31 |
Design Of An Educational Purpose Multifunctional Dc/dc Converter BoardBaglan, Fuat Onur 01 August 2008 (has links) (PDF)
In this thesis a multifunctional DC/DC converter board will be developed for utilization as an educational experiment set in the switched-mode power conversion laboratory of power electronic courses. The board has a generic power-pole structure allowing for easy configuration of various power converter topologies and includes buck, boost, buck-boost, flyback, and forward converter topologies. All the converters can be operated in the open-loop control mode with a switching frequency range of 30-100 kHz and a maximum output power of 20 W. Also the buck converter can be operated in voltage mode control and the buck-boost converter can be operated in peak-current-mode control for the purpose of demonstrating the closed loop control performance of DC/DC converters. The designed board allows for experimentation on the DC/DC converters to observe the macroscopic (steadystate/ dynamic, PWM cycle and low frequency) and microscopic (switching dynamic) behavior of the converters. In the experiments both such characteristics can be clearly observed such that students at basic learning level (involving only the macroscopic behavior), and students at advanced learning level (additionally involving the parasitic effects) can benefit from the experiments. The thesis reviews the switch mode conversion principles, gives the board design and proceeds with the experiments illustrating the capabilities of the experimental system.
|
32 |
Resonant Transition Topologies For Push-Pull And Half-Bridge DC-DC ConvertersSwaminathan, B 05 1900 (has links)
Switched mode power supplies (SMPS) are being extensively used in most power conversion processes. The analysis, design and modeling processes of hard-switched converters are mature, where the switching frequency was limited to a few 10's of kHz. The present direction of evolution m SMPS is towards higher efficiency and higher power density. These twin objectives demand high switching frequency and low overall losses. Soft switching results in practically zero switching losses and extends the switching frequency to 100's of kHz and beyond.
This thesis presents novel variants of push-pull and half-bridge DC-DC converters with soft switching properties. The proposed topology uses two additional switches and two diodes. The additional switches introduce freewheeling intervals m the circuit and enable loss-less switching. Switch stress, control and small signal model are similar to hard-switched PWM converter. Synchronous rectifiers are used in the ZVS push-pull converter to achieve high efficiency. It is interesting to see that the drives for the synchronous rectifier device are practically the same as the additional switches.
The contributions made in this thesis are
1) Idealized analysis and design methodology for the proposed converters.
2) Validation of the design through circuit simulation as well as prototypes - a 300kHz,
200W push-pull converter and a 300kHz, 640W half-bridge converter.
3) Closed loop control design for desired bandwidth and accuracy Verification of loop
gain through network analyzer instrumental for the same The loop gain bandwidth
achieved is about 30kHz for the push-pull converter and 20kHz for half-bridge
converter.
An appendix has been devoted to explain the use of network analyzer. Characterization of coil, transformer and capacitor are explained in detail. Measurement techniques for measuring the small signal parameters of power supply are also explained in the appendix.
|
33 |
Estudo de métodos para a dispersão de nanopartículas de níquel e ferro em suspensãoZoccal, João Victor Marques 27 April 2015 (has links)
Submitted by Izabel Franco (izabel-franco@ufscar.br) on 2016-09-30T18:32:13Z
No. of bitstreams: 1
TeseJVMZ.pdf: 2731888 bytes, checksum: a756e69d141b297fb91ca74654baab0d (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-30T19:17:40Z (GMT) No. of bitstreams: 1
TeseJVMZ.pdf: 2731888 bytes, checksum: a756e69d141b297fb91ca74654baab0d (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-30T19:17:49Z (GMT) No. of bitstreams: 1
TeseJVMZ.pdf: 2731888 bytes, checksum: a756e69d141b297fb91ca74654baab0d (MD5) / Made available in DSpace on 2016-09-30T19:25:18Z (GMT). No. of bitstreams: 1
TeseJVMZ.pdf: 2731888 bytes, checksum: a756e69d141b297fb91ca74654baab0d (MD5)
Previous issue date: 2015-04-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In recent decades, several studies have been conducted on the generation of materials at the nanoscale, not only by offering possible risks when inhaled, but also by the various applications that can be employed. Among the various equipment used for the generation of particles, atomizers generators have proved efficient and economical. Although many studies have used materials in solution, in which the material is dissolved in the solvent, generation of particles, it has been observed growing interest in the study of suspended nanometric materials, in which there is dispersion in the solvent. In addition, this growing interest in the suspended study materials is due to the need to generate solid aerosols from oxides, since they have high added value and important to be recaptured and intended back into production. Given the presented work aimed to disperse nanoparticles from suspensions, evaluating the time of the generation process over a period of 10 hours, for different equipment. The nanoparticles were generated by atomization of nickel and iron oxides suspensions at different concentrations and the atomization process were used three generator, a generator from TSI, model 3079, a
commercial inhaler of the brand NS, model I-205 and a fluidized bed generator, model
3400. The size distribution and concentration of particles was determined by a Scanning
Mobility Particle Sizer (SMPS), Model 3936 and a Aerodynamic Particle Sizer (APS), Model 3320, both from TSI, being sampled directly from the aerosol. The results relating to the dispersion of nanoparticles from the suspension of nickel and iron oxide proved effective in 10 hour period. However, TSI generator showed a dispersion of particles with a more uniform distribution, whereas the commercial inhaler dispersed a greater number of particles per cm3. In addition, the collection of particles by APS, there was the generation of micrometric particles, since the particles are already being
generated aglomeradamente, which was observed in SEM and TEM images. / Nas últimas décadas, diversos estudos têm sido realizados sobre a geração de materiais
na escala nanométrica, não só pelos possíveis riscos que oferecem quando inalados, mas
também pelas diversas aplicações que podem ser empregados. Dentre os diversos
equipamentos utilizados para a geração de partículas, os geradores atomizadores têm-se
demonstrado eficientes e econômicos. Embora muitos trabalhos têm utilizado materiais
em solução, na qual o material fica dissolvido no solvente, na geração de partículas,
tem-se observado o crescente interesse de estudos sobre materiais nanométricos
suspensos, nas quais não se dissolvem no solvente, mas sim se dispersão no meio. Em
adição, este crescente interesse no estudo de materiais em suspensão é decorrente da
necessidade de se gerar aerossóis sólidos provenientes de óxidos, uma vez que
apresentam alto valor agregado, sendo importante ser recapturados e destinados de volta à produção. Diante do apresentado, o trabalho visou dispersar nanopartículas
provenientes de suspensões, avaliando o tempo do processo de geração ao longo de um
período de 10 horas, por diferentes equipamentos. As nanopartículas foram geradas através da atomização de suspensões de óxido de níquel e ferro em diferentes
concentrações e no processo de atomização foram utilizados três geradores, um gerador
da TSI, modelo 3079, um inalador comercial da marca NS, modelo I-205 e um gerador
de leito fluidizado, modelo 3400. A distribuição de tamanho e concentração das partículas foram determinadas por meio de um Analisador de Partículas por Mobilidade Elétrica (SMPS), modelo 3936 e pelo Contador de Partículas (APS), modelo 3320, ambos da TSI, sendo a amostragem feita diretamente do aerossol. Os resultados referentes à dispersão das nanopartículas provenientes das suspensões de óxido de níquel e de ferro mostraram eficientes no período de 10 horas. No entanto, o gerador da TSI apresentou uma dispersão de partículas com uma distribuição mais uniforme,
enquanto que o inalador comercial dispersou um maior número de partículas por cm3.
Em adição, na coleta de partículas pelo APS, teve-se a geração de partículas
micrométricas, uma vez que as partículas já estavam sendo geradas aglomeradamente,
fato que foi observado nas imagens de MEV e MET.
|
34 |
Síntese e caracterização de nanopartículas de TiO2 pelo método do precursor poliméricoZoccal, João Victor Marques 26 March 2010 (has links)
Made available in DSpace on 2016-06-02T19:56:42Z (GMT). No. of bitstreams: 1
3348.pdf: 1114779 bytes, checksum: e39992bae2d3fc251224c09556e57bb0 (MD5)
Previous issue date: 2010-03-26 / Financiadora de Estudos e Projetos / Currently, scientific research in the field of nanotechnology has attracted growing interest because of its several applications, either through design of new products, materials characterization, production and application of structures, devices and systems in the form or function are features of the nanoscale. Thus, there is advancement in technology and industrial application involving nanoparticles, however, raise the concern with control of nanoparticles released into the environment, which is one of the most harmful to human health by causing an increase in the incidence cardio-respiratory disease. Several techniques for production of nanoparticles, and methods of chemical synthesis, have been developed and improved. Among the various methods of chemical synthesis used in the preparation of nanoparticles of titanium dioxide (TiO2), the polymeric precursor method, also called Pechini method, has stood successfully for the issue of nanomaterial. In this context, this work aims to generate in the laboratory a nano material alternative that can be dispersed in a gas stream, forming an aerosol in motion. Furthermore, it should be synthesized in sufficient quantities to use as the test aerosol relatively simple and inexpensive. The technique is primarily on the reaction between citric acid with titanium isopropoxide, obtaining as a product of titanium citrate. After the synthesis of citrate, the addition of ethylene glycol polymerization promoted by a reaction polyesterification, resulting in a polymeric resin clear and viscous. At the end of the process, the resin is burned to remove organic matter and oxidation of the metal cation, forming nanoparticles of TiO2. The powders were characterized by several techniques, among them the thermal analysis, absorption spectroscopy in the infrared, X-ray diffraction (XRD), Raman spectroscopy, UV Visible spectroscopy, method of nitrogen / helium adsorption (method BET), and the Particle Scanning Mobility Sizer (SMPS), which examined the dispersion of the size of nanoparticles as a function of concentration in the gas stream. The results obtained in the characterization techniques showed that the polymeric precursor method was promising in obtaining nano-TiO2. In addition, the SMPS can be observed a high concentration of TiO2 nanoparticles in the range of 15 to 50 nm. / Nos dias atuais, pesquisas científicas na área da nanotecnologia tem despertado um crescente interesse devido às suas mais variadas aplicações, seja através de projetos de novos produtos, caracterização de materiais, produção e aplicação de estruturas, dispositivos e sistemas em que a forma ou função são particularidades da escala nanométrica. Ao mesmo tempo em que se observa o avanço na aplicação tecnológica e industrial envolvendo nanopartículas, emerge a preocupação com o controle de particulados nanométricos liberados no meio ambiente, que constituem uma das formas mais danosas à saúde humana por ocasionar um aumento na incidência de doenças cardiorrespiratórias. Várias técnicas para produção de nanopartículas, como os métodos de sínteses químicas, têm sido desenvolvidas e aprimoradas. Entre os diversos métodos de síntese química utilizados na obtenção de nanopartículas de dióxido de titânio (TiO2), o método do precursor polimérico, também chamado método Pechini, tem se destacado com sucesso para a obtenção do nanomaterial. Neste contexto, o presente trabalho tem como objetivo gerar em laboratório um material nanométrico que possa ser disperso em uma corrente gasosa, formando um aerossol em movimento. Além disso, deve poder ser sintetizado em quantidade suficiente para sua utilização como aerossol de teste de forma relativamente simples e barata. A técnica constitui, primordialmente, na reação entre o ácido cítrico com o isopropóxido de titânio, obtendo-se como produto o citrato de titânio. Após a síntese do citrato, a adição de etilenoglicol promove a polimerização através de uma reação de poliesterificação, originando uma resina polimérica límpida e viscosa. Ao final do processo, a resina é calcinada a fim de eliminar a matéria orgânica e oxidação do cátion metálico, formando nanopartículas de TiO2. Os pós resultantes foram caracterizados por diversas técnicas, dentre elas a análise térmica, a espectrofotometria de absorção na região do infravermelho, difração de raios-X, espectroscopia Raman, espectroscopia na região do ultravioleta e visível, e método de adsorção de nitrogênio/hélio (método BET), além do Scanning Mobility Particle Sizer (SMPS), que averiguou a dispersão do tamanho das nanopartículas em função da concentração na corrente gasosa. Os resultados obtidos nas técnicas de caracterização evidenciaram que o método do precursor polimérico foi promissor na obtenção de TiO2 nanométrico. Além disso, no SMPS pode-se observar uma alta concentração das nanopartículas de TiO2 na faixa de 15 a 50 nm.
|
35 |
Desempenho de um painel fotovoltaico de baixa tens?o, acoplado ao prot?tipo de um conversor dc/dc topologia BoosterAlc?ntara, Sara Maria Freitas de 18 June 2010 (has links)
Made available in DSpace on 2014-12-17T14:58:04Z (GMT). No. of bitstreams: 1
SaraMFA.pdf: 4966448 bytes, checksum: 1ef74fa9275b2d2eb81d82fd6bcd301f (MD5)
Previous issue date: 2010-06-18 / Low voltage solar panels increase the reliability of solar panels due to reduction of in series
associations the configurations of photovoltaic cells. The low voltage generation requires DCDC
converters devices with high efficiency, enabling raise and regulate the output voltage.
This study analyzes the performance of a photovoltaic panel of Solarex, MSX model 77, configured
to generate an open circuit voltage of 10.5 V, with load voltage of 8.5 V, with short
circuit current of 9 A and a power of 77 W. The solar panel was assembled in the isolated
photovoltaic system configuration, with and without energy storage as an interface with a DCDC
converter, Booster topology. The converter was designed and fabricated using SMD (Surface
Mounted Devices) technology IC (integrated circuit) that regulates its output voltage at
14.2 V, with an efficiency of 87% and providing the load a maximum power of 20.88 W. The
system was installed and instrumented for measurement and acquisition of the following data:
luminosities, average global radiation (data of INPE Instituto Nacional de Pesquisas Espaciais),
solar panel and environment temperatures, solar panel and DC-DC converter output
voltages, panel, inverter, and battery charge output currents. The photovoltaic system was
initially tested in the laboratory (simulating its functioning in ideal conditions of operation)
and then subjected to testing in real field conditions. The panel inclination angle was set at
5.5?, consistent with the latitude of Natal city. Factors such as climatic conditions (simultaneous
variations of temperature, solar luminosities and ra diation on the panel), values of load
resistance, lower limit of the maximum power required by the load (20.88 W) were predominant
factors that panel does not operate with energy efficiency levels greater than 5 to 6%.
The average converter efficiency designed in the field test reached 95% / Pain?is solares de baixa tens?o aumentam a confiabilidade dos pain?is solares, devido ? redu??o
das associa??es em s?rie nas configura??es das c?lulas fotovoltaicas. A gera??o em baixa
tens?o requer dispositivos conversores DC/DC de alto rendimento, que possibilitem elevar e
regular a tens?o de sa?da. O presente estudo analisa o desempenho de um painel fotovoltaico
da Solarex, modelo MSX 77, configurado para gerar uma tens?o em aberto de 10,5 V, tens?o
com carga de 8,5 V, com uma corrente de curto-circuito de 9,0 A, e uma pot?ncia de 77
Watts. O painel solar foi montado na configura??o de sistema fotovoltaico isolado, com e sem
armazenamento de energia tendo como elemento de interface um conversor DC-DC, topologia
Booster. O conversor foi projetado e confeccionado com circuitos integrados de tecnologia
Surface Mounted Devices (SMD), para regular tens?o de sa?da em 14,2V, com rendimento
de 87 % , disponibilizando a carga uma pot?ncia m?xima de 20,88W. O sistema foi instalado
e instrumentado para medi??o e aquisi??o dos seguintes dados: luminosidades, radia??es m?dias
globais (dados do Instituto Nacional de Pesquisas Espaciais (INPE)), temperaturas do
painel solar, temperatura ambiente, tens?es de sa?da do painel solar, tens?o de sa?da do conversor
DC-DC, correntes de sa?da do painel, do conversor, da carga e da bateria. O conjunto
fotovoltaico foi inicialmente ensaiado em laborat?rio (simulando seu funcionamento em condi??es
ideais de opera??o) e, em seguida, submetido a testes em condi??es reais de campo. O
?ngulo da inclina??o do painel foi fixado em 5,5?, compat?vel com a latitude da cidade de Natal.
Fatores como condi??es clim?ticas (varia??es simult?neas de altas temperaturas e radia??es
solares), valores da resist?ncia de carga, baixo limite da m?xima pot?ncia solicitada pela
carga (20,88W) foram fatores predominantes para que painel n?o operasse com n?veis de
efici?ncia energ?tica maiores que 5 ? 6 %. O rendimento m?dio do conversor projetado nos
ensaios de campo alcan?ou 95 %
|
36 |
Caractérisation in situ des propriétés optiques et microphysiques des aérosols troposphériques dans l’archipel arctique canadienVicente-Luis, Andy 12 1900 (has links)
Le réchauffement climatique dans l’Arctique canadien est deux fois plus rapide que la moyenne globale, ce qui accélère la fonte de la banquise et bouleverse radicalement la faune, la flore et les communautés de la région tout entière. Ce réchauffement est causé non seulement par la hausse des émissions de gaz à effet de serre, mais également par des agents de forçage climatique de courte durée comme les aérosols troposphériques. Toutefois, le forçage radiatif des aérosols dans la région polaire est beaucoup moins bien estimé que celui des gaz à effet de serre, notamment le CO2, et demeure toujours incertain. Cette grande incertitude résulte principalement de la grande variabilité spatiotemporelle des propriétés chimiques et physiques des aérosols, en plus de la complexité des boucles de rétroaction observées en Arctique. D’ailleurs, les données sur les caractéristiques des aérosols et de leur répartition à travers la région sont très limitées, et ce, plus particulièrement dans le Haut-Arctique canadien.
Pour remédier à ce problème, une série de mesures a été effectuée sur une période de 3 ans (2016-2019) dans le laboratoire de recherche sur l’environnement atmosphérique polaire (PEARL, 80N 86O) situé près de la station météorologique d’Eureka, au Nunavut, Canada. La distribution en taille des aérosols a été mesurée en se servant de plusieurs instruments, dont un compteur optique de particules (OPC), un granulomètre de mobilité électrique à balayage (SMPS) et un granulomètre aérodynamique (APS). Les propriétés optiques des aérosols ont été déterminées avec deux extinctiomètres photoacoustiques (PAX) qui opèrent respectivement à des longueurs d’onde de 405 et 870 nm.
Les observations réalisées à l’observatoire PEARL démontrent une forte variation saisonnière dans les propriétés optiques et microphysiques des aérosols polaires. Pendant l’hiver et le printemps, l’atmosphère arctique est envahie par une brume sèche d’origine anthropique qui se traduit par une forte augmentation dans la taille, la concentration en nombre et les propriétés optiques extensives des aérosols. Les épisodes de brume arctique commencent généralement en mi-décembre, où des évènements de poussières minérales ont aussi été observés, et se terminent en mai où la formation et le grossissement de nouvelles particules s’amorcent. Le début du printemps mesure les concentrations d’aérosol en mode
accumulation les plus élevées durant l’année. Les aérosols les plus sombres qui composent la brume arctique ont été identifiés comme étant de la suie ou du carbone noir transporté dans l’Arctique à partir de l’Eurasie et de l’Alaska. Quelques relations systématiques entre les propriétés optiques et la distribution de taille des aérosols ont également été calculées et révèlent une différence majeure entre les aérosols interagissant avec la lumière à 405 et 870 nm. / Global warming in the Canadian Arctic is twice as fast as the global average, accelerating the melting of sea ice and radically disrupting the fauna, the flora, and the communities of the whole region. Arctic warming is caused not only by rising greenhouse gas emissions, but also by the short-lived climate forcing agents such as tropospheric aerosols. However, aerosol radiative forcing in the polar region is less precisely estimated than that of greenhouse gases, notably CO2, and remains highly uncertain. This large uncertainty arises mainly from the high spatiotemporal variability in aerosol chemical and physical properties, in addition to the complexity of the feedback loops observed in the Arctic. Furthermore, datasets on aerosol characteristics and their distribution across the region are very limited, particularly in the Canadian High Arctic.
To address this issue, a series of measurements were conducted over a 3-year period (2016-2019) at the Polar Atmospheric Environment Research Laboratory (PEARL, 80N 86W) near Eureka weather station, in Nunavut, Canada. Aerosol size distribution was measured using several instruments including an Optical Particle Counter (OPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). Aerosol optical properties were determined by two Photoacoustic Extinctiometers (PAXs) which operate at wavelengths of 405 nm and 870 nm, respectively.
Observations made at the PEARL observatory show a strong seasonal variation in the optical and microphysical properties of polar aerosols. In the winter and spring, the Arctic atmosphere is impacted by an anthropogenic haze that results in a sharp increase in aerosol size, number concentration, and optical properties. Arctic haze episodes typically occur in mid-December, when mineral dust events have also been observed, and end in May when formation and growth of new particles begin. Early spring exhibits the highest accumulation-mode aerosol concentrations during the year. The darkest Arctic haze aerosols have been identified as soot or black carbon transported into the Arctic from Eurasia and Alaska. Some systematic relationships among aerosol optical properties and size distribution have also been calculated and reveal a major difference between aerosols interacting with light at 405 nm and 870 nm.
|
37 |
Practical And Reliable Wireless Power Supply Design For Low Power Implantable Medical DevicesChristopher J Quinkert (9755558) 14 December 2020 (has links)
<p>Implantable wireless devices
are used to treat a variety of diseases that are not able to be treated
with pharmaceuticals or traditional surgery, These implantable devices have use
in the treatment of neurological disorders like epilepsy, optical disorders
such as glaucoma, or injury related issues such as targeted muscle
reinnervation. These devices can rely upon harvesting power from an inductive
wireless power source and batteries. Improvements to how well the devices
utilize this power directly increase the efficacy of the device operation as
well as the device's lifetime, reducing the need for future surgeries or
implantations. </p>
<p> I have
designed an improvement to cavity resonator based wireless power by designing a
dynamic impedance matching implantable power supply, capable of tracking with
device motion throughout a changing magnetic field and tracking with changing
powering frequencies. This cavity resonator based system presents further
challenges practically in the turn-on cycle of the improved device. </p>
<p> I further
design a coil-to-coil based wireless power system, capable of dynamically
impedance matching a high quality factor coil to optimize power transfer during
steady state, while also reducing turn-on transient power required in dynamic
systems by utilizing a second low quality factor coil. This second coil has a
broadband response and is capable of turning on at lower powers than that of
the high quality factor coil. The low quality factor coil powers the circuitry
that dynamically matches the impedance of the high quality factor coil,
allowing for low power turn on while maintaining high power transfer at all
operating frequencies to the implantable device. </p>
<p> Finally, an
integrated circuit is designed, fabricated, and tested that is capable of
smoothly providing regulated DC power to the implantable device by stepping up
from wireless power to a reasonable voltage level or stepping down from a
battery to a reasonable voltage level for the device. The chip is fabricated in
0.18um CMOS process and is capable of providing power to the "Bionode" implantable
device. </p>
|
38 |
High Speed (MHz) Switch Mode Power Supplies (SMPS) using Coreless PCB Transformer TechnologyKotte, Hari Babu January 2011 (has links)
The most essential unit required for all the electronic devices is the Power Supply Unit (PSU). The main objective of power supply designers is to reduce the size, cost and weight, and to increase the power density of the converter. There is also a requirement to have a lower loss in the circuit and hence in the improvement of energy efficiency of the converter circuit. Operating the converter circuits at higher switching frequencies reduces the size of the passive components such as transformers, inductors, and capacitors, which results in a compact size, weight, and increased power density of the converter. At present the switching frequency of the converter circuit is limited due to the increased switching losses in the existing semiconductor devices and in the magnetic area, because of increased hysteresis and eddy current loss in the core based transformer. Based on continuous efforts to improve the new semi conductor materials such as GaN/SiC and with recently developed high frequency multi-layered coreless PCB step down power transformers, it is now feasible to design ultra-low profile, high power density isolated DC/DC and AC/DC power converters. This thesis is focussed on the design, analysis and evaluation of the converters operating in the MHz frequency region with the latest semi conductor devices and multi-layered coreless PCB step-down power and signal transformers. An isolated flyback DC-DC converter operated in the MHz frequency with multi-layered coreless PCB step down 2:1 power transformer has been designed and evaluated. Soft switching techniques have been incorporated in order to reduce the switching loss of the circuit. The flyback converter has been successfully tested up to a power level of 10W, in the switching frequency range of 2.7-4 MHz. The energy efficiency of the quasi resonant flyback converter was found to be in the range of 72-84% under zero voltage switching conditions (ZVS). The output voltage of the converter was regulated by implementing the constant off-time frequency modulation technique. Because of the theoretical limitations of the Si material MOSFETs, new materials such as GaN and SiC are being introduced into the market and these are showing promising results in the converter circuits as described in this thesis. Comparative parameters of the semi conductor materials such as the vi energy band gap, field strengths and figure of merit have been discussed. In this case, the comparison of an existing Si MOSFET with that of a GaN MOSFET has been evaluated using a multi-layered coreless PCB step-down power transformer for the given input/output specifications of the flyback converter circuit. It has been determined that the energy efficiency of the 45 to 15V regulated converter using GaN was improved by 8-10% compared to the converter using the Si MOSFET due to the gate drive power consumption, lower conduction losses and improved rise/fall times of the switch. For some of the AC/DC and DC/DC applications such as laptop adapters, set-top-box, and telecom applications, high voltage power MOSFETs used in converter circuits possess higher gate charges as compared to that of the low voltage rating MOSFETs. In addition, by operating them at higher switching frequencies, the gate drive power consumption, which is a function of frequency, increases. The switching speeds are also reduced due to the increased capacitance. In order to minimize this gate drive power consumption and to increase the frequency of the converter, a cascode flyback converter was built up using a multi-layered coreless PCB transformer and this was then evaluated. Both simulation and experimental results have shown that with the assistance of the cascode flyback converter the switching speeds of the converter were increased including the significant improvement in the energy efficiency compared to that of the single switch flyback converter. In order to further maximize the utilization of the transformer, to reduce the voltage stress on MOSFETs and to obtain the maximum power density from the power converter, double ended topologies were chosen. For this purpose, a gate drive circuitry utilising the multi-layered coreless PCB gate drive transformer was designed and evaluated in both a Half-bridge and a Series resonant converter. It was found that the gate drive power consumption using this transformer was less than 0.8W for the frequency range of 1.5-3.5MHz. In addition, by using this gate drive circuitry, the maximum energy efficiency of the series resonant converter was found to be 86.5% with an output power of 36.5W.
|
39 |
Design, Evaluation, and Particle Size Characterization of an In-Duct Flat Media Particle Loading Test System for Nuclear-Grade Asme Ag-1 Hepa FiltersWong, Matthew Christopher 06 May 2017 (has links)
The design and performance evaluation of in-duct, isokinetic samplers capable of testing flat sheet, nuclear-grade High Efficiency Particulate Air (HEPA) filters simultaneously with a radial filter testing system is discussed in this study. Evaluations within this study utilize challenge aerosols of varying particle diameters and masses such as hydrated alumina, Arizona test dust, and flame-generated acetylene soot. Accumulated mass and pressure drop for each in-duct sampler is correlated to the full-scale radial filter accumulated mass from initial to 10 in w. c. of loading. SEM imaging of samples at 25%, 50%, 75% and 100% loading verifies particle sizes with instrumentation used, revealing filter clogging resulting from particle impaction and interception. The U.S Department of Energy requires prototype nuclear-grade HEPA filters to be qualified under ASME AG-1 standards. The data obtained can be used to determine baseline performance characteristics on pleated radial filter medium for increased loading integrity and lifecycle endurance.
|
40 |
Novel Intelligent Power Supply Using A Modified Pulse Width ModulatorDoss, Gary Richard, Jr. 01 October 2009 (has links)
No description available.
|
Page generated in 0.0494 seconds