• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 24
  • 20
  • 18
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 244
  • 57
  • 30
  • 28
  • 28
  • 27
  • 27
  • 26
  • 24
  • 23
  • 21
  • 20
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Inertial encoding mechanisms and flight dynamics of dipteran insects

Yarger, Alexandra Mead 02 June 2020 (has links)
No description available.
222

And the Stereotype Award Goes to...: A Comparative Analysis of Directors using African American Stereotypes in Film

Young, Kelcei 12 1900 (has links)
This study examines African American stereotypes in film. I studied six directors, Kathryn Bigelow, Spike Lee, the Russo Brothers, Ryan Coogler, Tate Taylor, and Dee Rees; and six films Detroit, BlacKkKlansman, Captain America: The Winter Soldier, The Help, and Mudbound. Using the framework of critical race theory and auteur theory, I compared the common themes between the films and directors. The main purpose of my study is to see if White or Black directors predominantly used African American stereotypes. I found that both races of directors rely on stereotypes for different purposes. With Black directors, the stereotype was explained further through character development, while the White directors used the stereotype at face value with no further explanation.
223

Study of neural correlates of attention in mice with spectro-spatio-temporal approaches / En studie om neurala korrelater av uppmärksamhet hos möss med spektro-spatio-temporala tillvägagångssätt

Ortiz, Cantin January 2018 (has links)
While signatures of attention can be observed in widespread areas within and outside of cortex, the control of attention is thought to be regulated by higher cognitive brain areas, such as the prefrontal cortex. In their recent study on mice Kim et al. could show that successful allocation of attention is characterized by increased spiking of a specific type of inhibitory interneurons, the parvalbumin neurons, and higher oscillatory activity in the gamma band in the local prefrontal network. It was recently demonstrated that encoding of working memory in prefrontal areas is linked to bursts of gamma oscillations, a discontinuous network process characterized by short periods of intense power in the gamma band. The relationship between attention and working memory is unclear, and it is possible that these two cognitive processes share encoding principles. To address this gap, the electrophysiological data collected in the Carlén Lab have been analyzed with advanced spatio-temporal approaches. In particular, we have analyzed bursting gamma activity in medial prefrontal cortex during attentional processing and investigated the similarities to gamma bursting observed during working memory. Gamma-band bursts during attention were reliably detected with several methods. We have characterized several features of the bursts, including the occurrence, duration and amplitude. The neuronal firing rates during and outside of bursts have also been computed. We investigated the correlation between different criteria characterizing the gamma burst and successful vs failed allocation of attention. Control data were generated to discuss the obtained results. The aim of the study was to explore the hypothesis that the medial prefrontal cortex encodes attention trough gamma bursts, which could reveal some similarities and differences in coding of central cognitive processes. No clear difference was found in the characterization between successful and failed allocation of attention. In addition, results were very similar in control set and original data. No underlying mechanism could be identified from this analysis. Therefore, as the bursts occurring in the gamma band in the prefrontal cortex (PFC) were not discriminative with respect to the different tested conditions, they do not seem to encode information related to attention. / Även fast flera olika hjärnområdens aktivitet kan korreleras med uppmärksamhet, anses kontrollen av uppmärksamhet regleras av högre kognitiva hjärnområden, såsom främre hjärnbarken. I en nyligen publicerad artikel studerade Kim et al. hjärnaktiviteten hos möss och kunde visa att en framgångsrik uppmärksamhet kännetecknas av en ökad aktivitet av en specifik typ av inhiberande nervceller, parvalbumin celler, och högre oscillerande aktivitet i gammafrekvens i främre hjärnbarkens lokala nätverk. Det har nyligen visats att kodning av arbetsminne i främre hjärnbarken är kopplat till utbrott av gamma-oscillationer, en diskontinuerlig nätverksprocess som kännetecknas av korta perioder av intensiva oscillationer av det lokala nätverket i gammafrekvens . Relationen mellan uppmärksamhet och arbetsminne är oklar, och det är möjligt att dessa två kognitiva processer delar kodningsprinciper. För att minska detta gap av kunskap har den elektrofysiologiska datan som samlats in i Carlén Lab analyserats med avancerade spatio-temporala tillvägagångssätt. I synnerhet har vi analyserat utbrott i gammaaktivitet i främre hjärnbarken under uppmärksamhet och undersökt likheterna med gamma- utbrott observerade under arbetsminne. Gamma-bandutbrott under uppmärksamhet påvisades på ett tillförlitligt sätt med flera metoder. Vi har karaktäriserat flera funktioner hos utbrotten, inklusive förekomsten, varaktigheten och amplituden. De enskilda cellernas aktivitet undersöktes även under och utanför utprotten av gamma-oscillationer. Vi undersökte sambandet mellan de olika kriterier som karakteriserar gamma-utbrott under framgångsrik mot misslyckad allokering av uppmärksamhet. Kontrolldata genererades för att diskutera de erhållna resultaten. Syftet med studien var att utforska hypotesen att den främre hjärnbarken kodar uppmärksamhet genom gamma-utbrott, vilket kan avslöja vissa likheter och skillnader i kodning av centrala kognitiva processer. Ingen klar skillnad hittades i karaktäriseringen mellan framgångsrik och misslyckad allokering av uppmärksamhet. Dessutom var resultaten mycket likartade i kontrolluppsättningen och den ursprungliga datan. Ingen underliggande mekanism kunde identifieras ur denna analys. Eftersom de utbrott som uppstod i gamma-bandet i främre hjärnbarken inte var unika med hänsyn till de olika testade förhållandena, tycks de därför inte koda information relaterad till uppmärksamhet.
224

Molecular Recognition of Ligands in G Protein-Coupled Receptors, Guanine in GTP-Binding Proteins, and SARS-CoV-2 Spike Proteins by ACE2

Bhatta, Pawan January 2022 (has links)
No description available.
225

Biophysical and Phenomenological Models of Cochlear Implant Stimulation / Models of Cochlear Implant Stimulation

Boulet, Jason January 2016 (has links)
Numerous studies showed that cochlear implant (CI) users generally prefer individualized stimulation rates in order to maximize their speech understanding. The underlying reasons for the reported variation in speech perception performance as a function of CI stimulation rate is unknown. However, multiple interacting electrophysiological processes influence the auditory nerve (AN) in response to high-rate CI stimulation. Experiments studying electrical pulse train stimulation of cat AN fibers (ANFs) have demonstrated that spike rates slowly decrease over time relative to onset stimulation and is often attributed to spike rate (spike-triggered) adaptation in addition to refractoriness. Interestingly, this decay tends to adapt more rapidly to higher stimulation rates. This suggests that subthreshold adaptation (accommodation) plays a critical role in reducing neural excitability. Using biophysical computational models of cat ANF including ion channel types such as hyperpolarization-activated cyclic nucleotide-gated (HCN) and low threshold potassium (KLT) channels, we measured the strength of adaptation in response to pulse train stimulation for a range of current amplitudes and pulse rates. We also tested these stimuli using a phenomenological computational ANF model capable of applying any combination of refractoriness, facilitation, accommodation, and/or spike rate adaptation. The simulation results show that HCN and KLT channels contribute to reducing model ANF excitability on the order of 1 to 100 ms. These channels contribute to both spike rate adaptation and accommodation. Using our phenomenological model ANF we have also shown that accommodation alone can produce a slow decay in ANF spike rates responding to ongoing stimulation. The CI users that do not benefit from relatively high stimulation rates may be due to ANF accommodation effects. It may be possible to use electrically evoked compound action potentials (ECAP) recordings to identify CI users exhibiting strong effects of accommodation, i.e., the increasing strength of adaptation as a function of increasing stimulation rate. / Dissertation / Doctor of Philosophy (PhD) / Cochlear implants (CI) attempt to restore hearing to individuals with severe to profound hearing deficits by stimulating the auditory nerve with a series of electrical pulses. Recent CI stimulation strategies have attempted to improve speech perception by stimulating at high pulse rates. However, studies have shown that speech perception performance does not necessarily improve with pulse rate increases, leading to speculation of possible causes. Certain ion channels located in auditory nerve fibers may contribute to driving the nerve to reduce its excitability in response to CI stimulation. In some cases, those channels could force nerve fibers to cease responding to stimulation, causing a breakdown in communication from the CI to the auditory nervous system. Our simulation studies of the auditory nerve containing certain types of channels showed that the effective rate of communication to the brain is reduced when stimulated at high rates due to the presence of these channels.
226

Two and Three-Dimensional Finite Element Analysis of Plasticity-Induced Fatigue Crack Closure: A Comprehensive Parametric Study

Solanki, Kiran N 13 December 2002 (has links)
Finite element analyses are frequently used to model growing fatigue cracks and the associated plasticity-induced crack closure. Two-dimensional, elastic-perfectly plastic finite element analyses of middle-crack tension (M(T)), bend (SEB), and compact tension (C(T)) geometries were conducted to study fatigue crack closure and to calculate the crack opening values under plane-strain and plane-stress conditions. The loading was selected to give the same maximum stress intensity factor in both geometries, and thus similar initial forward plastic zone sizes. Mesh refinement studies were performed on all geometries with various element types. For the C(T) geometry, negligible crack opening loads under plane-strain conditions were observed. In contrast, for the M(T) specimen, the plane-strain crack opening stresses were found to be significantly larger. This difference was shown to be a consequence of in-plane constraint. Under plane-stress conditions, it was found that the in-plane constraint has negligible effect, such that the opening values are approximately the same for the C(T), SEB, and M(T) specimens. Next, the crack opening values of the C(T), SEB and M(T) specimens were compared under various stress levels and load ratios. The effect of a highly refined mesh on crack opening values was noted and significantly lower crack opening values than those reported in literature were found. A new methodology is presented to calculate crack opening values in planar geometries using the crack surface nodal force distribution under minimum loading as determined from finite element analyses. The calculated crack opening values are compared with values obtained using finite element analysis and more conventional crack opening assessment methodologies. It is shown that the new method is independent of loading increment, integration method (normal and reduced integration), and crack opening assessment location. The compared opening values were in good agreement with strip-yield models.
227

Single Cell Analysis of Hippocampal Neural Ensembles during Theta-Triggered Eyeblink Classical Conditioning in the Rabbit

Darling, Ryan Daniel 03 November 2008 (has links)
No description available.
228

Exploring Queer Possibilities in Jeanette Winterson's The Stone Gods

Johnston, Jennifer H. 10 December 2013 (has links)
No description available.
229

Novel Carbon-Nanotube Based Neural Interface for Chronic Recording of Glossopharyngeal Nerve Activity

Kostick, Nathan H. 01 June 2018 (has links)
No description available.
230

A 64-channel back-gate adapted ultra-low-voltage spike-aware neural recording front-end with on-chip lossless/near-lossless compression engine and 3.3V stimulator in 22nm FDSOI

Schüffny, Franz Marcus, Zeinolabedin, Seyed Mohammad Ali, George, Richard, Guo, Liyuan, Weiße, Annika, Uhlig, Johannes, Meyer, Julian, Dixius, Andreas, Hänzsche, Stefan, Berthel, Marc, Scholze, Stefan, Höppner, Sebastian, Mayr, Christian 21 February 2024 (has links)
In neural implants and biohybrid research systems, the integration of electrode recording and stimulation front-ends with pre-processing circuitry promises a drastic increase in real-time capabilities [1,6]. In our proposed neural recording system, constant sampling with a bandwidth of 9.8kHz yields 6.73μV input-referred noise (IRN) at a power-per-channel of 0.34μW for the time-continuous ΔΣ−modulator, and 0.52μW for the digital filters and spike detectors. We introduce dynamic current/bandwidth selection at the ΔΣ and digital filter to reduce recording bandwidth at the absence of spikes (i.e. local field potentials). This is controlled by a two-level spike detection and adjusted by adaptive threshold estimation (ATE). Dynamic bandwidth selection reduces power by 53.7%, increasing the available channel count at a low heat dissipation. Adaptive back-gate voltage tuning (ABGVT) compensates for PVT variation in subthreshold circuits. This allows 1.8V input/output (IO) devices to operate at 0.4V supply voltage robustly. The proposed 64-channel neural recording system moreover includes a 16-channel adaptive compression engine (ACE) and an 8-channel on-chip current stimulator at 3.3V. The stimulator supports field-shaping approaches, promising increased selectivity in future research.

Page generated in 0.032 seconds