• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 349
  • 50
  • 46
  • 45
  • 42
  • 28
  • 17
  • 14
  • 13
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 696
  • 696
  • 121
  • 116
  • 99
  • 86
  • 82
  • 81
  • 75
  • 75
  • 65
  • 65
  • 62
  • 60
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Development of high-efficiency solar cells on thin silicon through design optimization and defect passivation

Sheoran, Manav 24 March 2009 (has links)
The overall goal of this research is to improve fundamental understanding of the hydrogen passivation of defects in low-cost silicon and the fabrication of high-efficiency solar cells on thin crystalline silicon through low-cost technology development. A novel method was developed to estimate the flux of hydrogen, released from amorphous silicon nitride film, into the silicon. Rapid-firing-induced higher flux of hydrogen was found to be important for higher defect passivation. This was followed by the fabrication of solar cell efficiencies of ~ 17% on low-cost, planar cast multicrystalline silicon. Solar cell efficiencies and lifetime enhancement in the top, middle, and bottom regions of cast multicrystalline silicon ingots were explained on the basis of impurities and defects generally found in those regions. In an attempt to further reduce the cost, high-efficiency solar cells were fabricated on thin crystalline silicon wafers with full area aluminum-back surface field. In spite of loss in efficiency, wafer thinning reduced the module cost. Device modeling was performed to establish a roadmap towards high-efficiency thin cells and back surface recombination velocity and back surface reflectance were identified as critical parameters for high-efficiency thin cells. Screen-printed solar cells on float zone material, with efficiencies > 19% on 300 μm and > 18% on 140 μm were fabricated using a novel low-cost fabrication sequence that involved dielectric rear passivation along with local contacts and back surface field.
422

One-dimensional zinc oxide nanomaterials synthesis and photovoltaic applications

Weintraub, Benjamin A. 20 May 2010 (has links)
As humanly engineered materials systems approach the atomic scale, top-down manufacturing approaches breakdown and following nature's example, bottom-up or self-assembly methods have the potential to emerge as the dominant paradigm. Synthesis of one-dimensional nanomaterials takes advantage of such self-assembly manufacturing techniques, but until now most efforts have relied on high temperature vapor phase schemes which are limited in scalability and compatibility with organic materials. The solution-phase approach is an attractive low temperature alternative to overcome these shortcomings. To this end, this thesis is a study of the rationale solution-phase synthesis of ZnO nanowires and applications in photovoltaics. The following thesis goals have been achieved: rationale synthesis of a single ZnO nanowire on a polymer substrate without seeding, design of a wafer-scale technique to control ZnO nanowire array density using layer-by-layer polymers, determination of optimal nanowire field emitter density to maximize the field enhancement factor, design of bridged nanowires across metal electrodes to order to circumvent post-synthesis manipulation steps, electrical characterization of bridged nanowires, rationale solution-phase synthesis of long ZnO nanowires on optical fibers, fabrication of ZnO nanowire dye-sensitized solar cells on optical fibers, electrical and optical characterization of solar cell devices, comparison studies of 2-D versus 3-D nanowire dye-sensitized solar cell devices, and achievement of 6-fold solar cell power conversion efficiency enhancement using a 3-D approach. The thesis results have implications in nanomanufacturing scale-up and next generation photovoltaics.
423

Untersuchungen an Quinquethiophenen zur Verwendung als Donator in Organischen Solarzellen / Investigations on Quinquethiophenes as Donor Materials in Organic Solar Cells

Schulze, Kerstin 22 October 2008 (has links) (PDF)
Organische Photovoltaik könnte zukünftig eine Möglichkeit zur Energiegewinnung aus erneuerbaren Energiequellen darstellen. Der Vorteil besteht hier vor allen Dingen in dem Potential einer sehr kostengünstigen Herstellung, zum Beispiel einer Produktion im Rolle-zu-Rolle-Verfahren, welche so auf flexiblen Substraten wie beispielsweise Folien erfolgen kann. Obwohl die Materialkosten gering sind, ist bis zu einer Kommerzialisierung Organischer Solarzellen unter anderem eine Erhöhung ihrer Leistungseffizienz notwendig. Vorzugsweise sollten in Organischen Solarzellen Donator- und Akzeptormaterialien verwendet werden, deren Absorptionsspektren und Energieniveaus ideal aufeinander abgestimmt sind, da so zum Beispiel hohe Leerlaufspannungen erreicht werden können. Zusätzlich können hohe Absorptionskoeffizienten der Materialien über einen großen spektralen Bereich zu hohen Stromdichten in diesen photovoltaischen Bauelementen führen. In dieser Arbeit werden neuartige Quinquethiophene als Donatormaterial in Organischen Solarzellen untersucht, welche als Grundeinheit aus fünf Thiophenringen sowie Dicyanovinylendgruppen und Alkylseitenketten bestehen. Die untersuchten Materialien besitzen einen hohen Absorptionskoeffizienten und erreichten auf Grund des hohen Ionisationspotentials hohe Leerlaufspannungen in Organischen Solarzellen unter Verwendung des Fullerens C60 als Akzeptor. Gleichzeitig tritt eine effiziente Trennung der Exzitonen an der Akzeptor-Donator-Grenzfläche auf. Jedoch stellt das hohe Ionisationspotential der Quinquethiophene spezielle Anforderungen an die weitere Solarzellenstruktur. Innerhalb dieser Arbeit wird gezeigt, dass ein Unterschied von eingebauter Spannung und Leerlaufspannung die Form der Solarzellen-Kennlinie entscheidend beeinflusst und eine S-Form in der Nähe der Leerlaufspannung erzeugen kann. Die eingebaute Spannung wird hierbei durch die Kontaktierung der photoaktiven Schichten bestimmt. Eine Erhöhung der eingebauten Spannung der Solarzelle kann durch eine entsprechende Materialwahl erreicht werden. So wird in dieser Arbeit gezeigt, dass Organische Solarzellen basierend auf diesen Quinquethiophenen ohne energetische Barrieren für freie Ladungsträger innerhalb des Bauelements keine S-Form der Kennlinie aufweisen. Ebenfalls wird der Einfluss der unterschiedlichen Quinquethiophenderivate auf die Solarzellen-Charakteristik untersucht. Hierbei wird gezeigt, dass die Länge der Alkylseitenketten einen Einfluss auf die Löcherinjektion sowie die Löcherbeweglichkeit auf dem Oligothiophen hat, welches unter anderem auch die Form der Strom-Spannungs-Kennlinie beeinflusst. Abschließend wird die Möglichkeit der Verwendung dieser Materialklasse in Tandemsolarzellen gezeigt sowie der Vergleich von zwei unterschiedlichen Anodenmaterialien, beides wichtige Aspekte für eine kommerzielle Umsetzung.
424

Electronic Structure Characterization of Nanocrystalline Surfaces and Interfaces with Photoemission Spectroscopy

Gutmann, Sebastian 01 January 2011 (has links)
In this study, photoemission spectroscopy (PES) was used to investigate the electronic properties of nanocrystalline titanium dioxide (TiO2), zinc oxide (ZnO), and cadmium selenide (CdSe). Electrospray deposition technique enabled the preparation of thin films in vacuum from a dispersion prepared outside the vacuum chamber. This method also allowed the step-wise formation of interfaces and the monitoring of the evolution of the electronic structure with intermittent PES characterization. The work function of nanocrystalline TiO2 and ZnO was measured with ultraviolet photoemission spectroscopy (UPS) and low-intensity x-ray photoemission spectroscopy (LIXPS). Measurements on environmentally contaminated surfaces revealed an instantaneous and permanent work function decrease of 0.3-0.5 eV upon exposure to ultraviolet radiation during a UPS measurement. The work function reduction is likely to be related to the formation of a surface dipole caused by the photo-chemical hydroxylation of surface defects. This phenomenon was further investigated with regard to its influence on the electronic structure of the indium tin oxide (ITO)/TiO2 interface found in dye-sensitized solar cells. The experiments suggest that UV radiation can cause a small but significant change of the charge injection barriers at the interface. The determined band line-ups revealed electron injection barriers of ~0.3-0.5 eV, while UV radiation caused an increase of about 0.15 eV. This might have the potential to further impede electron transfer to the ITO electrode and affect the performance of solar cell device. Another type of photovoltaic cell using nanocrystalline material is a heterojunction bulk solar cell. Conversion efficiencies of such devices are currently only about 3% due to the inefficient charge separation at interfaces formed by blending organic and inorganic material. An approach to improve efficiencies in such devices is the use of covalently bonded conductive polymer/inorganic hybrid nanocrystals. In this study a prototypical model system was investigated with PES with the aim to develop a measurement protocol that allows the determination of electronic properties for such hybrid materials. The comparison of the relative core-level binding energies of the organics-functionalized CdSe nanocrystal compared to the ligand-free CdSe nanocrystal and the arylselenophosphate ligand material enabled the determination of the electronic structure at the interface. Core-level measurements support the hypothesis that the Se functionality of the organic ligand coordinates to the Cd sites on the nanopthesis surface.
425

The application of light trapping structures and of InGaAs/GaAs quantum wells and quantum dots to improving the performance of single-junction GaAs solar cells

McPheeters, Claiborne Ott 12 July 2012 (has links)
High efficiency photovoltaic solar cells are expected to continue to be important for a variety of terrestrial and space power applications. Solar cells made of optically thick materials often cannot meet the cost, efficiency, or physical requirements for specialized applications and, increasingly, for traditional applications. This dissertation investigates improving the performance of single-junction GaAs solar cells by incorporating InGaAs/GaAs quantum wells and quantum dots to increase their spectral response bandwidth, and by incorporating structures that confine light in the devices to improve their absorption of it. InGaAs/GaAs quantum dots-in-wells extend the response of GaAs homojunction devices to wavelengths >1200 nm. Nanoparticles that are randomly deposited on the top of optically thick devices scatter light into waveguide modes of the device structures, increasing their absorption of electromagnetic energy and improving their short-circuit current by up to 16%. Multiply periodic diffractive structures have been optimized using rigorous software algorithms and fabricated on the back sides of thin film quantum dot-in-well solar cells, improving their spectral response at wavelengths 850 nm to 1200 nm, where only the quantum dot-in-well structures absorb light, by factors of up to 10. The improvement results from coupling of diffracted light to waveguide modes of the thin film device structure, and from Fabry-Perot interference effects. Simulations of absorption in these device structures corroborate the measured results and indicate that quantum well solar cells of ~2 µm in thickness, and which are equipped with optimized backside gratings, can achieve 1 Sun Airmass 0 short-circuit current densities of up to ~5 mA/cm2 (15%) greater than GaAs homojunction devices, and of up to >2 mA/cm2 (7%) greater than quantum well devices, with planar back reflectors. A combination of Fabry-Perot interference and diffraction into waveguide modes of the thin devices is shown to dominate the simulated device response spectra. Simulations also demonstrate the importance of low-loss metals for realizing optimal light trapping structures. Such device geometries are promising for reducing the cost of high efficiency solar cells that may be suitable for a variety of traditional and emerging applications. / text
426

Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process

Kotsedi, Lebogang January 2010 (has links)
<p>When the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell. A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon. In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity. The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped. A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.<br /> &nbsp / </p>
427

PHOTOVOLTAIC CELLS BASED ON COPPER PHTHALOCYANINE AND CADMIUM SULFIDE HETEROJUNCTION

Marda, Sandeep Kumar 01 January 2008 (has links)
This work focuses on the solar cell based on the heterostructure formed between Copper Phthalocyanine (CuPc) and Cadmium Sulfide (CdS). Two different fabrication techniques were used for depositing the organic and inorganic layers of CuPc and CdS layers respectively. CuPc was deposited by electrodeposition while CdS was deposited by chemical bath deposition. Hybrid CdS/CuPc thin films were obtained from CdS films grown on Glass/ITO by chemical bath deposition followed by electrodeposition of CuPc onto these films and annealing at 250˚C after the deposition of each layer. The maximum open circuit voltage (Voc) and the short circuit current density (Jsc) obtained for this heterojunction solar cell are 0.59v and 0.7mA/cm2 respectively and these are the highest values achieved in literature till date. The materials characteristics and electrical performances of the device were analyzed. The effect of increasing the thickness of CuPc and CdS on the short circuit current density and open circuit voltage were also investigated.
428

Materials Selection and Processing Techniques for Small Spacecraft Solar Cell Arrays

Torabi, Naseem M. 01 January 2013 (has links)
Body mounted germanium substrate solar cell arrays form the faces of many small satellite designs to provide the primary power source on orbit. High efficiency solar cells are made affordable for university satellite programs as triangular devices trimmed from wafer scale solar cells. The smaller cells allow array designs to pack tightly around antenna mounts and payload instruments, giving the board design flexibility. One objective of this work is to investigate the reliability of solar cells attached to FR-4 printed circuit boards. FR-4 circuit boards have significantly higher thermal expansion coefficients and lower thermal conductivities than germanium. This thermal expansion coefficient mismatch between the FR-4 board and the components causes concern for the power system in terms of failures seen by the solar cells. These failures are most likely to occur with a longer orbital lifetime and an extended exposure to harsh environments. This work compares various methods of attaching solar cells to printed circuit boards, using solder paste alone and with a silicone adhesive, and considering the application of these adhesives by comparing the solder joints when printed by screen versus a stencil. An environmental test plan was used to compare the survivability and performance of the solar arrays.
429

Integration of High Efficiency Solar Cells on Carriers for Concentrating System Applications

Chow, Simon Ka Ming 03 May 2011 (has links)
High efficiency multi-junction (MJ) solar cells were packaged onto receiver systems. The efficiency change of concentrator cells under continuous high intensity illumination was done. Also, assessment of the receiver design on the overall performance of a Fresnel-type concentration system was investigated. We present on receiver designs including simulation results of their three-dimensional thermal operation and experimental results of tested packaged receivers to understand their efficiency in real world operation. Thermal measurements from solar simulators were obtained and used to calibrate the model in simulations. The best tested efficiency of 36.5% is obtained on a sample A receiver under 260 suns concentration by the XT-30 solar simulator and the corresponding cell operating temperature is ~30.5°C. The optimum copper thickness of a 5 cm by 5 cm simulated alumina receiver design was determined to be 6 mm and the corresponding cell temperature under 1000 suns concentration is ~36°C during operation.
430

Design, experiment, and analysis of a photovoltaic absorbing medium with intermediate levels

Levy, Michael Yehuda 05 May 2008 (has links)
The absorption of the sun's radiation and its efficient conversion to useful work by a photovoltaic solar cell is of interest to the community at large. Scientists and engineers are particularly interested in approaches that exceed the Shockley-Queisser limit of photovoltaic solar-energy conversion. The abstract notion of increasing the efficiency of photovoltaic solar cells by constructing a three-transition solar cell via an absorber with intermediate levels is well-established. Until now, proposed approaches to realize the three-transition solar cell do not render the efficiency gains that are theorized; therefore, researchers are experimenting to ascertain where the faults lie. In my opinion, it is unclear if the abstract efficiency gains are obtainable. Furthermore, it is difficult to determine whether three-transition absorbers are even incorporated in the existing three-transition solar cell prototypes. I assert that there are material systems derived from the technologically important compound semiconductors and their ternary alloys that more clearly determine the suitability of employing nanostructured absorbers to realize a three-transition solar cell. The author reports on a nanostructured absorber composed of InAs quantum dots completely enveloped in a GaAsSb matrix that is grown by molecular beam epitaxy. The material system, InAs/GaAs$_{0.88}$Sb$_{0.12}$, is identified as an absorber for a three transition solar cell. This material system will more easily determine the suitability of employing nanostructured absorbers because its quantum-dot heterojunctions have negligible valence-band discontinuities, which abate the difficulty of interpreting optical experimental results. A key tool used to identify the GaAs$_{1-x}$Sb$_{x}$ ($xapprox 0.12$) is a maximum-power iso-efficiency contour plot. This contour plot is only obtainable by first having analyzed the impact of both finite intermediate-band width and spectral selectivity on the optimized detailed-balance conversion efficiencies of the three-transition solar cell. Obtaining the contour plot is facilitated by employing a rapid and precise method to calculate particle flux (Appendix~ ef{ch:Rapid-Precise}). The author largely determines the electronic structure of the InAs/GaAs$_{1-x}$Sb$_{x}$ ($xapprox 0.12$) absorber that is grown by molecular beam epitaxy from optical experimental methods and in particular, from photoluminescent spectroscopy. The interpretation of the experimental photoluminescent spectrum is facilitated by having first studied the theoretical photoluminescent spectra of idealized three-transition absorbers.

Page generated in 0.0225 seconds