds of the dgat1-1 mutant, altered fatty acid composition was observed with reduced TAG content and increased polar lipid content as compared to wild type. RNA-Seq of developing Arabidopsis seeds was employed to detect differentially expressed genes in dgat1-1. An empirical analysis for differential gene expression revealed a significant number of differentially expressed genes among all developmental stages in dgat1-1. Significant changes in gene expression profile were detected in lipid-related genes such as lipases and desaturases. RT-PCR was used to confirm the differential expression of major lipid-related genes including DGAT1, PDAT, and FAD2. Lipid profiling of T-DNA insertion mutants for differentially expressed genes revealed significant changes in lipid content and composition. Mutations in a member of the α, β-hydrolase family, encoded by gene named PLIP1, resulted in smaller seed and an altered seed oil phenotype. Also, combining the dgat1-1 and plip1-2 mutations resulted in a lethal phenotype, demonstrating the important role of this enzyme in embryo development and TAG biosynthesis. To identify key components in the regulation of storage lipid biosynthesis, correlation analysis using differential transcript abundance and lipid profile during different stages of seed development from dgat1-1 and wild type lines of Arabidopsis was performed. Using clustering analysis with Pearson correlation coefficient and single linkage identified one cluster of genes which included PLIP1, FAD2, FAD3, and PDCT . Similar analysis using combined data from the neutral and polar fractions resulted in clustering of lipids containing polyunsaturated fatty acids. To investigate the reduced seed germination phenotype for mature seeds of dgat1-1 and non-germinating green seed phenotype of dgat1-1 plip1-2 lines, differential expression (DE) analysis for genes involved in hormone metabolism was performed. Upregulation of expression was observed for genes involved in promoting abscisic acid (ABA) response, which led us to specuate the role of altered hormone metabolism in delayed germination of dgat1-1 seeds. Development of allopolyploid Brassica species from its diploid progenitors involves duplication, loss, and reshuffling of genes leading to massive genetic redundancy. It leads to selective expression or newly acquired role for duplicated homeologs. Differential expression (DE) analysis for homoeologous genes from A and B subgenomes of allopolyploid B. juncea implicated in FA synthesis, acyl editing, and TAG biosynthesis and metabolism was performed. Differential expression (DE) analysis identified the transcriptional dominance of A subgenome homoeologs. Identification of these homoeologs will enable their use in breeding programs directed towards improvement of lipid content and composition in seeds.
34

High-Throughput Sequencing for Investigation of RNA Targets of Pt(II) Chemotherapy Drugs

Reister, Emily 06 September 2018 (has links)
Pt(II) chemotherapies, including cisplatin and oxaliplatin, have been used in cancer treatment since the 1970s, however, a full understanding of the mechanism by which these drugs function is still lacking. While the interaction between Pt(II) drugs and DNA has been extensively studied and subsequently indicted in the cellular response to Pt(II) drugs, recent data indicates non-DNA targets play important roles as well. To gain insight into the non-DNA damage-based effects induced by these drugs, MDA-MB-468 cells were treated at therapeutic concentrations of cisplatin between 30 minutes and 24 hours. Not only does this data provide insight into the complex time-dependent nature of the cellular response to cisplatin, but novel responses were also observed. First, I describe how the expression of numerous snoRNAs decreases as early as 30 minutes post-treatment with either cisplatin or oxaliplatin, and differential expression analysis indicates this occurs before activation of the DNA damage response. Since snoRNAs are necessary components in ribosome processing, we sought to determine the role snoRNAs play in the cellular response to Pt(II) drugs. A subgroup of our identified snoRNAs direct modification of helix 69 on the 28S ribosome. Quantification of methylation of helix 69 and other locations suggests cisplatin induced changes in snoRNA expression leads to dysregulation of rRNA modification, likely altering ribosome activity. I also observe varied activation of different types of DNA damage and cell cycle arrest between 3 and 12 hours of cisplatin treatment while early expression changes show downregulation of mitochondrial genes. We also identify a number of lncRNAs previously associated with TNBC that are downregulated after cisplatin treatment. This study establishes a gene expression profile induced by cisplatin treatment of triple-negative breast cancer that demonstrates the complex interplay of multiple means of stress induction. Lastly, we establish a method for analyzing direct DNA binding targets of platinum(II) chemotherapeutics. This pilot study confirms high accumulation of platinum(II) compounds on guanine-rich DNA and suggests DNA binding of significant genes leads to changes in their RNA expression. / 10000-01-01
35

Rôle et contexte transcriptionnel du facteur de transcription Ets1 au cours transition CD4- CD8- à CD4+ CD8+ de la tymopoïèse αβ / Role and transcriptional context of the transcription factor Ets1 during αβ thymopoiesis

Cauchy, Pierre 15 December 2010 (has links)
ETS1 est un facteur de transcription (FT) spécifique transposé dans les leucémies aigües. Le rôle essentiel d'ETS1 a été décrit au cours de l'hématopoïèse, plus particulièrement dans la différenciation lymphocytaire T. Son expression temporelle coordonnée participe au contrôle des transitions du stade double négatif (DN) CD4-/CD8- au stade double positif (DP) CD4+/CD8+jusqu'au stade simple positif (SP) CD4+ ou CD8+. Au cours de l'ontogenèse T, ETS1 transactive notamment l'expression des chaînes β et α du récepteur des cellules T (TCR). Nous avons criblé à grande échelle les cibles d'ETS1 aux stades DN et DP en ChIP-Seq, ainsi que desmarques histone et de l'ARN polymérase II (Pol II). Afin de faciliter nos analyses bioinformatiques, nous avons développé deux logiciels, CoCAS et AmaMineReg, qui permettent d'identifier plus facilement les cibles à partir de données brutes et de discriminer les vrais des faux positifs. Nous avons trouvé 5900 cibles en DN et 3400 en DP, principalement intergéniques dont 2000 sont communes, non caractérisées et correspondent aux gènes induits par la réponse immédiate à la signalisation TCR. Parmi les cibles différentiellement exprimées entre les deux stades, ETS1 active les gènes thymus-spécifiques et réprime les gènes hématopoïétiques non T spécifiques,en fonction de la co-occurrence avec le motif RUNX1. Nous avons également caractérisé très clairement le site de fixation en conditions natives, qui se révèle être CTTCCT.De plus, ETS1 co-localise avec des marques chromatines permissives aux régions inter- et intragéniques,caractérisées par un contenu GC, densité de motifs de fixation de FT (SFFT) et conservation inter-espèces accrus. / ETS1 is a specific transcription factor (TF) transposed in acute leukemias. key role of ETS1 wasdescribed during hematopoiesis, especially in T lymphocyte differentiation. Its temporal expression participates in the coordinated control of phase transitions from the CD4-/CD8-double negative (DN) stage to CD4+/CD8+ double positive (DP) up to CD4 or CD8 single positivestage (SP). During ontogenesis T ETS1 notably transactivates the expression of the alpha and beta chains of the T-Cell receptor (TCR). We performed genome-wide screening of ETS1 at both DN and DP stages via ChIP-Seq, as well as histone hallmarks and RNA polymerase II (PolII). To facilitate computational analysis we developed two new software suites, and COCASAmaMineReg, which allow easier identification of targets from raw data and to discriminate between true and false positives. We found 5900 targets in 3400 in DN and DP, mostly intergenic, out of which 2000 are common, and correspond to uncharacterized genes induced bythe immediate response to TCR signaling. Among targets differentially expressed between thetwo stages, Ets1 activates thymus-specific genes and represses non T-specific haematopoietic genes depending on the co-occurrence with the RUNX1 motif. We also very clearly characterized the binding site in native conditions, which proved to be CTTCCT. Furthermore, Ets1 colocalizes with permissive chromatin marks in inter-and intra-genic regions, characterized byincreased GC content, TF binding motifs (TFBS) density as well as inter-species conservation
36

Studies of human Armet and of pea aphid transcripts of saliva proteins and the Unfolded Protein Response

Balthazor, James January 1900 (has links)
Doctor of Philosophy / Biochemistry and Molecular Biophysics Interdepartmental Program / Gerald R. Reeck / Armet is a bifunctional protein that is apparently universally distributed among multicellular animal species, vertebrate and invertebrate alike. A member of the Unfolded Protein Response, (UPR) Armet promotes survival in cells that are under endoplasmic-reticulum (ER) stress. I have carried out biophysical studies on human Armet looking for compounds that bind to Armet and hence could reduce its anti-apoptotic function, thus potentially joining the growing class of pro-apoptotic drugs. Performed primarily with 1H-15N HSQC NMR, ligand studies showed that approximately 60 of the 158 residues are potentially involved with binding. The 60 residues are distributed throughout both domains and the linker suggesting multi-domain interaction with the ligand. Circular dichroism studies showed heat denaturation in a two-step unfolding process with independent unfolding of both domains of Armet with Tm values near 68°C and 83 C with the C-terminal domain unfolding first, as verified by 1H-15N HSQC NMR measurements. I also provide the first identification of UPR transcripts in pea aphids, Acyrthosiphon pisum, the genetic model among aphids. I measured transcript abundance with hope of finding future transcriptional targets for pest mitigation. I identified 74 putative pea aphid UPR components, and all but three of the components have higher transcript levels in aphids feeding on plants than those that fed on diets. This activated UPR state is attributed to the need for saliva proteins for plant feeding. Because aphids are agriculturally significant pests, and saliva is pivotal to their feeding on host plants, genes that encode saliva proteins may be targets for pest mitigation. Here I have sought the aphid’s saliva proteome by combining results obtained in several laboratories by proteomic and transcriptomic approaches on several aphid species. With these data I constructed a tentative saliva proteome for the pea aphid by compiling, collating, and annotating the data from several laboratories. I used RNA-seq to verify the transcripts in pea aphid salivary glands, thus expanding the proposed saliva proteome from approximately 50 components to around 130 components, I found that transcripts of saliva proteins are upregulated during plant feeding compared to diet feeding.
37

Rôle du facteur de transcription RFX6 dans la différenciation et la fonction des cellules β sécrétrices d'insuline : identification et étude de gènes cibles / Role of the RFX6 transcription factor in insulin secreting beta cells differenciation and function : identification and study of target genes

Strasser, Perrine 28 September 2015 (has links)
La régulation de l’homéostasie du glucose dans l’organisme est la fonction principale des cellules beta sécrétrices d’insuline dans le pancréas endocrine. Le facteur de transcription à domaine « winged helix », RFX6, a récemment, été identifié comme un nouveau régulateur de la différenciation endocrine pancréatique en aval de Ngn3 chez le poisson zèbre, la souris et l’homme. De plus, diverses mutations de Rfx6 chez l’homme ont été identifiées et reliées au syndrome de Mitchell Riley notamment caractérisé par un diabète néonatal, une atrésie de l’intestin grêle et une malabsorption intestinale. Lors de mes travaux de thèse, une approche combinée de transcriptomique chez la souris et la recherche des sites de fixation de RFX6 dans une lignée cellulaire beta et dans les ilots pancréatiques a permis de démontrer son importance dans le maintien de l’identité et de la fonction de la cellule beta. Pour la première fois, l’identification des cibles directes de RFX6 in vivo a été réalisée et a permis l’identification de l’ensemble du répertoire des gènes régulés directement par RFX6 dans les cellules beta qui n’ont pas été révélés dans le système cellulaire. Cette étude aura également permis d’identifier Mlxipl comme principale cible directement régulée par Rfx6 à la fois chez la souris et l’homme. Les expériences réalisées ont ainsi permis de déterminer les gènes cibles directs de RFX6 et contribué à élucider le rôle de ce facteur de transcription dans la différenciation et la fonction des cellules beta sécrétrices d’insuline. / Glucose homeostasis regulation in the body is the main function of insulin secreting beta cells in the endocrine pancreas. The winged-helix transcription factor RFX6 has recently been identified as a new pancreatic endocrine differentiation regulator, downstream of Ngn3,in zebra fish, mouse and human. Moreover, several Rfx6 mutations in humans were discovered and linked to the Mitchell Riley syndrome, which is characterized by neonatal diabetes, intestinal atresia and malabsorption. My thesis consisted of using an approach combining transcriptomic analysis in mouse and the identification of RFX6 target genes in a beta cell line as well as in pancreatic islets. This work has demonstrated the crucial role of RFX6 in maintaining beta cell identity and function. For the first time, RFX6 target genes were identified in vivo as well as the whole repertoire of directly regulated RFX6 target genesin beta cells, which were previously unidentified in the beta cell line. These studies have also shown that Mlxipl is a main RFX6 regulated target gene in mice and human. Overall, this work has allowed the clear identification of RFX6 target genes, thus contributing inunderstanding the role of this crucial transcription factor in the differentiation and function of insulin secreting beta cells.
38

Analysis of the early events in the interaction between Venturia inaequalis and the susceptible Golden Delicious apple (Malus x domestica Borkh.)

Hüsselmann, Lizex Hollenbach Hermanus January 2014 (has links)
Philosophiae Doctor - PhD / Apple (Malus x domestica) production in the Western Cape, South Africa, is one of the major contributors to the gross domestic product (GDP) of the region. The production of apples is affected by a number of diseases. One of the economically important diseases is apple scab that is caused by the pathogenic fungus, Venturia inaequalis. Research to introduce disease resistance ranges from traditional plant breeding through to genetic manipulation. Parallel disease management regimes are also implemented to combat the disease, however, such strategies are increasingly becoming more ineffective since some fungal strains have become resistant to fungicides. The recently sequenced apple genome has opened the door to study the plant pathogen interaction at a molecular level. This study reports on proteomic and transcriptomic analyses of apple seedlings infected with Venturia inaequalis. In the proteomic analysis, two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry (MS) was used to separate, visualise and identify apple leaf proteins extracted from infected and uninfected apple seedlings. Using MelanieTM 2-DE Gel Analysis Software version 7.0 (Genebio, Geneva, Switzerland), a comparative analysis of leaf proteome expression patterns between the uninfected and infected apple leaves were conducted. The results indicated proteins with similar expression profiles as well as qualitative and quantitative differences between the two leaf proteomes. Thirty proteins from the apple leaf proteome were identified as differentially expressed. These were selected for analysis using a combination of MALDI-TOF and MALDI-TOF-TOF MS, followed by database searching. Of these spots, 28 were positively identified with known functions in photosynthesis and carbon metabolism (61%), protein destination and storage (11%), as well as those involved in redox/response to stress, followed by proteins involved in protein synthesis and disease/defence (7%), nucleotide and transport (3%). RNA-Seq was used to identify differentially expressed genes in response to the fungal infection over five time points namely Day 0, 2, 4, 8 and 12. cDNA libraries were constructed, sequenced using Illumina HiScan SQTM and MiSeqTM instruments. Nucleotide reads were analysed by aligning it to the apple genome using TopHat spliceaware aligner software, followed by analysis with limma/voom and edgeR, R statistical packages for finding differentially expressed genes. These results showed that 398 genes were differentially expressed in response to fungal infection over the five time points. These mapped to 1164 transcripts in the apple transcripts database, which were submitted to BLAST2GO. Eighty-six percent of the genes obtained a BLAST hit to which 77% of the BLAST hits were assigned GO terms. These were classed into three ontology categories i.e. biological processes, molecular function and cellular components. By focussing on the host responsive genes, modulation of genes involved in signal perception, transcription, stress/detoxification, defence related proteins, transport and secondary metabolites have been observed. A comparative analysis was performed between the Day 4 proteomic and Day 4 transcriptomic data. In the infected and uninfected apple leaf proteome of Day 4, we found 9 proteins responsive to fungal infection were up-regulated. From the transcriptome data of Day 4, 162 genes were extracted, which mapped to 395 transcripts in the apple transcripts. These were submitted to BLAST2GO for functional annotation. Proteins encoded by the up-regulated transcripts were functionally categorised. Pathways affected by the up-regulated genes are carbon metabolism, protein synthesis, defence, redox/response to stress. Up-regulated genes were involved in signal perception, transcription factors, stress/detoxification, defence related proteins, disease resistance proteins, transport and secondary metabolites. We found that the same pathways including energy, disease/defence and redox/response to stress were affected for the comparative analysis. The results of this study can be used as a starting point for targeting host responsive genes in genetic manipulation of apple cultivars.
39

Acanthamoeba-Campylobacter Interactions

Nguyen, Hai January 2011 (has links)
Campylobacter jejuni is an avian commensal bacterium and causes gastrointestinal diarrhea in humans called campylobacteriosis. Campylobacteriosis is acquired by consumption of undercooked poultry contamined with C. jejuni. Poultry can become colonized from contaminated drinking water. The chicken flock and drinking water of 4 poultry farms in Ontario were sampled and the prevalence of C. jejuni in these flocks was determined to be 16.7% over a 1 year sampling period. We determined that contamined- water was a significant risk factor for Campylobacter-positive flocks from flaA typing, PFGE analysis, and genomotyping several isolated strains. Free living amoebae, such as Acanthamoeba species, live in the drinking water of poultry farms. It is hypothesized that Acanthamoeba in the drinking water of poultry farms can take up and act as environmental reservoirs of C. jejuni. Acanthamoeba species were isolated from the drinking water. Acanthamoeba strains were found to act as a vehicle for protection, persistence and growth of C. jejuni isolated from the farm water. The transcriptome of both C. jejuni and A. castellanii during the initial stages of C. jejuni internalization were described by RNA-seq. C. jejuni oxidative defence genes (such as katA, sodB, fdxA) and some other unknown genes (Cj0170, Cj1325, Cj1725) were found to be essential in the interaction with A. castellanii. Our findings suggest that Acanthamoebae act as a C. jejuni reservoir and could be a contributing source of C. jejuni in the environment. Through transcriptomics studies, we have begun to uncover some genetic clues involved in this interaction.
40

Analyse bioinformatique des modifications post-traductionnelles du domaine carboxyl-terminal de l'Arn polymérase II / Bioinformatic analysis of post-translational modifications of the carboxy-terminal domain of RNA polymerase II

Descostes, Nicolas 12 December 2014 (has links)
Le processus transcriptionnel par l'ARN polymérase II (Pol II) chez les eucaryotes se déroule en trois étapes : L'initiation, l'élongation et la terminaison. De nombreux facteurs de transcription, des modifications de la chromatine (épigénétique) et des éléments régulateurs distants interviennent dans ce processus. La sous-unité RPB1 de l'ARN Pol II contient un domaine carboxyle terminale (CTD) composée d'une répétition de sept acides-aminés. Au travers de différentes modifications biochimiques, ce domaine coordonne le processus transcriptionnel par le recrutement de différents facteurs. Le CTD est également impliqué dans la coordination de la transcription au niveau de l'initiation, de l'élongation et de la terminaison par le biais de modifications épigénétiques et nucléosomales, mais aussi par l'action de régulateurs distants (enhancers) et probablement de changements de conformation tridimensionnelle du génome. Mon travail de thèse a consisté en l'étude de deux modifications biochimiques du CTD de l'ARN Pol II par traitement bioinformatique de données issues du séquençage haut-débit. J'ai pu montrer que la phosphorylation de la thréonine 4 influence l'élongation de la transcription chez l'humain. J'ai également montré que la phosphorylation de la tyrosine 1 est présente durant l'initiation, est préférentiellement localisée dans la direction anti-sens, est hyper-phosphorylée aux enhancers transcrits et tissus spécifiques et est une marque caractéristique de ces modules génomiques. Ce travail de doctorat a constitué une contribution à la compréhension du processus transcriptionnel chez l'humain par l'utilisation de méthodes bioinformatiques innovantes. / The biggest subunit of eukaryotic RNA polymerase II contains a carboxy-terminal domain (CTD) that consists in a repetition of seven amino-acids ranging from 26 in yeast to 52 in mammals. Specific biochemical modifications of CTD residues have been linked to specific stages of the transcriptional process. The CTD acts as a recruitment platform for processing factors that are involved in initiation, promoter proximal pausing, early and productive elongation (alternative splicing), 3' processing, termination and epigenetics.During my PhD, I used bioinformatics and high-throughput sequencing data to study two novel biochemical modifications of the CTD in human. I showed, in collaboration with biologists and bioinformaticians, that threonine 4 phosphorylation is important for proper elongation and probably termination of transcription. I showed also that tyrosine 1 phosphorylation is present during early transcription, antisense transcription (at divergent promoters) and is hyperphosphorylated at transcribed and tissue specific enhancers.Overall my doctorate has contributed to the understanding of the transcriptional process in human through the use of innovative bioinformatic methods.

Page generated in 0.0548 seconds