• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 1
  • Tagged with
  • 114
  • 44
  • 33
  • 28
  • 25
  • 22
  • 21
  • 19
  • 18
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Ações de semigrupos : recorrencia por cadeias em fibrados e compactificações de Ellis / Semigroup actions : Chan recurrence in fiber Bundles and Ellis compactifications

Souza, Josiney Alves de 15 July 2008 (has links)
Orientador: Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-11T09:58:09Z (GMT). No. of bitstreams: 1 Souza_JosineyAlvesde_D.pdf: 1777083 bytes, checksum: 43943f3a9ea228d0eb5fbe6c6906cd93 (MD5) Previous issue date: 2008 / Resumo: Um semigrupo de transformação consiste de um semigrupo de aplicações contínuas definidas num espaço topológico. A hipótese sobre o semigrupo é a propriedade de reversibilidade, isto é, que a coleção das translações do semigrupo satisfaz a propriedade de intersecção finita. A idéia central é de dinamizar um semigrupo de transformação, sendo isto realizado pela introdução dos correspondentes objetos dinâmicos elementares da teoria de semifluxos, ou seja, os conjuntos limites, atratores e repulsores. O conceito de recorrência por cadeias é abordado de uma forma generalizada, sobre espaços paracompactos, tendo como fundamento certas famílias especiais de coberturas abertas do espaço base chamadas famílias admissíveis. Estudamos também ações de grupos de homeomorfismos sobre espaços compactos. Neste caso, a hipótese sobre o grupo é que ele seja gerado por um subsemigrupo reversível, a partir do qual são definidos todos os objetos dinâmicos elementares. Estudamos dois casos específicos de semigrupos de transformações. No primeiro caso, abordamos semigrupos de transformações em fibrados topológicos, especialmente em fibrados flag, e enfatizamos o estudo sobre transitividade por cadeias fibra a fibra. No segundo caso, estudamos ações de grupos sobre compactificações de Ellis, onde apresentamos uma relação entre o conceito de subsemigrupo semitotal e a transitividade por cadeias. Por último, introduzimos o conceito de função recorrente por cadeias, generalizando o conceito de função recorrente. / Abstract: Transformation semigroups are actions of semigroups of continuous maps on topological spaces. We consider reversible semigroups and study dynamics behaviors by introducing the elementary dynamic objects, originals of the semiflows theory, that is, the limit sets, attractors and repellers. We present the concept of chain recurrence for admissible families on paracompact spaces. We also study homeomorphism group action on compact spaces. In this case, the hypothesis on the group is the Ore's condictions. The elementary dynamics objects are defined from the action of the generator reversible subsemigroup. Then we study two specific cases of transformation semigroups. In the first case, we present results on the actions of endomorphism in flag bundles by emphasizing the chain transitivity in the fibres. Next, we study group actions in Ellis compactifications and relate the concept of semitotal subsemigroup to the chain transitivity. Finally, we introduce the concept of chain recurrent function and generalize the concept of recurrent function. / Doutorado / Geometria / Doutor em Matemática
72

Estudo local de curvas singulares via valorizações e semigrupos

Neris, Naamã Galdino da Silva 25 August 2017 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-11-06T18:21:39Z No. of bitstreams: 1 naamagaldinodasilvaneris.pdf: 510761 bytes, checksum: 3d65f53c0c655a96c3ac3616d81c38fe (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-11-09T14:34:57Z (GMT) No. of bitstreams: 1 naamagaldinodasilvaneris.pdf: 510761 bytes, checksum: 3d65f53c0c655a96c3ac3616d81c38fe (MD5) / Made available in DSpace on 2017-11-09T14:34:57Z (GMT). No. of bitstreams: 1 naamagaldinodasilvaneris.pdf: 510761 bytes, checksum: 3d65f53c0c655a96c3ac3616d81c38fe (MD5) Previous issue date: 2017-08-25 / O objetivo principal desse trabalho é o estudo local de curvas planas singulares usando valorizações e semigrupos de valores. Vimos que os objetos algébricos que correspondem aos pontos da curva são as valorizações ou, equivalentemente, os anéis de valorização discreta. Mais precisamente, seja k um corpo algebricamente fechado, C uma curva plana projetiva irredutível e não singular e k(C) o corpo das funções racionais de C. Então, existe uma bijeção entre os pontos da curva C e o conjunto das valorizações discretas da extensão k(C)/k. Vimos também que no caso de curvas singulares essa correspondência não é em geral uma bijeção. Estudamos semigrupos de valores associados aos anéis locais de algumas curvas planas e também usamos as noções de semigrupo e ideais relativos para caracterizar módulos livres de torção e posto 1 sobre dois exemplos de curvas singulares. / The main of this work is the local study of singular plane curves using valuations and semigroups of values. We have seen that the objects that correspond to the points of the curve are the valuations or, equivalently, the discrete valution rings. More precisely, let k be an algebraically closed field, C an irreducible non-singular projective plane curve and k(C) the rational function field of C. Then, there exists a bijection between the points of the curve C and the set of discrete valuations of the extension k(C)/k. We have also seen that in the case of singular curves this correspondence is not usually a bijection. We have studied semigroups of values associated with the local ring of some plane curves and we have also used the semigroup notions and relative ideals to characterize the torsion free modules of rank 1 on two examples of singular curves.
73

Existência, unicidade e decaimento exponencial da solução da equação de onda com amortecimento friccional

Oliveira, Marianna Resende 06 March 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-26T14:18:10Z No. of bitstreams: 1 mariannaresendeoliveira.pdf: 508490 bytes, checksum: e85c33aa024977254550dda6bfa1f317 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-26T15:12:24Z (GMT) No. of bitstreams: 1 mariannaresendeoliveira.pdf: 508490 bytes, checksum: e85c33aa024977254550dda6bfa1f317 (MD5) / Made available in DSpace on 2017-05-26T15:12:24Z (GMT). No. of bitstreams: 1 mariannaresendeoliveira.pdf: 508490 bytes, checksum: e85c33aa024977254550dda6bfa1f317 (MD5) Previous issue date: 2014-03-06 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho estudaremos o problema de ondas com amortecimento friccional. Consideraremos o caso em que a dissipação provocada pelo atrito, representado por αut (onde α é uma constante real positiva), atua em todo o domínio. Estudaremos a existência e unicidade da solução via Método de Galerkin e via Teoria dos Semigrupos. Para o estudo da estabilidade de solução empregaremos o Método de Energia e a técnica de Semigrupos aplicada a sistemas dissipativos. Ao final do trabalho vamos comparar os métodos utilizados para garantir a existência, unicidade e comportamento assintótico da solução. Usaremos a notação usual dos espaços de Sobolev. / In this work we will study the problem of waves with frictional damping. We will consider the case in which dissipation caused by the friction, represented by αut (where α is a positive real constant), operates throughout all the domain. We will study the existence and uniqueness of the solution through the Galerkin Method and the Semigroups Theory. To study the stability of the solution we will employ the Energy Method and the Semigroups technique applied to dissipative systems. At the end of the paper we will compare the methods used to ensure the existence, uniqueness and asymptotic behavior of the solution. We will use the usual notation of Sobolev spaces.
74

Semigrupos degenerados e fluxo estocástico de aplicações mensuráveis em variedades folheadas / Degenerate semigroups and stochastic flows of mappings in foliated manifolds

Costa, Paulo Henrique Pereira da, 1983 23 August 2018 (has links)
Orientador: Paulo Régis Caron Ruffino / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T11:21:58Z (GMT). No. of bitstreams: 1 Costa_PauloHenriquePereirada_D.pdf: 1382380 bytes, checksum: 975aac3916932e92b8fe92b185b6eb9f (MD5) Previous issue date: 2013 / Resumo: Seja (M,?) uma variedade Riemanniana compacta folheada. Consideramos uma família de semigrupos Feller compatível em C(Mn) associada as leis de um processo Markoviano de n-pontos. Com algumas condições (Le Jan e Raimond [34]) existe um fluxo estocástico de aplicações mensuráveis em M. Estudamos aqui a degenerescência desses semigrupos tais que o fluxo de aplicações seja folheado, ou seja, cada trajetória permanece na folha em que começou q.s. e portanto cria uma obstrução geométrica natural para a coalescência de trajetórias em folhas distintas. Como uma aplicação dessa teoria, um princípio de médias é provado para uma perturbação de primeira ordem transversal as folhas. Estimativas de taxas de convergências também são dadas / Abstract: Let (M,?) be a compact Riemannian foliated manifold. We consider a family of compatible Feller semigroups in C(Mn) associated to laws of the n-point motion. Under some assumptions (Le Jan and Raimond [34]) there exists a stochastic flow of measurable mappings in M. We study the degeneracy of these semigroups such that the flow of mappings is foliated, i.e. each trajectory lays in a single leaf of the foliation a.s, hence creating a geometrical obstruction for coalescence of trajectories in different leaves. As an application, an averaging principle is proved for a first order perturbation transversal to the leaves. Estimates for the rate of convergence are calculated / Doutorado / Matematica / Doutor em Matemática
75

Transitividade de semigrupos em variedades homogêneas / Transitivity of semigroups on homogeneous manifolds

Ferrareze, Janete de Paula, 1982- 09 December 2012 (has links)
Orientador: Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T02:47:13Z (GMT). No. of bitstreams: 1 Ferrareze_JanetedePaula_D.pdf: 3349014 bytes, checksum: a9c6af0b3ffb0e264a3b4cbc390d5073 (MD5) Previous issue date: 2012 / Resumo: Seja G um grupo de Lie simples...Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: Let G be a simple Lie group...Note: The complete abstract is available with the full electronic document / Doutorado / Matematica / Doutora em Matemática
76

Comportamento assintótico para um Sistema de Timoshenko com História / Asymptotic Behavior for a Timoshenko System with History

Gil, Lazaro Santos 06 March 2015 (has links)
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2015-11-16T09:36:12Z No. of bitstreams: 1 texto completo.pdf: 1517826 bytes, checksum: 5fdfda894297b30c1745df2c3743f095 (MD5) / Made available in DSpace on 2015-11-16T09:36:12Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1517826 bytes, checksum: 5fdfda894297b30c1745df2c3743f095 (MD5) Previous issue date: 2015-03-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / No presente trabalho estudamos o comportamento assintótico de um sistema dissipativo com aplicação a modelagem de materiais Viscosos. Mais especificamente, estudamos a existência, unicidade e comportamento assintótico de um sistema tipo-Timoshenko com dissipação dada pela história. Usamos semigrupo e prOpriedades do resolvente de seu gerador infinitesimal para mostrarmos a existência e unicidade de solução para o sistema, assim como o comportamento da solução. / In this paper we study the asymptotic behavior of a dissipative system vvith application to modeling of viscous materials. More specifically, vve study the existence, uniqueness and asymptotic behavior of a type-Timoshenko system dissipation given by history. We use semigroup and resolvent properties of its infinitesimal generator to show the existence and uniqueness of solution to the system and the solution behavior.
77

Regularidad y existencia de solución de un modelo de ondas en un fluido viscoso

Milla Garcia, Luis January 2019 (has links)
Estudia la regularidad, existencia, unicidad y dependencia continua de la solución de la eucación lineal homogénea KdV-Kuramoto-Sivashinsky (P) ut + uxxx + β(uxxxx + uxx) = 0 en Hs−4 per con u(0) = φ ∈ Hs per considerando β una constante positiva, s un número real y denotando por Hs per al espacio de Sobolev periódico de orden s, siguiendo las ideas de [14]. Además, siguiendo estas ideas, incluimos el estudio de la buena colocación del problema de Cauchy asociado a la ecuación del calor y de la onda. Para esto usamos la teoría de Fourier, análisis armónico y la teoría de semigrupos de operadores lineales. / Tesis
78

Semigrupos numéricos y una descripción de semigrupos de Weierstrass

Galarza Gerónimo, Orlando Alfredo 27 March 2019 (has links)
En este trabajo, se estudia fundamentalmente diversas relaciones aritméticas que hay en los semigrupos numéricos, como por ejemplo, obtener el conjunto de lagunas, teniendo solamente el conjunto Apery; también, dado un conjunto de elementos generadores, se asociará a cada uno de ellos, un propio semigrupo numérico. Se analiza, haciendo una descripción de diversos conceptos de la Geometría Algebraica, los cuales se relacionan con los semigrupos numéricos, mediante los semigrupos de Weierstrass, que tienen fundamento, en el teorema de Riemann-Roch. / Tesis
79

Operadores y semigrupos de operadores en espacios de Fréchet y espacios localmente convexos

Conejero Casares, José Alberto 13 October 2015 (has links)
La primera parte lleva por título Operadores en Espacios de Fréchet y Espacios Localmente Convexos y está dedicada al estudio de las clases de los monomorfismos, de los operadores casi abiertos, de los operadores abiertos y de los operadores sobreyectivos entre espacios de Fréchet y espacios localmente convexos. Se caracteriza que los conjuntos de estas clases de operadores sean abiertos. Se estudian las relaciones entre un operador y su adjunto para estas clases de operadores. Se presenta un análisis completo de las posibles extensiones de resultados en espacios de Banach al contexto de espacios de Fréchet y de espacios (DF) completos. Se definen tres operadores asociados canónicamente con un operador dado usando los espacios de sucesiones acotadas y los espacios de sucesiones convergentes a cero. Se estudian de las relaciones existentes entre las propiedades del operador inicial y las propiedades de los operadores asociados. La segunda parte lleva por título Semigrupos de Operadores Hipercíclicos y Caóticos y está dedicada al estudio de la hiperciclicidad, la propiedad de ser mezclante y la de ser caótico para semigrupos de operadores lineales y continuos de un F-espacio en sí mismo y con semigrupo índice los reales, los reales positivos o sectores del plano complejo. Se recuerdan las nociones básicas de hiperciclicidad, de la propiedad de ser mezclante y de caos para operadores y se generalizan para semigrupos. Se reduce el estudio de la hiperciclicidad y de la propiedad de ser mezclante en semigrupos al estudio de estos conceptos en discretizaciones concretas del semigrupo. Se generalizan los Criterios de Hiperciclicidad para operadores dados por Kitai y Bès a semigrupos. Se investiga la existencia de discretizaciones autónomas hipercíclicas en semigrupos hipercíclicos y mezclantes. Se investiga la hiperciclicidad y el caos para semigrupos de traslación en espacios que sean límites proyectivos ........ / Conejero Casares, JA. (2004). Operadores y semigrupos de operadores en espacios de Fréchet y espacios localmente convexos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/55923
80

Modelagem e estabilidade uniforme de vigas curvas termoelásticas / Modeling and uniform stability of thermoelastic curved beams

Garbugio, Gilmar 19 December 2014 (has links)
Submitted by Maria Cristina (library@lncc.br) on 2015-04-06T17:02:05Z No. of bitstreams: 1 Tese-Gilmar Garbugio.pdf: 673919 bytes, checksum: a4c6ba4e7e0a9da9bbd2bc2e537fdf37 (MD5) / Approved for entry into archive by Maria Cristina (library@lncc.br) on 2015-04-06T17:02:27Z (GMT) No. of bitstreams: 1 Tese-Gilmar Garbugio.pdf: 673919 bytes, checksum: a4c6ba4e7e0a9da9bbd2bc2e537fdf37 (MD5) / Made available in DSpace on 2015-04-06T17:02:41Z (GMT). No. of bitstreams: 1 Tese-Gilmar Garbugio.pdf: 673919 bytes, checksum: a4c6ba4e7e0a9da9bbd2bc2e537fdf37 (MD5) Previous issue date: 2014-12-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) / In this work we study the use the Fourier law for the heat equation, which produces an evolution equation of parabolic type, which in turn produces the so-called paradox of infinite propagation velocity. This thesis proposes alternative models to avoid this problem. To achieve this, developing physical criteria about modeling of elastic systems is necessary, so that the paradox of infinite propagation velocity does not occur. We discussed various theories of heat propagation, such as the Maxwell-Cattaneo law. The thermodynamic theory, called thermoelasticity III, was adapted for modeling curved beams. Once the usage of the studied thermoelastic models is justified, the method used to validate such models is the semigroup theory. We will study the qualitative properties of the corresponding thermoelastic models, in particular the uniform stability of the solution. Finally, we prove results for exponential and polynomial stability of solutions for the Bresse beam models. / Neste trabalho estudamos a equação do calor com a lei de Fourier, resultando em uma equação de evolução do tipo parabólica, e isso nos leva ao chamado paradoxo da velocidade de propagação infinita. A tese propõe modelos alternativos para evitar este problema. Para isto é necessário desenvolver critérios físicos, sobre a modelagem de sistemas elásticos, de tal forma que o paradoxo da velocidade infinita de propagação não aconteça. Discutimos diversas teorias da propagação do calor, como a lei de Maxwell-Cattaneo. A teoria termodinâmica, denominada termoelasticidade III, foi adaptada para a modelagem de vigas curvas. Uma vez justificados os modelos termoelásticos estudados, o método usado para validar tais modelos é a teoria de semigrupos. Estudaremos as propriedades qualitativas dos correspondentes modelos termoelásticos, como a estabilidade uniforme das soluções. Finalmente, provamos resultados de estabilidade exponencial e polinomial de soluções para os modelos de viga de Bresse.

Page generated in 0.0574 seconds