Spelling suggestions: "subject:"schmidt"" "subject:"loschmidt""
151 |
Vytvoření předpokladů pro hodnocení vlastností vysokopevnostních betonů s využitím nedestruktivních metod zkoušení / Creating conditions for evaluation of high-strength concrete characteristics using non-destructive testing methodsProcházka, David Unknown Date (has links)
High-strength concrete (HSC) belongs in the recent years to frequently used types of concrete. It allows realization of static challenging structures and also shows due to its dense structure greater durability especially against aggressive media. Currently HSC construction realization abroad is not exceptional. It’s using in the Czech Republic is still limited. When realized, then in a small scale in civil engineering works. The realization of high-strength concrete structures is closely related with the concrete construction quality verification. Good efficiency of the quality control methods can provide non-destructive testing methods (NDT), especially when investigating strength of concrete built in structure. A lack on relevant data for non-destructive testing of HSC in technical and normative rules is to be considered as a significant deficiency. Evident for HSC generally is the lack in literature on deeper analysis of the factors affecting their non-destructive testing, as well a meaningful methodology or practically usable calibration relationships. HSC differs from ordinary concrete not only by used components, but also by more compact structure with different strength – elastic characteristics. Considering these differences, HSC strength prediction can not be performed by using calibration relationships developed for ordinary concrete. Moreover, the question is to what extent the current knowledge of the NDT results influencing factors can be considered as valid. The paper presents findings on the effects of the key factors affecting the measurement results of Schmidt hardness method and ultrasonic pulse method, including recommendations for the practical application of these methods. The problematic of static vs. dynamic modulus of elasticity was also solved. Calibration equations for predicting the compressive strength of HSC from the non-destructive testing parameter were elaborated, showing high cohesion among variables and practically usability.
|
152 |
„Wir armen, armen Mädchen sind gar so übel dran ...“: Gedanken zum 8. März – oder „Weiber gehören auch zu den Menschen?“Schönfuß-Krause, Renate 01 July 2021 (has links)
Dieser Beitrag spannt einen Bogen von der totalen Entmündigung und Entwürdigung der Frauen im 17./18.Jahrhundert, dargelegt u.a. an Auszügen der Chronik Knobloch Radeberg, bis hin zu ihren Emanzipationsbestrebungen in die Neuzeit. Es ist die Geschichte der Frauenbewegung, Kampf um Gleichberechtigung, denn die Welt, so wie sie eingerichtet war, konnte den Frauen wirklich nicht gefallen, eine Welt der Angst und totalen Unmündigkeit. Angst vor den Strafen Gottes, von den Kanzeln der Kirchen verkündet, Angst vor der Apokalypse und dem Jüngsten Gericht, Angst vor der Obrigkeit und ihren Gerichten. Mit Angst und Verdummung des Volkes ließ es sich schon immer wunderbar regieren.
|
153 |
Contribution à la théorie des ondelettes : application à la turbulence des plasmas de bord de Tokamak et à la mesure dimensionnelle de cibles / Contribution to the wavelet theory : Application to edge plasma turbulence in tokamaks and to dimensional measurement of targetsScipioni, Angel 19 November 2010 (has links)
La nécessaire représentation en échelle du monde nous amène à expliquer pourquoi la théorie des ondelettes en constitue le formalisme le mieux adapté. Ses performances sont comparées à d'autres outils : la méthode des étendues normalisées (R/S) et la méthode par décomposition empirique modale (EMD).La grande diversité des bases analysantes de la théorie des ondelettes nous conduit à proposer une approche à caractère morphologique de l'analyse. L'exposé est organisé en trois parties.Le premier chapitre est dédié aux éléments constitutifs de la théorie des ondelettes. Un lien surprenant est établi entre la notion de récurrence et l'analyse en échelle (polynômes de Daubechies) via le triangle de Pascal. Une expression analytique générale des coefficients des filtres de Daubechies à partir des racines des polynômes est ensuite proposée.Le deuxième chapitre constitue le premier domaine d'application. Il concerne les plasmas de bord des réacteurs de fusion de type tokamak. Nous exposons comment, pour la première fois sur des signaux expérimentaux, le coefficient de Hurst a pu être mesuré à partir d'un estimateur des moindres carrés à ondelettes. Nous détaillons ensuite, à partir de processus de type mouvement brownien fractionnaire (fBm), la manière dont nous avons établi un modèle (de synthèse) original reproduisant parfaitement la statistique mixte fBm et fGn qui caractérise un plasma de bord. Enfin, nous explicitons les raisons nous ayant amené à constater l'absence de lien existant entre des valeurs élevées du coefficient d'Hurst et de supposées longues corrélations.Le troisième chapitre est relatif au second domaine d'application. Il a été l'occasion de mettre en évidence comment le bien-fondé d'une approche morphologique couplée à une analyse en échelle nous ont permis d'extraire l'information relative à la taille, dans un écho rétrodiffusé d'une cible immergée et insonifiée par une onde ultrasonore / The necessary scale-based representation of the world leads us to explain why the wavelet theory is the best suited formalism. Its performances are compared to other tools: R/S analysis and empirical modal decomposition method (EMD). The great diversity of analyzing bases of wavelet theory leads us to propose a morphological approach of the analysis. The study is organized into three parts. The first chapter is dedicated to the constituent elements of wavelet theory. Then we will show the surprising link existing between recurrence concept and scale analysis (Daubechies polynomials) by using Pascal's triangle. A general analytical expression of Daubechies' filter coefficients is then proposed from the polynomial roots. The second chapter is the first application domain. It involves edge plasmas of tokamak fusion reactors. We will describe how, for the first time on experimental signals, the Hurst coefficient has been measured by a wavelet-based estimator. We will detail from fbm-like processes (fractional Brownian motion), how we have established an original model perfectly reproducing fBm and fGn joint statistics that characterizes magnetized plasmas. Finally, we will point out the reasons that show the lack of link between high values of the Hurst coefficient and possible long correlations. The third chapter is dedicated to the second application domain which is relative to the backscattered echo analysis of an immersed target insonified by an ultrasonic plane wave. We will explain how a morphological approach associated to a scale analysis can extract the diameter information
|
154 |
Advanced Stochastic Signal Processing and Computational Methods: Theories and ApplicationsRobaei, Mohammadreza 08 1900 (has links)
Compressed sensing has been proposed as a computationally efficient method to estimate the finite-dimensional signals. The idea is to develop an undersampling operator that can sample the large but finite-dimensional sparse signals with a rate much below the required Nyquist rate. In other words, considering the sparsity level of the signal, the compressed sensing samples the signal with a rate proportional to the amount of information hidden in the signal. In this dissertation, first, we employ compressed sensing for physical layer signal processing of directional millimeter-wave communication. Second, we go through the theoretical aspect of compressed sensing by running a comprehensive theoretical analysis of compressed sensing to address two main unsolved problems, (1) continuous-extension compressed sensing in locally convex space and (2) computing the optimum subspace and its dimension using the idea of equivalent topologies using Köthe sequence.
In the first part of this thesis, we employ compressed sensing to address various problems in directional millimeter-wave communication. In particular, we are focusing on stochastic characteristics of the underlying channel to characterize, detect, estimate, and track angular parameters of doubly directional millimeter-wave communication. For this purpose, we employ compressed sensing in combination with other stochastic methods such as Correlation Matrix Distance (CMD), spectral overlap, autoregressive process, and Fuzzy entropy to (1) study the (non) stationary behavior of the channel and (2) estimate and track channel parameters. This class of applications is finite-dimensional signals. Compressed sensing demonstrates great capability in sampling finite-dimensional signals. Nevertheless, it does not show the same performance sampling the semi-infinite and infinite-dimensional signals. The second part of the thesis is more theoretical works on compressed sensing toward application. In chapter 4, we leverage the group Fourier theory and the stochastical nature of the directional communication to introduce families of the linear and quadratic family of displacement operators that track the join-distribution signals by mapping the old coordinates to the predicted new coordinates. We have shown that the continuous linear time-variant millimeter-wave channel can be represented as the product of channel Wigner distribution and doubly directional channel. We notice that the localization operators in the given model are non-associative structures. The structure of the linear and quadratic localization operator considering group and quasi-group are studied thoroughly. In the last two chapters, we propose continuous compressed sensing to address infinite-dimensional signals and apply the developed methods to a variety of applications. In chapter 5, we extend Hilbert-Schmidt integral operator to the Compressed Sensing Hilbert-Schmidt integral operator through the Kolmogorov conditional extension theorem. Two solutions for the Compressed Sensing Hilbert Schmidt integral operator have been proposed, (1) through Mercer's theorem and (2) through Green's theorem. We call the solution space the Compressed Sensing Karhunen-Loéve Expansion (CS-KLE) because of its deep relation to the conventional Karhunen-Loéve Expansion (KLE). The closed relation between CS-KLE and KLE is studied in the Hilbert space, with some additional structures inherited from the Banach space. We examine CS-KLE through a variety of finite-dimensional and infinite-dimensional compressible vector spaces. Chapter 6 proposes a theoretical framework to study the uniform convergence of a compressible vector space by formulating the compressed sensing in locally convex Hausdorff space, also known as Fréchet space. We examine the existence of an optimum subspace comprehensively and propose a method to compute the optimum subspace of both finite-dimensional and infinite-dimensional compressible topological vector spaces. To the author's best knowledge, we are the first group that proposes continuous compressed sensing that does not require any information about the local infinite-dimensional fluctuations of the signal.
|
155 |
Problematika testování stříkaných betonů / The Issue of testing shotcreteŠkapová, Pavla January 2014 (has links)
The master‘s thesis focuses on testing the shotcrete prepared in laboratory conditions. The main observed properties are compresive strenght of shotcrete and modulus of elasticity. The aim is assessment of methods for measuring those parameters. The calibrating correlations for strenght characteristics of shotcrete are given by obtaining the results of used methods. The shotcrete composition, amount and type of accelerating additive as well as economic aspect of using shotcrete is also assessed.
|
Page generated in 0.0364 seconds