Spelling suggestions: "subject:"secretion"" "subject:"decretion""
341 |
Signal Transduction of Glucagon SecretionVieira, Elaine January 2006 (has links)
Diabetes mellitus is a bihormonal disorder with hyperglycemia due to deficiency of insulin and hypersecretion of glucagon. To improve diabetes treatment it is important to clarify the signal transduction of glucagon secretion. The cytoplasmic Ca2+ concentration ([Ca2+]i), an important determinant of hormone secretion, and the membrane potential were recorded in individual mouse α-cells. Glucagon and insulin secretion were measured from mouse islets and glucagon secretion from hamster glucagonoma cells. Glucose inhibited glucagon secretion from islets and glucagonoma cells with maximal effect at 7 mM, indicating a direct action on the α-cells. High concentrations of glucose paradoxically stimulated glucagon secretion. Whereas glucose inhibition of glucagon release was associated with lowering of [Ca2+]i, stimulation of secretion at high glucose concentrations was Ca2+-independent. Adrenaline, which is a potent stimulator of glucagon secretion, increased [Ca2+]i by α1- and β-adrenergic mechanisms involving mobilization of intracellular Ca2+ from the endoplasmic reticulum (ER) and influx of the ion across the plasma membrane. Ca2+ mobilization could be attributed to generation of inositol 1,4,5-trisphosphate and cAMP, and influx occurred through voltage-dependent L-type channels activated by a depolarizing store-operated current. Glucose hyperpolarized the α-cells and inhibited adrenaline-induced [Ca2+]i signalling. At 3 mM, glucose had a pronounced stimulatory effect on Ca2+ sequestration in the ER, shutting off store-operated Ca2+ influx. The α-cells express ATP-regulated K+ channels but pharmacological blockade of these channels neither interfered with the hyperpolarizing and [Ca2+]i lowering effects of glucose nor with the inhibition of glucagon secretion. In contrast, activation of the depolarizing store-operated mechanism prevented glucose-induced, hyperpolarization, lowering of [Ca2+]i and inhibition of glucagon secretion. It is proposed that adrenaline stimulation and glucose inhibition of glucagon release involve modulation of a store-operated depolarizing current. The U-shaped dose response relationship for glucose-regulated glucagon secretion may explain the hyperglucagonemia in diabetes.
|
342 |
Functional characterisation of novel mast cell genes.Sisavanh, Mary, Biotechnology & biomolecular sciences, UNSW January 2008 (has links)
The development of microarray technology has provided an unprecedented wealth of data on gene expression in various tissue and cell types. Few studies have, however, taken full advantage of these data by selecting and then extensively characterising the functions of particular genes chosen from these microarray datasets. In this study, after analysing differentially-regulated genes revealed by microarray analysis of human mast cells activated via Fc??RI cross-linking, we chose two promising gene candidates for further research, A20 and Gem. Our group??s extensive gene expression database of major leukocytes showed that both A20 and Gem were up-regulated in other leukocyte types, and yet neither of these genes has been extensively explored in mast cells or in the immune system prior to our study. In order to investigate the first of these genes selected for further study, A20, we utilised both A20-deficient mast cells and mast cells in which A20 was over-expressed. Our findings establish for the first time that A20 is an important regulator of mast cell inflammatory responses to both LPS and Fc??RI cross-linking, and that it plays a novel role in mast cell proliferation. Our study of the second gene chosen for investigation, Gem, was conducted in a Gemdeficient mouse model developed by our group. In this study, we investigated the effect of Gem deficiency in two key immune cell types, macrophages and T-cells, complementing the work of a previous group member who investigated Gem deficiency in mast cells. Our results clearly exclude a role for Gem in macrophage and T-cell effector responses, and further establish that Gem is dispensable for in vivo inflammatory responses in models of delayed-type hypersensitivity and allergic airway inflammation. In addition to these findings, and given that the physiological role of Gem was not yet understood prior to our study, we extended our investigation to explore a potential function for Gem in the metabolic system. Using Gem-deficient mice, we found that Gem is necessary for insulin secretion from pancreatic islets. These findings confirm the potential for microarray expression data to reveal excellent gene candidates for further research and functional characterisation.
|
343 |
The role of PKCε in pancreatic β-Cell secretory function and its contribution to the development of lipid induced secretory defectsBurchfield, James, Clinical School - St Vincent's Hospital, Faculty of Medicine, UNSW January 2008 (has links)
Type 2 diabetes accounts for 85-90% of all people with diabetes and is currently estimated to affect more than 180 million people worldwide, a figure estimated to double by the year 2030. Thus understanding the basic biology of glucose homeostasis and how it is altered during disease progression is crucial to the development of safe and effective treatment regimes. The link between high dietary fat and the development of type Il diabetes is well established. Chronic treatment of pancreatic islets with the lipid palmitate induces defects in glucose stimulated insulin secretion (GSIS) akin to those seen in the development of type Il diabetes. Previous studies from our group have identified the lipid-activated kinase protein kinase C epsilon (PKCε) as a potential mediator of some of these effects. Deletion of PKCε in mice results in complete protection from high-fat diet induced glucose intolerance. This protection is associated with enhanced circulating insulin suggesting that PKCε may be involved in the regulation of insulin release from the pancreatic β-Cell. The data presented here suggests that PKCs plays an important role in the regulation of insulin secretion under both physiological and pathophysiological conditions. We demonstrate that PKCε can be activated by chronic lipid treatment and acute cholinergic stimulation. Under these conditions insulin secretion is enhanced by PKCε deletion or inhibition suggesting that PKCε is a negative regulator of insulin secretion. Mechanistically the PKCs mediated inhibition of insulin release by acute or chronic PKCε activation appears to be distinct. The effect of PKCε induced by palmitate pre-treatment appears to be distal to calcium influx. The pool of pre-docked vesicles is enhanced in palmitate pre-treated β-cells lacking PKCε suggesting that PKCε may be involved in the regulation of vesicle dynamics. In contrast, calcium dynamics induced by cholinergic stimulation are altered by PKCε deletion, suggesting an effect on either the calcium channels themselves or on the upstream signalling. Given the ability of PKCε to inhibit insulin secretion, inhibition of PKCε in the β-cells of people suffering from insulin resistance and (or) type II diabetes represents a novel target for the treatment of type II diabetes.
|
344 |
The Human Cell as an Environment for Horizontal Gene TransferFerguson, Gayle Christy January 2002 (has links)
Horizontal gene transfer (HGT) is now indisputably the predominant driving force, if not the sole force, behind speciation and the evolution of novelty in bacteria. Of all mechanisms of horizontal gene transfer (HGT), conjugation, the contact-dependent plasmid-mediated transfer of DNA from a bacterial donor to a recipient cell, is probably the most universal. First observed between bacteria, conjugation also mediates gene transfer from bacteria to yeast, plant and even animal cells. The range of environments in which bacteria naturally exchange DNA has not been extensively explored. The interior of the animal cell represents a novel and potentially medically relevant environment for gene transfer. Since most antibiotics are ineffective inside mammalian cells, our cells may be a niche for the evolution of resistance and virulence in invasive pathogens. Invading bacteria accumulate in vacuoles inside human cells, protected from antibiotics. Herein, I demonstrate the ability of intracellular Salmonella typhimurium to meet and exchange plasmid DNA by conjugation within animal cells, revealing the animal intracellular milieu as a permissive environment for gene exchange. This finding evokes a model for the simultaneous dissemination of virulence and antibiotic resistance within a niche protected from both antibiotics and the immune system and extends the variety of environments in which bacteria are known to exchange genes. Unlike conjugation between bacteria, conjugation between bacteria and eukaryotic cells requires the import of transferred DNA into the nucleus before the transferred genes can be expressed and inherited. Plant-cell nuclear transformation by the conjugation system of the Agrobacterium tumefaciens Ti plasmid is believed to be mediated by nuclear localization sequences (NLSs) carried within the proteins that accompany the T-DNA during transfer. Whether NLSs are equally important for transmission of other conjugative plasmids to eukaryotic cells is unknown. Herein, I demonstrate nuclear localization potential within the putative conjugative escort protein TraI of the IncPa plasmid RP4. In contrast, MobA, the putative escort protein from the IncQ plasmid RSF1010, lacked any clear nuclear localization potential. It is therefore likely that specific nuclear localization signals within conjugative proteins are not essential for nuclear transformation per se, although they may assist in efficient plasmid transmission.
|
345 |
Cellular transport and secretion of the cyanobacterial neurotoxin BMAA into milk and egg : Implications for developmental neurotoxicityAndersson, Marie January 2015 (has links)
The cyanobacterial amino acid β-N-methylamino-L-alanine (BMAA) is a neurotoxin implicated in the etiology of neurodegenerative diseases. Cyanobacteria are cosmopolitan organisms present in various environments. BMAA can cause long-term neurodegenerative alterations in rats exposed during the neonatal period, a period that corresponds to the last trimester and the first few years of life in humans. As BMAA has been reported to be bioaccumulated in the aquatic food chain and detected in mussels, crayfish and fish used for human consumption, the main aim of this thesis has been to investigate the final step in the mammalian food-chain, i.e. the transfer of BMAA into breast milk. Autoradiographic imaging and mass spectrometry analysis showed an enantiomer-selective uptake of BMAA and that the neurotoxin was transferred from lactating mice and rat, via the milk, to the brain of the nursed pups. The results show that transport of BMAA may be disproportional to dose. In addition, BMAA was found present both as free amino acid and tightly associated to proteins in rat brains. Surprisingly, however, no association to milk proteins was found. In vitro studies of murine (HC11) and human (MCF7) mammary epithelial cells suggest that BMAA can pass the human mammary epithelium into milk. Additional transport studies on human intestinal, glioblastoma and neuroblastoma cells showed that L-BMAA was consistently favored over D-BMAA and that the transport was mediated by several amino acid transporters. We also demonstrated that egg-laying quail transfer BMAA to its offspring by deposition in the eggs, particularly in the yolk but also in the albumen. Furthermore, comparative analysis of carboxyl- and methyl-labeled [14C]-BMAA suggested that BMAA was not metabolized to a large degree. Altogether, the results indicate that BMAA can be transferred from mothers, via the milk, to the brain of nursed human infants. Determinations of BMAA in mothers’ milk and cows’ milk are therefore warranted. We also propose that birds’ eggs could be an additional source of BMAA exposure in humans. It might therefore be of concern that mussels are increasingly used as feed in commercial egg production.
|
346 |
Avaliação do perfil protéico da secreção endometrial da égua. / Protein profile from the endometrial secretion of the mareMalschitzky, Eduardo January 2007 (has links)
O objetivo geral deste trabalho foi caracterizar o perfil protéico da secreção uterina pura, através da eletroforese bi-dimensional, de éguas em diferentes fases do ciclo estral, com diferentes graus de alterações inflamatórias e degenerativas, e com diferente capacidade de resposta à cobertura. Para tanto se realizaram cinco experimentos. O primeiro objetivou caracterizar o perfil protéico da secreção endometrial de éguas e determinar se essas proteínas estão associadas ao ciclo estral. A hipótese a ser testada é que o perfil protéico das secreções endometriais varia entre o estro e o diestro. Conclui-se que a composição protéica da secreção uterina da égua em estro é diferente daquela de éguas em diestro, podendo as diferenças protéicas estarem associadas tanto ao processo de manutenção e desenvolvimento embrionário, como a uma necessidade de eventual resposta inflamatória. O segundo experimento objetivou comparar as taxas de prenhez e morte embrionária em éguas não lactantes cobertas no primeiro, ou em outros ciclos durante a temporada reprodutiva. Foi concluído que: (a) durante a temporada reprodutiva, a fertilidade de éguas solteiras é menor no 1° ciclo que nos ciclos subseqüentes; (b) que uma taxa de morte embrionária maior pode ser esperada em éguas falhadas cobertas no 1° ciclo do que nos demais e (c) que a menor fertilidade observada no 1° ciclo não está relacionada à incidência de endometrite persistente pós-cobertura. O terceiro experimento objetivou comparar o perfil protéico da secreção endometrial e a expressão de receptores para esteróides ovarianos no endométrio de éguas em diestro após a 1ª ovulação e após a 2ª ovulação da temporada. Conclui-se que o ambiente uterino é diferente no primeiro diestro da temporada reprodutiva, comparado aos ciclos subseqüentes. O quarto experimento objetivou comparar o perfil protéico da secreção endometrial de éguas resistentes e susceptíveis à endometrite persistente pós-cobertura, durante o estro.Ahipótese a ser testada é que o ambiente uterino da égua susceptível encontra-se alterado no estro prévio à cobertura. Conclui-se que a composição da secreção endometrial das éguas susceptíveis, antes da cobertura, é diferente daquela observada nas éguas resistentes, estando as proteinas observadas relacionadas ao processo inflamatório e à contratilidade uterina. O quinto experimento objetivou (a) comparar a composição protéica da secreção endometrial de éguas em estro com e sem fibrose e (b) avaliar o efeito da inflamação endometrial sobre o perfil protéico da secreção uterina de éguas em estro e em diestro. A hipótese é que a fibrose e a inflamação alteram a composição protéica do fluído uterino, podendo prejudicar o desempenho reprodutivo da égua. Conclui-se que nas éguas em estro a inflamação e a fibrose endometrial alteram apenas a quantidade de poucas proteínas no ambiente uterino. Durante o diestro, a presença da inflamação alterou o ambiente uterino, havendo maior quantidade de proteínas inflamatórias. Os resultados apresentados neste trabalho requerem a confirmação da identidade das proteínas, através de seqüeciamento ou imuno identificação. No entanto, várias informações puderam ser obtidas e muitas novas perguntas podem ser geradas, em especial a partir dos resultados com as éguas susceptíveis. / The main objective from this study was the characterization of the protein profile by SDS-PAGE, from mares during the estrous cycle and mares with uterine inflammation, fibrosis and susceptibility to persistent post-mating endometritis. Five experiments were performed. The first aimed to evaluate the protein profile of endometrial secretions of mares and to determine if any of these proteins was associated with estrous cycle. It was concluded that protein profile from estrous mares is different from the profile from diestrous mares. This difference can be explained by requirements to support and develop the embryo or to an eventually inflammatory response. The second experiment aimed to compare pregnancy and embryo loss rates in non-lactating mares bred either in the first, or in other estrus cycles during the breeding season. It was concluded that: (a) during the breeding the fertility of non-lactating mares is lower in the 1st than in other estrus cycles season; (b) that a higher embryo loss rate may be expected in barren mares bred in the 1st than in other estrus cycles of the breeding season and (c) that the lower fertility rate observed during the 1st estrus cycle is not related to the incidence of post-breeding endometritis. The third experiment aimed to compare the protein profile of endometrial secretions and the steroid hormone receptor expression of the uterus from diestrous mares in the first, or in other estrous cycles during the breeding season. It was concluded that the uterine environment in the first diestrus of the breeding season is different in relation of the other diestrus. The fourth experiment aimed to compare the protein profile of endometrial secretions from estrous mares resistant or susceptible to persistent post-mating endometritis (PPME). The tested hypothesis was that before the insemination in susceptible mares the uterine environment is disturbed. It was concluded that there is a difference in the uterine environmentbetween resistant and susceptible mares to PPME, probably resulting from the inflammatory response and affecting the uterine contractility. The fifth experiment aimed (a) to compare the protein profile of endometrial secretions from estrous mares with and without fibrosis and (b) to estimate the effect of inflammation in the protein profile of endometrial secretion from mares in estrous and in diestrous. The tested hypothesis was that fibrosis and inflammation disturb the uterine environment modifying the protein profile of the endometrial secretion impairing the reproductive performance. It was concluded that inflammation and fibrosis in estrous influenced the protein profile in a low number of spots. During diestrous, the inflammation affect uterine environment with an expressive number of inflammatory proteins. The protein profile observed in the experiments must be confirmed by sequencing or immunoidentification. However, much information could be obtained but many others must be investigated, principally by the susceptible mare.
|
347 |
Enterobacterial type three secretion system effectors and their interference with host innate immunityWu, Miaomiao January 1900 (has links)
Doctor of Philosophy / Department of Diagnostic Medicine/Pathobiology / Philip R. Hardwidge / Microbial pathogens have evolved secretion systems to deliver arsenals of virulence proteins (effectors) to disrupt host homeostasis and manipulate host immune defenses. The best-characterized system mediating effector delivery into host cells is type III secretion system (T3SS) expressed by Gram-negative bacteria, including enteric pathogens enteropathogenic/enterohemorrhagic Escherichia coli (EPEC/EHEC), Shigella, Yersinia, and Salmonella. Pathogen-host cell protein interactions within the host cell alter host cell signaling and ultimately subvert pathogen-induced inflammatory response.
In the first project, we identified the Salmonella Secreted Effector L (SseL) that deubiquitinated ribosomal protein S3 (RPS3) to inhibit its nuclear translocation. RPS3 guides the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B) subunits to specific B sites and plays an important role in the innate response to bacterial infection. Two E. coli effectors block RPS3 nuclear translocation. Non-locus-of-enterocyte-effacement (non-LEE) encoded effector NleH1 inhibits RPS3 phosphorylation by IKK-, an essential aspect of the RPS3 nuclear translocation process. NleC proteolysis of p65 generates an N-terminal p65 fragment that competes for full-length p65 binding to RPS3, thus also inhibiting RPS3 nuclear translocation. Thus, E. coli has multiple mechanisms by which to block RPS3-mediated transcriptional activation. With this in mind, we considered whether other enteric pathogens also encode T3SS effectors that impact this important host regulatory pathway. In this study, we report that SseL, which was previously shown to function as a deubiquitinase and inhibit NF-B signaling, also inhibits RPS3 nuclear translocation by deubiquitinating this important host transcriptional co-factor. RPS3 deubiquitination by SseL was restricted to K63-linkages and mutating the active-site cysteine of SseL abolished its ability to deubiquitinate and subsequently inhibit RPS3 nuclear translocation. Thus, Salmonella also encodes at least one T3SS effector that impacts RPS3 activities in the host nucleus.
In the second project, we attempted to identify a cofactor involved in the interaction between E. coli effector NleH1 and host kinase the IB kinase- (IKK). The EHEC NleH1 effector inhibits NF-B pathway by reducing the nuclear translocation of RPS3. NleH1 prevents RPS3 phosphorylation by IKKIKK is a central kinase in the NF-B signaling pathway, yet the EHEC NleH1 effector only restricts the phosphorylation of a subset of the IKK substrates. We hypothesized that a protein cofactor might dictate the inhibitory specificity of NleH1 on IKK. We used mass spectrometry and determined that heat shock protein 90 (Hsp90) interacts with both NleH1 and IKK, and that inhibiting Hsp90 activity reduces RPS3 nuclear translocation.
In the third project, we focused on the crystal structures of Salmonella secreted effector SseK1 and SseK2 from Salmonella typhimurium SL1344, and non-LEE encoded effector NleB2 from E. coli O145:H28 and propose catalytic residues for arginine glycosylation. Salmonella SseK1 and SseK2 are E. coli NleB1 orthologs that behave as NleB1-like glycosyltransferases, although they differ in protein substrate specificity. The bacterial effectors SseK and NleB1 glycosylate host cell death domain target proteins on arginine residues that inhibits death receptor signaling. We report crystal structures of SseK1, SseK2, and NleB2 and found they are highly similar to each other and comprises three domains including helix-loop-helix (HLH), lid, and catalytic domain. His-Glu-Asn (HEN) motif in the active site is essential for enzyme catalysis. We observe differences between SseK1 and SseK2 in interactions with substrates and identify substrate residues that are important for enzyme recognition.
|
348 |
La sécrétion de la protéine tau : mécanisme de propagation de la pathologie de tau dans la maladie d’AlzheimerMohamed, Nguyen-Vi 04 1900 (has links)
No description available.
|
349 |
O transporte de ânions em células INS-1E não compõe parte do mecanismo da via de amplificação da secreção de insulina estimulada pela glicose. / The anion transport in INS-1E cell line do not composes part of the mechanism of the amplification pathway of glucose stimulated insulin secretion.Daniel Blanc Araujo 22 August 2016 (has links)
A via de amplificação da secreção de insulina estimulada por glicose (GSIS) é um fenômeno discutido na literatura, cujos componentes são amplamente debatidos. Evidências sugerem que a condutância a Cl- compõe parte desta via. Porém, o mecanismo pelo qual essa condutância desempenharia papel na via de amplificação ainda é debatido, e, além disso, as ferramentas farmacológicas para estudo dessas afeta o transporte de outros ânions, como bicarbonato (HCO3-). Buscamos neste trabalho compreender a contribuição do transporte desses ânions para a via de amplificação da GSIS levando em consideração a distribuição de Cl- e HCO3- extracelular em células INS-1E. Concluímos que o transporte de ânions nas células INS-1E não contribui para a via de amplificação da GSIS, porém essas células não expressaram os canais CFTR e Anoctamina 1 que foram relacionados com esse fenômeno. Acreditamos que em células secretoras de insulina que expressem esses canais, o transporte de ânions possua alguma relevância funcional. / The amplification pathway of glucose stimulated insulin secretion (GSIS) is a phenomenon discussed in the literature, which components are broadly debated. Evidence suggests that Cl- conductance composes part of this pathway. However, the mechanism that this conductance would play role on the amplification pathway still is debated, and, besides that, the pharmacological tools to study these affects transport of other anions, such as bicarbonate (HCO3-). We aimed in this study to understand the contribuition of anion transport for the amplification of GSIS considering the Cl- and HCO3- extracellular distribuition in INS-1E cells. We concluded that anion transport in INS-1E cell line do not contribute for the amplification pathway of GSIS, however those cells do not express CFTR and Anoctamin 1 channels which were related with this phenomenon. We believe that in insulin secretin cells that express those channels, the anion transport may have a functional relevance.
|
350 |
Efeito do sulfato de dehidroepiandrosterona (SDHEA) sobre células foliculares nos estágios antral inicial e pré-ovulatórioSchneider, Júlia January 2017 (has links)
O folículo ovariano é composto pelo oócito (gameta feminino) e por várias camadas de células foliculares somáticas, sendo que destas, as mais intimamente associadas com o oócito são as células do cumulus oophorus (CCs), as quais estão em contato direto com o gameta feminino e formam o complexo cumulus-oócito (CCO), e as células murais da granulosa (CGs), que revestem a parede do folículo ovariano. Visto que estas CGs e CCs são facilmente acessadas durante tratamentos de reprodução assistida (RA), que podem ser coletadas sem comprometimento do oócito e que são descartadas após a recuperação do oócito é possível que elas sejam utilizadas em pesquisas que visam elucidar a fisiologia ovariana. No entanto, quando recuperadas, nos ciclos de reprodução assistida, estas células se encontram em um estado luteinizado, devido ao tratamento hormonal que as pacientes realizam. Sabe-se que o uso de CGs luteinizadas em cultura celular para o estudo do processo molecular ovulatório é limitado visto esta prévia exposição celular às gonadotrofinas e ao seu estado luteinizado. Porém, foi demonstrado que CGs luteinizadas podem readquirir sua capacidade de resposta à estimulação por gonadotrofinas, recuperando características semelhantes às daquelas de folículos não luteinizados nos estágios iniciais de diferenciação (early antral não luteinizado). A estimulação destas células com FSH causa aumento na expressão de genes que caracterizam CGs típicas de folículos pré-ovulatórios (pré-ovulatório não luteinizado). Ainda, outra questão importante com relação ao folículo ovariano diz respeito à ação dos androgênios nesta estrutura ovariana, sendo que já se sabe que a ativação do receptor de androgênio, localizado nas células foliculares, é capaz de modular a expressão e a atividade de genes importantes para a manutenção do desenvolvimento do folículo ovariano. Desta forma, sugere-se que o efeito reprodutivo do tratamento com dehidroepiandrosterona (DHEA) e seu sulfato (SDHEA), importantes androgênios, pode ser devido às suas ações justamente no microambiente folicular. Portanto, o objetivo deste trabalho foi analisar a exposição de células foliculares desluteinizadas (estágios early antral e pré-ovulatório) ao SDHEA. Para isto, células da granulosa e do cumulus foram obtidas de pacientes submetidas à fertilização in vitro e foram cultivas separadamente. Inicialmente, fez-se a determinação do melhor tempo de cultivo deste modelo celular proposto, dentre 6, 8 ou 10 dias de cultivo. As análises de viabilidade celular realizadas mostraram que o melhor tempo para o cultivo primário folicular, para as próximas etapas do trabalho, seria de oito dias. Após, também por análises de viabilidade celular, a melhor dose de SDHEA para exposição às células foliculares foi determinada dentre cinco doses testadas em comparação a um controle sem exposição hormonal. As análises mostraram que a dose mais adequada a ser utilizada era a dose de 0,08 μM de SDHEA. Posteriormente, tendo definido o melhor tempo de cultivo e a dose ideal de exposição das células em questão ao SDHEA, os experimentos foram realizados com dois grupos experimentais distintos: células early antral não luteinizadas e células pré-ovulatórias não luteinizadas – expostas ao FSH. Ambos os grupos foram divididos em dois subgrupos: grupo controle (sem exposição hormonal) e grupo SDHEA (com exposição ao SDHEA). Foram feitas dosagens hormonais de SDHEA, de estradiol e de progesterona nos dias 1, 4, 6 e 8 do sobrenadante do cultivo celular. A análise ao longo do tempo mostrou que os valores das dosagens de SDHEA se mantiveram constantes no grupo controle durante todo o período de cultivo celular, não havendo diferença estatística entre as quatro dosagens hormonais feitas neste grupo. Por outro lado, no grupo tratado houve diferença nos valores deste hormônio nos dias 6 e 8, em comparação aos dias 1 e 4, devido justamente ao tratamento com SDHEA realizado neste grupo experimental. Com relação ao estradiol, independente do tipo celular e do estágio de desenvolvimento, foi possível ver que a sua secreção era elevada no primeiro dia de cultivo, diminuindo nos outros dias devido às condições e ao tempo de cultivo do protocolo de desluteinização celular. Além disso, as células tratadas com SDHEA apresentaram uma secreção de estradiol superior àquelas não tratadas. Por fim, as dosagens de progesterona revelaram que o tratamento com SDHEA não alterou a secreção deste hormônio pelas células, em nenhum dos dois estágios de desenvolvimento. Ainda, as células apresentaram uma secreção aumentada de progesterona no sexto dia de cultivo celular em comparação ao primeiro e ao quarto dia; porém, esta secreção começou a diminuir quando do oitavo dia de cultivo. Tendo em vista os resultados obtidos, podemos concluir que o tratamento com SDHEA é capaz de aumentar a secreção de estradiol de células foliculares não luteinizadas, não alterando a secreção de progesterona dessas mesmas células. Mais estudos são necessários para um melhor entendimento dos efeitos do SDHEA nos processos que compõem a foliculogênese. / Ovarian follicle is formed by the oocyte (female gamete) and somatic follicular cells. Those closer to the oocyte are cumulus oophorus cells (CCs), which are in direct contact with the female gamete, and the granulosa mural cells (GCs), which form the wall of the ovarian follicle. As GCs and CCs are easily accessed during assisted reproduction procedures and are discarded after oocyte retrieval, they can be used in research aimed at elucidating ovarian physiology. However, when recovered in assisted reproduction cycles, these cells are in a luteinized state due patient hormonal treatment. It is known that the use of luteinized GCs to study the molecular ovulatory process is limited due to this prior cellular exposure to gonadotrophins and their luteinized state. However, luteinized CGs have been shown to reacquire similar characteristics to those of non-luteinized follicles in early stages of differentiation (non-luteinized early antral). Stimulation of these cells with follicle stimulating hormone (FSH) increases expression of genes that characterize CGs typical of pre ovulatory follicles (non-luteinized pre ovulatory). Another important question regarding the ovarian follicle relates to androgens action in this ovarian structure. As it is known, androgen receptor activation, located in follicular cells, is able to modulate expression and activity of important genes for the maintenance of ovarian follicle development. Thus, authors suggest that the reproductive effect of dehydroepiandrosterone (DHEA) and their sulfate (SDHEA) treatment, important androgens, may be due their actions precisely in the follicular microenvironment. Consequently, the aim of this work was to analyze the exposure to SDHEA of non-luteinized follicular cells (early antral and pre-ovulatory stages). Granulosa and cumulus cells were obtained from patients submitted to in vitro fertilization and were separately cultivated. Initially, the best culture time of this proposed cellular model was determined among 6, 8 or 10 days of culture. Cellular viability analysis showed that primary follicular culture for the next steps of the study would be of 8 days. Thereafter, cellular viability assays were used to determine the best SDHEA dose among 5 doses to follicular cells exposure in comparison to a control without hormonal exposure. The analysis showed that the best dose to use was 0,08 μM of SDHEA. Subsequently, after defined the best culture time and the ideal exposure dose of the cells to SDHEA, experiments were performed with two different experimental groups: non-luteinized early antral cells and non-luteinized pre ovulatory cells – exposed to FSH. Both groups were divided in two subgroups: control group (no hormonal exposure) and SDHEA group (with SDHEA exposure). SDHEA, estradiol and progesterone hormonal dosages of the cell culture supernatant were done on days 1, 4, 6 and 8. Over time analysis revealed that SDHEA values were constant in control group during all the cell culture period, without statistical difference between the four hormonal dosages performed in this group. However, treated group showed a difference in the values of this hormone on days 6 and 8, compared to days 1 and 4, due to treatment with SDHEA of these experimental group . Regarding estradiol, independent of cell type and stage of development, it was possible to see that its secretion was high on the first day of culture, decreasing in others due to conditions and time of culture of the non-luteinized cells protocol. In addition, the SDHEA treated cells presented higher estradiol secretion than those not treated. Finally, progesterone dosages revealed that treatment with SDHEA did not alter this hormone secretion from the cells in either of the two development stages. Besides that, the cells had an increased progesterone secretion on the sixth cell culture day compared to first and fourth day; however, this secretion began to decrease on the eight day of culture. In conclusion, SDHEA treatment is able to increases the non-luteinized follicular cells secretion of estradiol, but it is not able to modify the progesterone secretion of the same cells. More studies are needed to better understand the effects of SDHEA on the process that make part of folliculogenesis.
|
Page generated in 0.0865 seconds