Spelling suggestions: "subject:"eea ice"" "subject:"aiea ice""
261 |
Réponse de la circulation atmosphérique aux forçages anthropiques : des modes annulaires aux dépressions synoptiques / Atmospheric circulation response to anthropogenic forcings : from annular modes to storm tracksOudar, Thomas 10 November 2016 (has links)
L'étude de la variabilité climatique dans les moyennes et hautes latitudes est très complexe, principalement en raison des nombreux mécanismes physiques mis en jeu. Cette variabilité climatique résulte de deux contributions majeures : la variabilité interne associée à des processus internes au système climatique et la variabilité forcée qui est liée aux forçages externes, qui peuvent être d'origine naturelle (comme le volcanisme, les aérosols naturels) ou anthropique (GES, aérosols anthropiques). Ces forçages externes jouent un rôle important sur le climat et sa variabilité. Le défi de la recherche climatique est de comprendre leurs effets sur le climat et leurs rôles face à la variabilité interne. Cette thèse a comme objectif une meilleure compréhension des rôles respectifs de la variabilité interne et des différents forçages externes sur la variabilité passée de la circulation atmosphérique dans les deux hémisphères et de l'activité synoptique associée, ainsi que de leur évolution pour le climat futur en utilisant des ré-analyses atmosphériques et des simulations issues du modèle de climat CNRM-CM5. Nous nous sommes intéressés dans un premier temps à l'étude des changements des modes annulaires dans les hémisphères nord et sud, appelés respectivement NAM (Northern Annular Mode) et SAM (Southern Annular Mode). Nous montrons que la tendance positive observée du SAM sur la période 1960-1990 en été austral est bien reproduite par le modèle. Cependant, celle-ci est reproduite lorsque la diminution d'ozone stratosphérique et l'augmentation des gaz à effet de serre sont toutes deux prescrites au modèle, alors que certaines études suggéraient qu'elle était principalement expliquée par la seule présence de l'ozone. Nous nous sommes ensuite focalisés sur les changements de circulation \linebreak atmosphérique dans l'hémisphère nord. Ceux-ci sont plus complexes que dans l'hémisphère sud. En effet, l'augmentation des GES provoque un réchauffement global différent suivant l'altitude : maximum dans la haute troposphère tropicale ainsi qu'aux hautes latitudes en surface. Ce dernier est en réalité expliqué par la fonte de la banquise Arctique. De nombreux processus physiques et de nombreuses rétroactions sont mis en jeu et rendent la compréhension des changements compliquée. Pour cela, nous avons mis en place un protocole expérimental avec le modèle couplé CNRM-CM5 pour séparer l'effet direct des GES (réchauffement de l'atmosphère) de l'effet indirect (fonte de la banquise Arctique et rétroaction sur l'atmosphère). Cette fonte est responsable de l'augmentation des flux de chaleur entre l'océan et l'atmosphère qui perturbe ensuite la circulation atmosphérique. Nous montrons que la diminution de glace de mer Arctique pourrait être à l'origine de la réponse barocline dans l'hémisphère nord. Enfin, la dernière partie de cette thèse a fait l'objet d'une étude plus spécifique, puisque l'on s'est intéressé aux évolutions passée et future des dépressions atmosphériques nord Atlantique. De nombreuses incertitudes persistent en raison de processus complexes mettant en jeu la vapeur d'eau, le gradient méridien de température et la stabilité statique. Nous retrouvons la réponse tripolaire dans le RCP8.5, mentionnée dans le 5\up{ème} rapport du GIEC, qui correspond à une diminution dans la partie sud du domaine Atlantique nord et la mer Méditerranée, une augmentation sur les îles Britanniques et la Scandinavie et une diminution à l'est du Groenland. Nous montrons que ce signal est peu robuste sur la période dite historique en raison de la forte variabilité interne associée aux systèmes dépressionnaires. / Climate variability in mid and high latitudes is very complex due to numerous physical mecanims implied. This climate variability can be decomposed into 2 components : the internal variability associated with internal processes and the forced variability linked to the external forcings which can be natutal (volcanism, natural aerosols) or anthropogenic (greenhouse gases, anthropogenic aerosols). These external forcings play a crucial role on the climate and its variability. The challenge in the climate research is to understand their effects on the climate and their roles relatively with the internal variability. The objective of this thesis is a better understanding of the respective roles of internal variability and forced variability on the past and future atmospheric circulation in both hemispheres characterized by the annular mode and the synoptic activity associated using atmospheric reanalysis and experiments performed with the coupled climate model CNRM-CM5. First, we focus on the annular mode changes in both hemispheres, named the NAM (Northern Annular Mode) and the SAM (Southern Annular Mode). We show that the observed positive trend of the SAM in the 1960s in austral summer is well reproduced by the climate model. However, contrarily to other studies which suggest that this positive trend can be explained by only stratospheric ozone depletion, it is reproduced in the CNRM-CM5 model when the ozone depletion and greenhouse gases (GHG) increase are both prescribed. Then, we investigate the changes in the Northern Hemisphere atmospheric circulation. These are more complex than in the Southern Hemisphere. Indeed, the increase of GHG in the atmosphere causes a general global warming maximum in the tropical high troposphere and over the pole at the surface which is mainly explained by Arctic sea ice loss. So the understanding of the changes is very complex due to several physical processes and retroactions. Thus, we have conducted a protocol with the coupled climate model CNRM-CM5 in order to assess the respective role of Arctic sea ice loss and GHG increase. Arctic sea ice loss is reponsible for an increase in the heat flux between the atmosphere and the ocean which modify the atmospheric circulation. We show that Arctic sea ice loss can cause the baroclinic response in the Northern Hemisphere. Finally, the last part of the thesis is the study of past and future changes in the North Altantic storm-tracks. There are still sereval uncertainties because of the complex processes involving the water vapour, the meridional temperature gradient and the static stability. We find the tripolar response, already found by other studies, consisting of a significant decrease in the south of the basin and over the Mediterranean sea, a small increase over the British Isles, and a decrease east of the Greenland. We show that the signal in the historical period is not robust, due to large chaotic variability associated with storms.
|
262 |
Arktiska molns påverkan på havsisens utbredning och minskningPetersson, Sofie January 2017 (has links)
Klimatförändringarna i Arktis sker i en snabbare takt än någon annanstans på jorden. I regionen är det framförallt havsisens utbredning som drabbas, vilken har minskat med 3.8 % av medelstorleken per decennium under åren 1979-2012. För att klimatmodellerna ska kunna göra så bra beräkningar som möjligt av det framtida klimatet behövs mer observationsdata och bättre förståelse av Arktis klimatsystem. Det arktiska klimatet är komplext, svåråtkomligt för observationer och därför mindre utforskat än klimatsystemen på resten av jorden. Detta gör att klimatmodellerna i nuläget har begränsningar för regionen. De arktiska molnen utgör en osäker faktor i sammanhanget. Molnen är en viktig del i strålningsbalansen och har en stark korrelation med havsisen. De arktiska molnen har en tydlig säsongsvariation med mer molnighet sommartid än under vinterhalvåret. Detta gör att molnen över Arktis till skillnad från i jordens övriga regioner har en totalt sett värmande effekt alla årstider förutom sommaren. Forskarna är även överens om att mer observationsdata och kunskap behövs inom området, vilket skulle förbättra klimatmodellerna och öka kunskapen kring korrelationen mellan molnen och den arktiska havsisen. / In the Arctic the climate changes faster than anywhere on the planet. It is especially the expansion of the sea ice that is affected. Over the years 1979-2012, the annual average extent of the Arctic sea ice has been reduced with 3.8 % per decade. In order for climate models to make the best possible calculations of the future climate, more observation data and better understanding of the Arctic climate system are needed. The Arctic climate is complex, difficult to reach for observations and therefore less explored than the climate systems in the rest of the world. This means that climate models currently have limitations for the region. The Arctic clouds constitute an uncertain factor in this context. Clouds are an important part of the radiation balance and have a strong correlation with the sea ice. The Arctic clouds have a clear seasonal variation with more cloudiness in summer than during the winter. This makes the Arctic clouds, unlike in the rest of the world, to have a total warming effect all seasons except during the summer. The researchers also agree that more observation data and knowledge are needed for the area. It would improve climate models and expand the science about the correlation between the clouds and the Arctic sea ice.
|
263 |
Climate change in the Barents Sea : ice-ocean interactions, water mass formation and variability / Changements climatiques dans la mer de Barents : interactions glace-océan, formation et variabilité de la masse d'eauBarton, Benjamin 10 October 2019 (has links)
L’étendue hivernale de la banquise en mer de Barents n’a cessé de diminuer, et un certain nombre d’études suggèrent que cette diminution pourrait coïncider avec des hivers très froids en Europe et Asie. L’eau Atlantique (AW) transportée vers la mer de Barents, se réchauffe. En mer de Barents, l’AW se transforme en Barents Sea Water (BSW), plus froide et moins salée. Etudier cette dernière nous permet d’en savoir plus sur l’influence de la saisonnalité de la banquise Arctique sur la stratification et la circulation de l’océan.Tout d’abord, nous utilisons des observations satellites pour localiser le Front Polaire (PF) qui matérialise la limite entre la BSW et l’eau Arctique. Nous établissons que l’étendue de la banquise était indépendante du PF jusqu’au milieu des années 2000, jusqu’à ce que le réchauffement de l’AW commence à limiter l’extension de la banquise hivernale au sud du front. Ensuite, en combinant données satellites et in situ, nous montrons que l’on peut surveiller ‘à distance’ les propriétés de la BSW : les variations de la température de surface de l’océan sont ainsi corrélées à celles du contenu en chaleur de la mer de Barents qui, associées à celles de la hauteur stérique, permettent également d’estimer son contenu en eau douce.Pour finir, nous utilisons un modèle à haute résolution pour calculer les bilans de volume, transport et flux des masses d’eau. Le volume de la BSW atteint un minimum en 1990 et 2004 : l’étendue de glace de mer hivernale ayant fondue l’été suivant était alors conséquente, résultant notamment d’une masse d’AW plus froide. L’événement de 2004 a permis une entrée massive d’AW, de plus en plus chaude, dans la mer de Barents. / Winter sea ice has declined in the Barents Sea and there is growing evidence that the low sea ice here coincides with cold, winter surface air temperature in Europe and Asia. Atlantic Water (AW) transported into the Barents Sea is warming and its temperature variability is correlated with variability in sea ice extent. As AW extends into the Barents Sea it is modified into a cooler, fresher water mass called BarentsSea Water (BSW). There are limited observations of BSW despite its importance in the Arctic Ocean system, leading to the question, how does the seasonal sea ice impact ocean stratification and mean flow?First, satellite observations are used to find the Polar Front, a water mass boundary between BSW and fresher Arctic Water to the north. The sea ice extent was found to be independent of the Polar Front until the mid-2000s when warming AW prevented the extension of winter sea ice south of the front.Second, by combining satellite and in situ data, it is shown that sea surface temperature can approximate heat content in the Barents Sea. Using heat content with satellite steric height, freshwater content can also be estimated, showing the potential for remote monitoring of BSW properties.Third, a high-resolution model is used to calculate the volume, transport and flux budgets within the AW and BSW domain south of the Polar Front. The model shows BSW volume minimum years in 1990 and2004. Both events were preceded by extensive winter sea ice and substantial summer sea ice melt, a result of preceding, cool AW. The event in 2004 was more extreme and allowed warming AW a greater volume in the Barents Sea.
|
264 |
A CORRELATION OF WESTERN ARCTIC OCEAN SEDIMENTATION DURING THE LATE HOLOCENE WITH AN ATMOSPHERIC TEMPERATURE PROXY RECORD FROM A GLACIAL LAKE IN THE BROOKS RANGE, ALASKAHarrison, Jeffrey Michael 22 April 2013 (has links)
No description available.
|
265 |
Polar Sea Ice Mapping for SeaWindsAnderson, Hyrum Spencer 30 May 2003 (has links) (PDF)
In recent years, the scientific community has expressed interest in the ability to observe global climate indicators such as polar sea ice. Advances in microwave remote sensing technology have allowed a large-scale and detailed study of sea ice characteristics. This thesis provides the analysis and development of sea ice mapping algorithms for the SeaWinds scatterometer. First, an in-depth analysis of the Remund Long (RL) algorithm for SeaWinds is performed. From this study, several improvements are made to the RL algorithm which enhance its performance. In addition, a new method for automated polar sea ice mapping is developed for the SeaWinds instrument. This method is rooted in Bayes decision theory, and incorporates an adaptive model for seasonally fluctuating sea ice and ocean microwave signatures. The new approach is compared to the RL algorithm, to passive microwave data, and to high-resolution SAR imagery for validation.
|
266 |
Coastal Enviroments And Processes In The Canadian Artic ArchipelagoTaylor, Robert 05 1900 (has links)
<p> The prime objective is to define and characterize the various
coastal environments in the Canadian Arctic Archipelago. The research,
Hhich utilizes both secondary source information and actual field
observations, takes into account coastal morphology, beach profile,
sediment types, sea ice conditions, tidal range, depth of the frost
table and wave energy. From a total of twelve coastal divisions based
on the criteria of coastal morphology, tidal conditions and length of
open water season, five have been chosen as t he basic coastal environ
ments of the Arctic Archipelago. They are as follows: the Arctic
Coastal Plain, the Ice Shelf, the Fiord environment, the High Straight
coastal environment, and the Ridge and Valley coastal environment.
Field observations within the last three environments provided
additional evidence for the divisions and observations on the beach
and nearshore characteristics at five selected locations. </p> / Thesis / Master of Science (MSc)
|
267 |
Water drag measurements on Arctic Sea iceShirasawa, Kunio. January 1975 (has links)
No description available.
|
268 |
Climate classification for the earth's oceanic areas using the KӦppen SystemWalterscheid, Steven K. January 1900 (has links)
Master of Arts / Department of Geography / John A. Harrington Jr / The objective of this thesis is classify climate for the Earth’s ocean areas. The classifica-tion task is accomplished in part by using monthly average sea surface temperature and precipita-tion data from 1980-2008. Coast-to-coast coverage of the needed data were obtained from the reanalysis product produced by the National Centers for Environmental Prediction and the National Center for Atmospheric Research. Köppen’s classification scheme was implemented in the ArcGIS suite of software, which was used to analyze and display all of the classified map products. Russell’s ‘climatic years’ concept was used and separate classifications were produce for each year of available data. Findings indicate that the oceans are very different from land areas when it comes to the location and extent of varying climate types. Some main findings include the idea that A, C, and E climates dominate the geography of the oceans and that there are zero continental, or D, climates. Also, the Southern Oscillation plays an important part in tropical ocean dynamics and climate, but summarizing twenty nine years of mapped patterns into a summary product removes any major effect from yearly climate system anomalies. A key finding is an argument that supports the establishment of a unique Southern Ocean surrounding Antarctica. There are polar, ET and EF, climate subtypes surrounding both the Arctic and Antarctic poles, but only the north has the well established Arctic Ocean. Oceanic E climate areas are more pronounced in the Southern Hemisphere with circumpolar rings around the Antarctic continent. Classification results support the idea of a Southern Ocean based on the spatial pattern of climate types and in view of the fact that that the climate of the Southern Ocean area is so different from the temperate, or C, climate and its subtypes. This research is important for many reasons, the primary being that climate classification helps us better understand the world around us. It is difficult to see change in the environment without first knowing what the state of the system used to be. Classification will also help depict the changes that have happened, when these shifts in climate occurred, and with that information we can better predict what the future will hold.
|
269 |
Análise Quantitativa das Massas de Água dos Mares de Ross e Weddell, Antártica / Quantitative Analysis of the Water Masses in Ross and Weddell Seas, AntarcticHille, Elizandra 05 March 2013 (has links)
A complexa interação que ocorre entre os processos oceânicos e atmosféricos no Oceano Austral afeta a circulação oceânica global em diferentes camadas. O Mar de Weddell e o Mar de Ross possuem reconhecida importância na formação da Água de Fundo Antártica (AABW). O objetivo principal deste trabalho é caracterizar as massas de água dos Mares de Weddell e Ross, através dos dados mais recentes de reanálise oceânica SODA (Simple Ocean Data Assimilation). Através da técnica de separação de massas de água Análise Multiparamétrica Ótima (AMO) foi possível a identificação de 3 principais massas de água no Mar de Ross: Água Profunda Circumpolar Superior (UCDW), Água Profunda Circumpolar Inferior (LCDW) e Água de Plataforma de Baixa Salinidade (LSSW). A UCDW foi a que apresentou a maior variabilidade, não atingindo a Plataforma de gelo do MR durante os anos de 1950-1974. No Mar de Weddell foi possível a identificação das seguintes massas de água: Água Profunda Cálida (WDW), Água Profunda do Mar de Weddell (WSDW) e Água de Fundo do Mar de Weddell (WSBW). A WDW atingiu valores >70% à 800m. A WSDW possui em seu núcleo valores > 90% entre 2000 e 3500m. A WSBW, apresenta ~100% em profundidades > 4000m. / The complex interaction that occurs between the oceanic and atmospheric processes in the Southern Ocean affects global ocean circulation in different layers. The Weddell and Ross Seas have recognized importance in the formation of Antarctic Bottom Water (AABW). This work aims to characterize the water masses of the Weddell and Ross Seas, using the latest ocean data reanalysis SODA (Simple Ocean Data Assimilation). Through the water masses separation technique, Optimum Multiparameter Analysis (OMP), it was possible to identify three main water masses in Ross Sea: Upper Circumpolar Deep Water (UCDW), Lower Circumpolar Deep Water (LCDW) and Low Salinity Shelf Water (LSSW). UCDW showed the greatest variability, not reaching the Ross Sea Ice Shelf during the years 1950-1974. It was possible to identify the following water masses in Weddell Sea: Warm Deep Water (WDW), Weddell Sea Deep Water (WSDW) and Weddell Sea Bottom Water (WSBW). WDW reached values up to 70% in 800m. WSDW has in its core values > 90% between 2000 and 3500m. WSBW presents a contribution up to 100% at depths > 4000m.
|
270 |
Estudo numérico da variabilidade das massas de água do Mar de Ross nos séculos XX e XXI / Numerical Assessment of the Ross Sea Water Masses Variability in the 20 th and 21 st CenturiesTonelli, Marcos Henrique Maruch 06 November 2009 (has links)
O oceano desempenha papel fundamental na configuração e manutenção do clima da Terra, sendo considerado um dos componentes principais do sistema climático.Diversos estudo foram conduzidos para avaliar as mudanças nos processos climáticos e como o clima, em contrapartida, é afetado por tais mudanças. O presente trabalho visa investigar o impacto das mudanças climáticas na formação de massas de água do oceano austral. Foram analisados resultados de simulação numérica para os séculos XX e XXI pelo modelo CCSM3 para os cenários 20c3m e SRESA1B do IPCC. Através da técnica de separação de mássas de água Análise Otimizada de Parâmetros Múltiplos (OMP) foram identificadas 3 massas de água no Mar de Ross: Água Profunda Circumpolar (CDW); Água da Plataforma de Gelo (ISW); Água de Plataforma de Baixa Salinidade (LSSW). A ISW, precursora da Água de Fundo Antártica (AABW), apresenta maior variação espacial tornando-se mais rasa no século XX e assumindo camadas mais profundas no século XXI. A variação da ISW está relacionada à variação do Modo Anular Sul (SAM) e à variação do gelo marinho. / It has been known for a long time that the ocean plays the most important role on Earth\'s heat budget, what turns it into a major component of the global climate system. Therefore, many studies have been made to assess whether features of climate processes are changing and how may climate itself be affected by these changes. This work aims to look at the impact of climate changes on water masses formation in the Southern Ocean. Results from the 20th century and SRESA1b CCSM3/NCAR simulation (1870 to 2100) were analyzed using the Optimum Multiparameter Analysis (OMP) to separate water masses. Three water masses were identified in the Ross Sea: Circumpolar Deep Water (CDW); Ice Shelf Water (ISW); Low Salinity Shelf Water (LSSW). Simulation results have shown that the ISW gets shallower during the 20th century and then, during the 21stcentury, it gets deeper and occupies the deepest layer by 2100 while it flows towards higher latitudes as AABW. Much closely to what has been shown by observational studies, water masses formation in the Southern Ocean is intrinsically linked to atmospheric vaiability modes, such as the southern annular mode--SAM, and to sea ice variation.
|
Page generated in 0.0596 seconds